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Abstract

This paper addresses the problem of amodal perception

of 3D object detection. The task is to not only find object

localizations in the 3D world, but also estimate their phys-

ical sizes and poses, even if only parts of them are visible

in the RGB-D image. Recent approaches have attempted

to harness point cloud from depth channel to exploit 3D

features directly in the 3D space and demonstrated the su-

periority over traditional 2.5D representation approaches.

We revisit the amodal 3D detection problem by sticking

to the 2.5D representation framework, and directly relate

2.5D visual appearance to 3D objects. We propose a novel

3D object detection system that simultaneously predicts ob-

jects’ 3D locations, physical sizes, and orientations in in-

door scenes. Experiments on the NYUV2 dataset show

our algorithm significantly outperforms the state-of-the-art

and indicates 2.5D representation is capable of encoding

features for 3D amodal object detection. All source code

and data is on https://github.com/phoenixnn/

Amodal3Det.

1. Introduction
Object detection is one of the fundamental challenges in

computer vision, the task of which is to detect the local-

izations of all object instances from known classes such as

chair, sofa, etc in images. Traditionally, detected object in-

stances are represented by 2D bounding boxes around vis-

ible counterparts on images. Although 2D rectangles can

roughly indicate where objects are placed on image planes,

their true locations and poses in the physical 3D world are

difficult to determine due to multiple factors such as oc-

clusions and the uncertainty arising from perspective pro-

jections. However, it is very natural for human beings to

understand how far objects are from viewers, object poses

and their full extents from still images. These kind of fea-

tures are extremely desirable for many applications such as

robotics navigation, grasp estimation, and Augmented Re-

ality (AR) etc. In order to fill the gap, a variety of efforts

were made in the past decade including inferring 3D object

localizations from monocular imagery [6, 13, 20, 3], and

3D object recognitions on CAD models [29, 27]. But these

works either rely on a huge number of ideal 3D graphics

models by assuming the locations are known or are inclined

to fail in cluttered environments where occlusions are very

common while depth orders are uncertain.

The recent advent of Microsoft Kinect and similar sen-

sors alleviated some of these challenges, and thus enabled

an exciting new direction of approaches to 3D object detec-

tion [18, 17, 12, 11, 19, 25, 24]. Equipped with an active

infrared structured light sensor, Kinect is able to provide

much more accurate depth locations of objects associated

with their visual appearances. The RGB-Depth detection

approaches can be roughly categorized into two groups ac-

cording to the way to formulate feature representations from

RGB-Depth images.

In general, 2.5D approaches start by exploiting proper

feature representations on color and depth images for ob-

ject detection and building models to convert 2D results to

3D space. While 3D approaches start by putting detection

proposals directly in 3D space for extracting features from

3D point cloud within 3D windows. The competition to de-

termine whether 2.5D or 3D approaches represent the right

direction for 3D amodal object detection is super intense:

[25] utilized 3D sliding window to directly infer detections

in 3D space and demonstrate its merits for dealing with oc-

clusions, viewpoints etc over 2.5D approaches. Then 2.5D

approach [11] outperformed [25] by starting with well es-

tablished 2D reasoning and aligning CAD models with 2D

detections. The most recent work [24] outperformed [11] by

a significant margin by introducing a 3D ConvNet model to

encode 3D geometric features directly. So far, 3D centric

sliding shapes leads the 3D detection performance on the

challenging NYUV2 RGB-Depth dataset [22].

Although utilizing 3D geometric features for detection is

promising, in practice the reconstructed 3D shapes are of-

ten incomplete (when projecting pixels of one single depth

map back to 3D space), noisy and sparse (due to occlusions,

reflections and absorptions of infrared lights). Hence, the

quality of obtained surfaces is very different from that of
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CAD models with 360◦ panoramas, which makes fitting 3D

bounding boxes to 3D points a very challenging task. In

particular, when the majority of an object area on the depth

map is in a ”black hole”, the recovered 3D shape hardly de-

livers salient features. However, light signals recorded in

the 2D image plane are dense and structured, and humans

still can perceive the objects and estimate their 3D locations

from such images. Therefore, it should be possible to mimic

the human 3D perception and leverage 2.5D image features

directly using current deep learning techniques. As the pro-

posed approach demonstrates this is indeed the case.

In this paper, we revisit the 3D amodal object detec-

tion problem from the 2D point of view. We start with

2D bounding box proposals obtained from extended mul-

tiscale combinatorial grouping (MCG) class independent

object proposals [1, 12]. We design a novel 3D detec-

tion neural network based on Fast-RCNN framework that

naturally integrates depth information with the correspond-

ing visual appearances to identify object classes, orienta-

tions and their full extents simultaneously in indoor scenes,

where 2D bounding boxes around superpixels together with

RGB-Depth images are taken as inputs. To sum up, the

highlights of the main contributions of this work are as fol-

lows:

• To the best of our knowledge, we are the first to refor-

mulate the 3D amodal detection problem as regressing

class-wise 3D bounding box models based on 2.5D im-

age appearance features only.

• Given color, depth images and 2D segmentation pro-

posals, we designed a novel 3D detection neural net-

work that predicts 3D object locations, dimensions,

and orientations simultaneously without extra step of

training SVMs on deep features or fitting 3D CAD

models to 2D detections.

• We do not make any Manhattan world assumption

like 3D detectors do [25, 24] for orientation estima-

tion, since objects in rooms are often cluttered and

in disorder, reflecting various lifestyles and such as-

sumptions may have dangerous consequences for au-

tonomous systems like mobile robots.

• In addition, in order to benefit the future amodal 3D

detection research, we improved the 3D ground-truth

bounding boxes for the NYUV2 dataset by fixing many

errors such as wrong labeling, partial extents, false

negatives etc.

2. Related Works

Object detection is one of the oldest and most funda-

mental problems in computer vision. A huge number of

works [28, 4, 5, 10] were proposed in the past few decades

to infer bounding boxes around visible object parts within

image planes. As human beings can effortlessly infer ob-

jects as a whole and complete, [16] took one step further

towards obtaining similar levels of perception ability by ad-

dressing the full extent object inference problem on 2D im-

age planes. Although this kind of object representation is

richer than traditional modal inferences, it is still far from

human perception level in the physical world and from the

requirements for some robotic applications where robots are

expected to interact with the environments. In order to fill

the gap, an increased number of 3D object detection related

research has been proposed, especially after active sensors

become available in the consumer market. In the following,

we briefly review the 3D detection algorithms for RGB-D

images.

2.5D approaches in RGB-D images: 2.5D approaches

generally refer to methods where depth images are treated

in a similar fashion as color images in traditional 2D de-

tection task. [17] adapted the DPM algorithm to RGB-D

images by utilizing the 3D euclidean distances from depth

map. Handcrafted features were extracted from both color

images within the output bounding boxes of existing 2D

detectors and projected 3D point clouds within their asso-

ciated foreground object segmentation masks. Their object

locations are parametrized using 3D ellipsoids. [18] firstly

generated 3D candidate cuboids by adapting the CPMC

algorithm, and then incorporated 2D appearance features,

object-object and object-scene context relationships into a

Conditional Random Field (CRF) model for semantic la-

bels inference.

Recently, feature engineering has been gradually re-

placed by deep Convolutional Neural Networks (CNNs) in

2D image based object detection. The most popular rep-

resentative works are R-CNN [10], Fast-RCNN [8] and

Faster-RCNN [9]. Inspired by [25], [19] adopt an exhaus-

tive 3D sliding window strategy in the 3D point cloud where

cross-modality features were extracted by feeding projected

2d bounding boxes to pretrained R-CNNs and the following

bimodal deep Boltzman Machine trained separately. Detec-

tions were then determined by an ensemble of trained ex-

emplar SVMs. Different from the previous sliding window

framework, [12] built their detectors on the top of precom-

puted object segmentation candidates. They extended the

R-CNN [10] to utilize depth information with HHA encod-

ing (Horizontal Disparity, Height above ground and Angle

of local surface normal w.r.t gravity direction). However,

the outputs of their system were still limited to 2D bounding

boxes. [11] extended [12] by firstly estimating 3D coarse

poses for each detected 2D object and then aligning 3D

CAD models to 3D points projected back from depth im-

age that belongs to segmentation mask with Iterative Clos-

est Point (ICP) algorithm.

The difference of the proposed method from the previous
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Figure 1. Overview of the proposed 3D object detection system. For each 2D segment proposal, we firstly initialize the localization of a 3D

box (yellow dash box) based on depth information and its size according to classwise prior knowledge. Then object class and 3D regression

offsets are jointly learned based on 2D features only, with the goal of obtaining the final 3D detection (green solid box) by adjusting the

location, dimension, and orientation of the initial 3D box.

works above in three-folds: 1) no extra training examples

or 3D CAD models are leveraged. 2) the model is trained

end-to-end instead of piecewise. 3) no need for fitting point

clouds lifted from depth map, which is often noisy and in-

complete due to occlusions.

3D approaches in RGB-D images: 3D approaches make

use of depth map in a different way in that 3D points are

reconstructed first, and the main processing is based on ana-

lyzing point clouds. [25] extended the traditional 2D sliding

window strategy to 3D by putting 3D boxes within an esti-

mated room box. A bunch of exemplar SVMs were trained

with synthetic depths rendered from 3D CAD models, and

then applied to each 3D detection window in a 3D indoor

scene. 3D handcrafted features were built directly on dis-

cretized 3D space. Although the approach showed encour-

aging detection performance, the required computations are

extremely expensive. [24] improved [25] dramatically with

respect to both performance and efficiency by proposing 3D

region candidates and extracting 3D features directly from

3D convolutional neural networks. Similar to [25], [21] de-

signed handcrafted 3D features on point clouds for both 3D

cuboid detection and Manhattan room layout prediction. In

favor of better 3D features analysis, both [24] and [21] uti-

lized enhanced depth map derived by fusing multiple nearby

depth map frames to denoise and fill in missing depth. In

contrast, our method naturally models the relationships be-

tween 2.5D features and 3D object localizations and full-

extents in single frame RGB-D data.

3. 3D Object Detection in RGB-D Images

3.1. Amodal 3D Object Detection

Given a pair of color and depth images, the goal of

the amodal 3D object detection is to identify the object

instance locations and its full extent in 3D space. As is

well-known typical indoor environments in real life are

very complicated, because objects may be heavily occluded

and appear in a wide range of configurations. Encouraged

by the success of 3D CAD model retrieval, the available

depth map makes encoding 3D geometry features directly

for detection very promising. However, the quality of

depth map is far from perfect in reality due to measurement

errors, and more importantly, the geometry of object

instances is incomplete and its variations are determined by

the camera view, e.g., see examples shown in Fig. 4. This

may seriously limit the representation power from direct 3D

reconstruction. Therefore, in this section we revisit the task

of RGB-D amodal object detection and stick to the 2.5D

representation by making the assumption that underlying

relationships between 2.5D feature representations and 3D

object locations and orientations exist. In the following, we

explore how to effectively utilize RGB and depth for this

task.

2D RoI proposals: Information contained in color and

depth images are demonstrated to be complimentary to

each other by varieties of RGB-D research works. While

color encodes distinctive visual appearance features, depth

conveys the geometric structures of objects. However,

in 3D detection, one additional dimension significantly

enlarges the search space. Since starting with well estab-

lished 2D reasoning is arguably more efficient and accurate

than starting from 3D reasoning [11]. We obtain the ROI

proposals by using the adapted MCG algorithm in RGB-D

images [12].

3D box proposal and regression:

Lifting 2D inferred object proposals to 3D bounding

boxes by fitting a tight box around the 3D points projected

from pixels in the instance segmentation [18, 11, 24] is not
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Figure 2. An example for the process of 3D box proposal and re-

gression. The 3D box in dash line represents box initialized with

class-wise averaged dimension in tilt coordinate system. The black

solid line 3D box is translated from the dash-line box based on 2D

segment. Finally, we regress the 3D box based on the features

of the 2D segment to obtain the green 3D box. The yellow vector

determines the orientation angle of 3D box to the principal axis (z-

axis) in θ ∈ [−π/2, π/2], e.g., θ = 0 if the yellow vector aligns

with z-axis.

robust for 3D object detection due to both imperfect seg-

mentations and noisy depth data. On the other hand, signif-

icantly extended 3D search space makes it inefficient to ex-

plore solutions in a brutal-force way [25]. One of the main

contributions of this paper is initializing 3D proposals from

2D segments and reformulating the 3D amodal detection

problem as regressing class-wise 3D bounding box models

based on 2.5D visual appearance features only. As is shown

in Figure 2, for each 2D segment proposal, we compute one

3D box counterpart as the 3D proposal. Then 3D propos-

als are transforming towards 3D ground truth according to

learned high level 2.5D representations.

In this paper, the 3D bounding box is parametrized

into one seven-entry vector [xcam, ycam, zcam, l, w, h, θ].
[xcam, ycam, zcam] is its centroid under camera coordinate

system. [l, w, h] represents its 3D size, and θ is the angle

between principal axis and its orientation vector under tilt

coordinate system (see Figure 2). The tilt coordinate sys-

tem is converted from original camera coordinate system

by aligning point clouds with gravity direction without any

rotation around the y-axis:

XY Zcam = R−1

tilt ∗XY Ztilt (1)

Rtilt = Rx ∗Rz, (2)

where Rtilt is the transform matrix between tilt and camera

system, and Rx and Rz are rotation matrices around x-axis

and z-axis, respectively.

3D box proposals are derived from corresponding 2D

segment proposals. For box size in 3D proposals, we sim-

ply use averaged class-wise box dimensions estimated from

training set as base 3D box size. It is better than fitting 3D

points projected back from 2D segment pixels, which would

significantly increase variance of box dimensions for re-

gression. It is inspired by the cues of familiar size in human

3D perception [7, 16]. For example, when people are look-

ing for an object like a bed, they have a rough object dimen-

sions in their mind, which constraints the detection of bed

instances. The center of proposed 3D box [xini, yini, zini]
is initialized based on 3D points projected from 2D segment

pixels. Since depth maps are usually noisy and have missing

data, we set zini to zmed which is the median depth value of

segment points for the sake of robustness. In the case that

the whole segment is a ”black hole”, we use interpolated

depth map instead. xini and yini are computed as described

in Eq. (3): f is focal length of RGB camera, (ox, oy) is the

principal point, (cx, cy) is the center of 2D box proposal.
{

xini = zmed ∗ (cx − ox)/f
yini = zmed ∗ (cy − oy)/f

(3)

In contrast to [24], we do not make any Manhattan world

assumption, since objects in rooms may appear in diverse

orientations. In this work, the orientation angle θ is explic-

itly introduced as a parameter of 3D bounding box model.

We define the orientation vector of a 3D box as the vec-

tor perpendicular to its longer edge in xz-plane (the yellow

vector in Fig. 2). The initial orientation angle θini is set to

zero for all 3D box proposals, i.e., parallel to the x-axis in

the tilt coordinate system, which is the case when box ori-

entation vector aligns with camera principal axis. The range

of θ is [−π/2, π/2].
The 3D box regressor net will reshape the proposed raw

3D shape model based on the learned 2.5D appearance fea-

tures. We represent the regression offsets as a 7-element

vector [δx, δy, δz, δl, δw, δh, δθ] for each positive example

and ground truth boxes during training stage. Instead of

finding the closest matching of major directions between

detected box and ground-truth boxes [24] for computing

box dimension differences, we can directly compare corre-

sponding length, width and height parameters and normal-

ize them by the size of the detected box, which is possible

due to our parameterization of 3D bounding boxes. Similar

to [8], the target for learning is then normalized by statisti-

cal information from proposed boxes.

Multi-task Loss: Each training example is associated with

a ground-truth class c and corresponding ground-truth 3D

bounding box. To jointly train for classification and bound-

ing box regression, the loss function is defined as follows:

L(p, c, tc
3d, v3d) = Lcls(p, c) + λ(c >= 1)L3d(t

c
3d, v3d),

(4)

where tc
3d expresses the regression offsets w.r.t ground truth

locations, v3d are regression targets, p is the predicted prob-

ability of the object class, Lcls is defined as softmax func-

tion, and L3d is L1 smooth loss as defined in [8].
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Post processing: We apply typical Non-Maximum Sup-

pression (NMS) scheme to the 2D detected boxes. No NMS

is used in 3D. In contrast to [24], we do not perform any fur-

ther pruning of the results, e.g., based on object size statis-

tics.

3.2. Convolutional Network Architecture

There have been many deep convolutional network

models proposed recently for 2D image based recognition.

In this paper, we adopt the Fast-RCNN [8] as the raw

base model due to both of its one single stage training

architecture and high efficiency by sharing features com-

putation. As is shown in Figure 1, color and depth images

go through two VGG16 [23] Conv-Nets for computing

shared feature maps, respectively. Features extracted from

RoI pooling layer based on 2D object proposals and their

enlarged contextual patches are concatenated for multiple

tasks learning.

Mini-batch sampling

Figure 3. Red: two examples of 2D ground truth bounding boxes

from [26]. Green: 2D RoI proposals. If compared 2D RoI propos-

als directly to red bounding boxes, the two positive chair examples

are wrongly treated as negative ones. To solve this problem, we

added yellow (dashed) gt2dsel boxes for mini-batch sampling.

For training deep neural network models, a small set of

examples is randomly selected from training set to update

model parameters at each iteration for the sake of computa-

tion efficiency. It is very important to properly define and

select positive and negative examples from RoI pool for im-

age based object detections. Typically, one RoI is treated as

positive if it has intersection over union (IoU) overlap with

ground truth box greater than 0.5, and negative if IoU is be-

tween 0.1 and 0.5. However, directly applying this rule to

mini-batch sampling using 2D annotations provided by [26]

would cause a serious problem. [26] provides two kinds

of 2D ground truth bounding boxes for NYUV2 dataset:

1) projected 2D bounding boxes by fitting visible point

clouds, and 2) projected 2D bounding boxes from amodal

3D bounding boxes. Using either kind for mini-batch sam-

pling with 2D representations, the detection performance

degrades dramatically since the true positive segments may

be treated as negative ones if comparing them directly to the

2D ground truth provided by [26], as is illustrated in Fig. 3.

To fix the problem, we added new 2D ground truth box

named gt2dsel to the training set for determining positive

and negative examples from proposed 2d segments only.

We stress that the amodal 2D bounding boxes provided by

[26] can be still used as targets for the 2D box regression

task.

Each mini-batch consists of 256 randomly selected 2D

box proposals from N = 2 images (128 RoIs per image).

The ratio of positive and negative examples is set to 1 : 3.

For data augmentation, we flip horizontally images and

their corresponding 3D bounding boxes. No other extra data

is used during training.

4. Improved 3D annotations on NYUV2

The labeled NYU Depth V2 dataset [22] is a most pop-

ular but very challenging dataset in the RGBD scene un-

derstanding research community. The original version pro-

vides 1449 RGB-Depth indoor scene images with dense 2D

pixelwise class labels. To enrich the labeling features and

encourage 3D object detection research, in the SUN RGBD

dataset [26] (superset of NYUV2) Xiao et al. added extra

3D bounding boxes and room layouts to ground truth an-

notations. Since depth maps are imperfect in reality due to

measurement noise, light reflection and absorption, and oc-

clusion etc, they also refined the quality of depth maps by

integrating multiple RGB-D frames from the NYUV2 raw

video data.

However, the extended 3D annotations in [26] have some

notable issues: 1) 3D boxes were labeled independently

from the original 2D object instances in NYUV2. This in-

consistency leads to many salient objects being unlabeled or

mislabeled, which causes unnecessary false negatives dur-

ing the detection task. 2) 3D amodal annotations are mixed

with modal ones. Amodal bounding boxes cover the full-

extent of objects, while modal ones only encompass the vis-

ible parts (e.g., see the beds in Figure 4). This is a very un-

desirable feature for the ”amodal” detection as perused in

this paper following the approaches in [2, 16, 24]. 3) Incon-

sistent labelings among scenes that have overlapping areas.

4) Inaccurate 3D extents or locations of object instances.

In order to provide better 3D labelings for amodal 3D ob-

ject detection research, we provide improved ground truth

3D bounding boxes annotations for 19 indoor object classes

(bathtub, bed, bookshelf, box, chair, counter, desk, door,

dresser, garbage bin, lamp, monitor, nightstand, pillow,

sink, sofa, table, tv, toilet) by complying with the follow-

ing stricter principles: 1) Amodal for all: all the 3D bound-

ing boxes should encompass the whole 3D instance of the

object, even if only object parts are visible. 2) Place tight

boxes around 3D object extents with reasonable orienta-

tions. 3) Comply with the physical configuration rules. For

example, table and chair rest on the floor, and the height of

door should not be too short. 4) Labeling is as consistent as

possible with the NYUV2 2D object instances.

In the improved annotation set, we provide 3D amodal

bounding boxes, 2D amodal bounding boxed cropped by
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Figure 4. Examples of improved 3D annotations for 19 amodal 3D object detection classes and comparisons with annotations in SUN

RGBD dataset [26]. Column 1: color images. Column 2: original single frame raw depth maps. Column 3: refined depth maps by

integrating multiple depth maps within nearby video frames. Column 4: Ground truth 3D bounding boxes (red color) from [26]. Blue

question marks represent missing object annotations. Green arrows point to problematic object annotations. Column 5: our improved 3D

annotations (green color). As is shown in Column 4, notable issues include missing bounding boxes for salient objects, e.g., 2 sofas, 1 table

and 1 pillow are missing in (a), 1 table is missing in (c), 1 lamp, 1 nightstand and several pillows are missing in (d), modal boxes for partial

visible objects are incomplete, e.g., all bounding boxes for beds in (b) and (d), inaccurate 3D extensions and locations, e.g., 1 chair in (c)

is mis-located, 1 lamp in (b) is floating above table surface, 1 box object in (b) has very loose bounding box. In comparison to examples

shown in Column 4, we provide much more reasonable annotations for amodal 3D object detection research purpose. In this paper, we use

original single frame depth maps as in column 2 as input instead of refined ones that were adopted in [24].

image plane and rotation matrix Rtilt for gravity alignment

etc. Some examples and comparisons with annotations in

[26] are shown in Figure 4. The improved annotations will

be released on the authors’ website.

5. Experiments

In this section, we compare our algorithm with the cur-

rently best performing 3D detector [24] on the NYUV2

dataset [22] with the improved 3D bounding box annota-

tions as described in Sec 4. Control experiment analysis

and related discussions are also provided for better under-

standing the importance of each component in the designed

3D detection system. In the standard NYUV2 dataset split,

the training set consists of 795 images and test set contains

654 images. We follow this standard for all the experiments.

For our algorithm, we use the single frame depth map pro-

vided by the NYUV2 instead of the refined version in SUN-

RGBD dataset.

3D Amodal Detection Evaluation

In order to compare the proposed approach to deep sliding

shapes [24], we perform evaluation on 19 object classes de-

tection task. We evaluate the 3D detection performance by

using the 3D volume intersection over union (IoU) metric

firstly defined in [25]. A detected bounding box is consid-

ered as a true positive if the IoU score is greater than 0.25.

In the experiment, we set λ to 1 in the loss function. We use

momentum 0.9, weight decay 0.0005, and ”step” learning

rate policy in Caffe, where base learning rate is 0.005, and

γ is 0.1. We run SGD for 40000 mini-batch iterations dur-

ing the training stage. In order to reduce the internal covari-

ate shift, we normalized activations by adding BatchNorm

Layers [14] to the 3D detection network.

In Table 1, we quantitatively compare with the state-

of-the-art 3D approach algorithm ”deep sliding shape”

[24] on a 19-class detection task on the NYUV2 RGB-D

dataset. Our method significantly outperforms [24] by a
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Methods mAP

[24](old gt3d) 64.4 82.3 20.7 4.3 60.6 12.2 29.4 0.0 38.1 27.0 22.1 0.7 49.5 21.5 57.8 60.5 49.8 8.4 76.6 36.1

[24] 62.3 81.2 23.9 3.8 58.2 24.5 36.1 0.0 31.6 27.2 28.7 2.0 54.5 38.5 40.5 55.2 43.7 1.0 76.3 36.3

Ours 36.1 84.5 40.6 4.9 46.4 44.8 33.1 10.2 44.9 33.3 29.4 3.6 60.6 46.3 58.3 61.8 43.2 16.3 79.7 40.9

Table 1. 3D Object Detection Performance Comparisons on 19 Classes on NYUV2 dataset. 1st row is evaluated using 3D annotations in

[26]. The others are evaluated using the improved 3D annotations (see Sec 4).

Methods mAP

img 27.9 64.5 24.5 1.5 33.1 46.0 20.3 1.7 28.7 32.1 24.6 3.0 43.4 27.7 49.6 46.7 27.6 1.3 66.0 30.0

img+HHA 33.1 83.9 29.8 6.0 43.1 46.3 25.3 1.87 30.9 32.9 24.3 4.1 58.3 40.3 54.8 59.6 39.6 3.5 69.5 36.2

img+d 38.9 85.2 37.5 11.4 46.5 47.1 29.9 4.2 43.3 37.3 30.8 1.3 59.8 44.1 57.7 63.8 39.4 11.6 75.5 40.1

img+d+ct 36.1 84.5 40.6 4.9 46.4 44.8 33.1 10.2 44.9 33.3 29.4 3.6 60.6 46.3 58.3 61.8 43.2 16.3 79.7 40.9

img+d+ct-3dreg 8.3 5.0 14.3 2.1 14.1 3.6 0.6 0.7 4.1 29.5 27.1 2.4 23.0 31.4 20.5 34.5 4.6 1.7 67.6 15.5

Table 2. Ablation study on NYUV2 dataset. ”img”: use color image only as input to our detection network. ”HHA”: depth embedding of

[12]. ”d”: normalized depth map. ”ct”: context information. ”3dreg”: 3d regression offsets. ”+”: with. ”-”: without.

clear margin 4.6% measured by mean Average Precision

score (mAP). In particular, we achieve much better detec-

tion performances on difficult object categories reported in

[24] such as door, tv, box, monitor. The reason is that in [24]

the 3D box proposals network (RPN) relies on the quality

of recovered 3D point cloud. But, in practice, the depth

data from Kinect alike sensors are noisy and incomplete.

Therefore, if the point cloud is sparse or empty for object

instances such as tv or monitor, then the corresponding 3D

anchor boxes are treated as negative 3D proposals and dis-

carded. In contrast, our approach is more robust in such

cases, since our 3D box initialization uses median value

of segment pixel depths and 3D regression are based on

learned 2.5D features (see Sec. 3.1), and hence neither de-

pend on density nor geometries of 3D point clouds.

In addition, we list the results of [24] evaluated on the 3D

annotations of [26] as a reference. Their results based on the

improved 3D annotations are slightly better, which might be

due to the fact that wrong labelings have been corrected in

the new annotations.

We also provide qualitative results in Figure 5 and 6.

True positive detections in Figure 5 indicate that 2.5D rep-

resentation features are useful for detecting 3D objects with

various of orientations, sizes and locations in complexed in-

door scenes. In Figure 6, we list several failure cases in-

cluding wrong box size, inaccurate locations, wrong box

orientations, and mis-classifications.

Ablation Study

To understand the importance of each component of our

system, we conduct control experiments and list detection

results in Table 2. We are reaching the following conclu-

sions: 1) Color images contain rich 2D features for inferring

object 3D full-extents. 2) The features encoded in depth

map are complimentary to those in color images. 3) We nor-

malized the depth map by truncating depth value beyond 8

meters. It achieves 2.9% improvement than using HHA em-

bedding as Horizontal disparity, Height above ground and

Angle of local surface normal with inferred gravity direc-

tion. 4) Contextual information slightly improves the per-

formance by 0.8%.

In order to demonstrate effectiveness of 3D regression

learned by the proposed system, we remove 3D offsets and

evaluate the initial 3D boxes in ”img+d+ct-3dreg”. The per-

formance degrades dramatically by 25.4%.

Computation Speed

Our 3D detection system is developed based on the open

source Caffe CNN library [15]. The training of 3D detec-

tor takes around 15 hours on an Nvidia Titan X GPU us-

ing CUDA 7.5 and cuDNN v4 support. The GPU usage is

around 9 GB. During testing, the detection net takes 0.739s

per RGB-D image pair, which is nearly 20x faster than the

Object Recognition Network (ORN) in [24].

6. Conclusion
We present a novel amodal 3D object detection system

that directly learns deep features in RGB-D images with-

out performing any 3D point reconstruction. Our system

learns 2.5D visual appearance features from pairs of color

and depth images. Experiments demonstrate that the 2.5D

visual features are correlated to 3D object sizes, locations,

and orientations. Our approach significantly outperforms

the best performing 3D detector [24], which is truly a 3D

approach, since it analyzes 3D point clouds.
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Figure 5. Examples of detected true positive 3D amodal bounding boxes on NYUV2. 3D detections are rendered in 3D space in green. The

corresponding object 2D locations are marked with red bounding boxes.

Figure 6. Examples of failure cases. 3D detections are rendered in 3D space in blue. The corresponding objects are marked with red

bounding boxes. We show four types of failures. F1: box dimension errors. F2: orientation errors. F3: 3D location errors. F4: classification

errors ((a) door detected as bathtub, (b) sink detected as toilet, (c) chair detected as tv, (d) chair detected as table).
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