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Abstract

Colorization is an ambiguous problem, with multiple vi-

able colorizations for a single grey-level image. However,

previous methods only produce the single most probable

colorization. Our goal is to model the diversity intrinsic

to the problem of colorization and produce multiple col-

orizations that display long-scale spatial co-ordination. We

learn a low dimensional embedding of color fields using a

variational autoencoder (VAE). We construct loss terms for

the VAE decoder that avoid blurry outputs and take into ac-

count the uneven distribution of pixel colors. Finally, we

build a conditional model for the multi-modal distribution

between grey-level image and the color field embeddings.

Samples from this conditional model result in diverse col-

orization. We demonstrate that our method obtains bet-

ter diverse colorizations than a standard conditional varia-

tional autoencoder (CVAE) model, as well as a recently pro-

posed conditional generative adversarial network (cGAN).

1. Introduction

In colorization, we predict the 2-channel color field for

an input grey-level image. It is an inherently ill-posed and

an ambiguous problem. Multiple different colorizations are

possible for a single grey-level image. For example, differ-

ent shades of blue for sky, different colors for a building,

different skin tones for a person and other stark or subtle

color changes are all acceptable colorizations. In this paper,

our goal is to generate multiple colorizations for a single

grey-level image that are diverse and at the same time, each

realistic. This is a demanding task, because color fields are

not only cued to the local appearance but also have a long-

scale spatial structure. Sampling colors independently from

per-pixel distributions makes the output spatially incoher-

ent and it does not generate a realistic color field (See Fig-

ure 2). Therefore, we need a method that generates multiple

colorizations while balancing per-pixel color estimates and

long-scale spatial co-ordination. This paradigm is common

to many ambiguous vision tasks where multiple predictions

are desired viz. generating motion-fields from static im-

age [25], synthesizing future frames [27], time-lapse videos

[31], interactive segmentation and pose-estimation [1] etc.

A natural approach to solve the problem is to learn a con-

ditional model P (C|G) for a color field C conditioned on

the input grey-level image G. We can then draw samples

from this conditional model {Ck}
N
k=1

∼ P (C|G) to ob-

tain diverse colorizations. To build this explicit conditional

model is difficult. The difficulty being C and G are high-

dimensional spaces. The distribution of natural color fields

and grey-level features in these high-dimensional spaces is

therefore scattered. This does not expose the sharing re-

quired to learn a multi-modal conditional model. Therefore,

we seek feature representations of C and G that allow us to

build a conditional model.

Our strategy is to represent C by its low-dimensional

latent variable embedding z. This embedding is learned

by a generative model such as the Variational Autoencoder

(VAE) [14] (See Step 1 of Figure 1). Next, we lever-

age a Mixture Density Network (MDN) to learn a multi-

modal conditional model P (z|G) (See Step 2 of Figure

1). Our feature representation for grey-level image G com-

prises the features from conv-7 layer of a colorization CNN

[30]. These features encode spatial structure and per-pixel

affinity to colors. Finally, at test time we sample multiple

{zk}
N
k=1

∼ P (z|G) and use the VAE decoder to obtain the

corresponding colorizations Ck for each zk (See Figure 1).

Note that, our low-dimensional embedding encodes the spa-

tial structure of color fields and we obtain spatially coherent

diverse colorizations by sampling the conditional model.

The contributions of our work are as follows. First, we

learn a smooth low-dimensional embedding along with a

device to generate corresponding color fields with high fi-

delity (Section 3, 7.2). Second, we a learn multi-modal

conditional model between the grey-level features and the

low-dimensional embedding capable of producing diverse

colorizations (Section 4). Third, we show that our method

outperforms the strong baseline of conditional variational

autoencoders (CVAE) and conditional generative adversar-

ial networks (cGAN) [10] for obtaining diverse coloriza-

tions (Section 7.3, Figure 7).
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Figure 1: Step 1, we learn a low-dimensional embedding z for a color field C. Step 2, we train a multi-modal conditional

model P (z|G) that generates the low-dimensional embedding from grey-level features G. At test time, we can sample the

conditional model {zk}
N
k=1

∼ P (z|G) and use the VAE decoder to generate the corresponding diverse color fields {Ck}
N
k=1

.

2. Background and Related Work

Colorization. Early colorization methods were interactive,

they used a reference color image [26] or scribble-based

color annotations [18]. Subsequently, [3, 4, 5, 11, 20]

performed automatic image colorization without any

human annotation or interaction. However, these methods

were trained on datasets of limited sizes, ranging from a

few tens to a few thousands of images. Recent CNN-based

methods have been able to scale to much larger datasets of

a million images [8, 16, 30]. All these methods are aimed at

producing only a single color image as output. [3, 16, 30]

predict a multi-modal distribution of colors over each pixel.

But, [3] performs a graph-cut inference to produce a single

color field prediction, [30] take expectation after making

the per-pixel distribution peaky and [16] sample the mode

or take the expectation at each pixel to generate single

colorization. To obtain diverse colorizations from [16, 30],

colors have to be sampled independently for each pixel.

This leads to speckle noise in the output color fields as

shown in Figure 2. Furthermore, one obtains little diversity

with this noise. Isola et al. [10] use conditional GANs

for the colorization task. Their focus is to generate single

colorization for a grey-level input. We produce diverse

colorizations for a single input, which are all realistic.

Variational Autoencoder. As discussed in Section 1, we

wish to learn a low-dimensional embedding z of a color

field C. Kingma and Welling [14] demonstrate that this can

be achieved using a variational autoencoder comprising of

an encoder network and a decoder network. They derive the

following lower bound on log likelihood:

Ez∼Q[logP (C|z, θ)]−KL[Q(z|C, θ)‖P (z)] (1)

(a) Sampling per-pixel distribution of [30] (b) Ground truth

Figure 2: Zhang et al. [30] predict a per-pixel probability

distribution over colors. First three images are diverse col-

orizations obtained by sampling the per-pixel distributions

independently. The last image is the ground-truth color im-

age. These images demonstrate the speckled noise and lack

of spatial co-ordination resulting from independent sam-

pling of pixel colors.

The lower bound is maximized by maximizing

Equation 1 with respect to parameters θ. They as-

sume the posterior P (C|z, θ) is a Gaussian distribution

N (C|f(z, θ), σ2). Therefore, the first term of Equation 1

reduces to a decoder network f(z, θ) with an L2 loss

‖C − f(z, θ)‖2. Further, they assume the distribution

P (z) is a zero-mean unit-variance Gaussian distribution.

Therefore, the encoder network Q(z|C, θ) is trained with a

KL-divergence loss to the distribution N (0, I). Sampling,

z ∼ Q, is performed with the re-parameterization trick to

enable backpropagation and the joint training of encoder

and decoder. VAEs have been used to embed and decode

Digits [6, 12, 14], Faces [15, 28] and more recently CIFAR

images [6, 13]. However, they are known to produce blurry

and over-smooth outputs. We carefully devise loss terms

that discourage blurry, greyish outputs and incorporate

specificity and colorfulness (Section 3).
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3. Embedding and Decoding a Color Field

We use a VAE to obtain a low-dimensional embedding

for a color field. In addition to this, we also require an ef-

ficient decoder that generates a realistic color field from a

given embedding. Here, we develop loss terms for VAE de-

coder that avoid the over-smooth and washed out (or grey-

ish) color fields obtained with the standard L2 loss.

3.1. Decoder Loss

Specificity. Top-k principal components, Pk, are the direc-

tions of projections with maximum variance in the high di-

mensional space of color fields. Therefore, producing color

fields that vary primarily along the top-k principal compo-

nents provides reduction in L2 loss at the expense of speci-

ficity in generated color fields. To disallow this, we project

the generated color field f(z, θ) and ground-truth color field

C along top-k principal components. We use k = 20 in our

implementation. Next, we divide the difference between

these projections along each principal component by the

corresponding standard deviation σk estimated from train-

ing set. This encourages changes along all principal com-

ponents to be on an equal footing in our loss. The residue is

divided by standard deviation of the kth (for our case 20th)

component. Write specificity loss Lmah using the squared

sum of these distances and residue,

Lmah =

20∑

k=1

‖[C− f(z, θ)]TPk‖
2

2

σ2

k

+
‖Cres − fres(z, θ)‖

2

2

σ2

20

Cres = C−
20∑

k=1

C
T
PkPk

fres(z, θ) = f(z, θ)−
20∑

k=1

f(z, θ)
T
PkPk,

The above loss is a combination of Mahalanobis dis-

tance [19] between vectors [CT
P1,C

T
P2, · · · ,C

T
P20]

and [f(z, θ)TP1, f(z, θ)
T
P2, · · · , f(z, θ)

T
P20] with a

diagonal covariance matrix Σ = diag(σk)k=1 to 20 and an

additional residual term.

Colorfulness. The distribution of colors in images is highly

imbalanced, with more greyish colors than others. This bi-

ases the generative model to produce color fields that are

washed out. Zhang et al. [30] address this by performing

a re-balancing in the loss that takes into account the differ-

ent populations of colors in the training data. The goal of

re-balancing is to give higher weight to rarer colors with

respect to the common colors.

We adopt a similar strategy that operates in the continu-

ous color field space instead of the discrete color field space

of Zhang et al. [30]. We use the empirical probability es-

timates (or normalized histogram) H of colors in the quan-

tized ‘ab’ color field computed by [30]. For pixel p, we

quantize it to obtain its bin and retrieve the inverse of prob-

ability 1

Hp
. 1

Hp
is used as a weight in the squared differ-

ence between predicted color fp(z, θ) and ground-truth Cp

at pixel p. Write this loss Lhist in vector form,

Lhist = ‖(H−1)T [C− f(z, θ)]‖2
2

(2)

Gradient. In addition to the above, we also use a first or-

der loss term that encourages generated color fields to have

the same gradients as ground truth. Write ∇h and ∇v for

horizontal and vertical gradient operators. The loss term is,

Lgrad = ‖∇hC−∇hf(z, θ)‖
2

2
+ ‖∇vC−∇vf(z, θ)‖

2

2

(3)

Write overall loss Ldec on the decoder as

Ldec = Lhist + λmahLmah + λgradLgrad (4)

We set hyper-parameters λmah = .1 and λgrad = 10−3.

The loss on the encoder is the KL-divergence to N (0|I),
same as [14]. We weight this loss by a factor 10−2 with

respect to the decoder loss. This relaxes the regularization

of the low-dimensional embedding, but gives greater impor-

tance to the fidelity of color field produced by the decoder.

Our relaxed constraint on embedding space does not have

adverse effects. Because, our conditional model (Refer Sec-

tion 4) manages to produce low-dimensional embeddings

which decode to natural colorizations (See Figure 6, 7).

4. Conditional Model (G to z)

We want to learn a multi-modal (one-to-many) condi-

tional model P (z|G), between the grey-level image G

and the low dimensional embedding z. Mixture density

networks (MDN) model the conditional probability dis-

tribution of target vectors, conditioned on the input as

a mixture of gaussians [2]. This takes into account the

one-to-many mapping and allows the target vectors to

take multiple values conditioned on the same input vector,

providing diversity.

MDN Loss. Now, we formulate the loss function for

a MDN that models the conditional distribution P (z|G).
Here, P (z|G) is Gaussian mixture model with M compo-

nents. The loss function minimizes the conditional nega-

tive log likelihood − logP (z|G) for this distribution. Write

Lmdn for the MDN loss, πi for the mixture coefficients, µi

for the means and σ for the fixed spherical co-variance of

the GMM. πi and µi are produced by a neural network pa-

rameterized by φ with input G. The MDN loss is,
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Lmdn=−logP (z|G)=−log

M∑

i=1

πi(G,φ)N (z|µi(G,φ),σ)

(5)

It is difficult to optimize Equation 6 since it in-

volves a log of summation over exponents of the form

e
−‖z−µi(G,φ)‖22

2σ2 . The distance ‖z−µi(G, φ)‖2 is high when

the training commences and it leads to a numerical under-

flow in the exponent. To avoid this, we pick the gaussian

component m = argmin
i

‖z − µi(G, φ)‖2 with predicted

mean closest to the ground truth code z and only optimize

that component per training step. This reduces the loss

function to

Lmdn = − log πm(G, φ) +
‖z− µm(G, φ)‖2

2

2σ2
(6)

Intuitively, this min-approximation resolves the identifi-

ability (or symmetry) issue within MDN as we tie a grey-

level feature to a component (mth component as above).

The other components are free to be optimized by nearby

grey-level features. Therefore, clustered grey-level features

jointly optimize the entire GMM, resulting in diverse col-

orizations. In Section 7.3, we show that this MDN-based

strategy produces better diverse colorizations than the base-

line of CVAE and cGAN (Section 5).

5. Baseline

Conditional Variational Autoencoder (CVAE). CVAE

conditions the generative process of VAE on a specific in-

put. Therefore, sampling from a CVAE produces diverse

outputs for a single input. Walker et al. [25] use a fully con-

volutional CVAE for diverse motion prediction from a static

image. Xue et al. [27] introduce cross-convolutional layers

between image and motion encoder in CVAE to obtain di-

verse future frame synthesis. Zhou and Berg [31] generate

diverse timelapse videos by incorporating conditional, two-

stack and recurrent architecture modifications to standard

generative models.

Recall that, for our problem of image colorization the

input to the CVAE is the grey-level image G and output is

the color field C. Sohn et al. [23] derive a lower bound on

conditional log-likelihood P (C|G) of CVAE. They show

that CVAE consists of training an encoder Q(z|C,G, θ)
network with KL-divergence loss and a decoder network

f(z,G, θ) with an L2 loss. The difference with respect to

VAE being that generating the embedding and the decoder

network both have an additional input G.

Conditional Generative Adversarial Network (cGAN).

Isola et al. [10] recently proposed a cGAN based archi-

tecture to solve various image-to-image translation tasks.

Encoder

Decoder

Encoder
(Grey)

z

Color 
Image

(C)
Color 
Image

(C)
Grey 

Image
(G) Skip Connections

(a) CVAE

DecoderEncoder
Color 
Image

(C)

Skip Connections

(b) cGAN

Grey 
Image

(G)

Dropout
Train

Figure 3: Illustration of the CVAE baseline (left) and cGAN

baseline (right). For CVAE, the embedding z is generated

by using both C and G. The decoder network is condi-

tioned on G, in addition to z. At test time, we do not use

the highlighted encoder and embedding z is sampled ran-

domly. cGAN consists of an encoder-decoder network with

skip connections, and noise or embedding is due to dropout.

One of which is colorizing grey-level images. They use an

encoder-decoder architecture along with skip connections

that propagate low-level detail. The network is trained

with a patch-based adversarial loss, in addition to L1 loss.

The noise (or embedding z) is provided in the form of

dropout [24]. At test-time, we use dropout to generate

diverse colorizations. We cluster 256 colorizations into 5
cluster centers (See cGAN in Figure 7).

An illustration of these baseline methods is in Figure 3.

We compare CVAE and cGAN to our strategy of using VAE

and MDN (Figure 1) for the problem of diverse colorization

(Figure 7).

6. Architecture and Implementation Details

Notation. Before we begin describing the network archi-

tecture, note the following notation. Write Ca(k, s, n) for

convolutions with kernel size k, stride s, output channels

n and activation a, B for batch normalization, U(f) for

bilinear up-sampling with scale factor f and F (n) for fully

connected layer with output channels n. Note, we perform

convolutions with zero-padding and our fully connected

layers use dropout regularization [24].

6.1. VAE

Radford et al. propose a DCGAN architecture with

generator (or decoder) network that can model complex

spatial structure of images [21]. We model the decoder

network of our VAE to be similar to the generator network

of Radford et al. [21]. We follow their best practices

of using strided convolutions instead of pooling, batch

normalization [9], ReLU activations for intermediate

layers and tanh for output layer, avoiding fully connected

layers except when decorrelation is required to obtain

the low-dimensional embedding. The encoder network is

roughly the mirror of decoder network, as per the standard

practice for autoencoder networks. See Figure 4 for an
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64 x 64 x 2

ENCODER DECODER

Figure 4: An illustration of our VAE architecture. The di-

mensions of feature maps are at the bottom and the oper-

ations applied to the feature map are indicated at the top.

This figure shows the encoder. For the decoder architecture,

refer to the details in Section 6.1.

illustration of our VAE architecture.

Encoder Network. The encoder network accepts a color

field of size 64 × 64 × 2 and outputs a d−dimensional

embedding. Encoder network can be written as, In-

put: 64 × 64 × 2 → CReLU (5, 2, 128) → B →
CReLU (5, 2, 256) → B → CReLU (5, 2, 512) → B →
CReLU (4, 2, 1024) → B → F (d).

Decoder Network. The decoder network accepts a d-

dimensional embedding. It performs 5 operations of bi-

linear up-sampling and convolutions to finally output a

64×64×2 color field (a and b of Lab color space comprise

the two output channels). The decoder network can be writ-

ten as, Input: 1× 1× d → U(4) → CReLU (4, 1, 1024) →
B → U(2) → CReLU (5, 1, 512) → B → U(2) →
CReLU (5, 1, 256) → B → U(2) → CReLU (5, 1, 128) →
B → U(2) → Ctanh(5, 1, 2).

We use d = 64 for all our three datasets (Section 7.1).

6.2. MDN

The input to MDN are the grey-level features G from

[30] and have dimension 28 × 28 × 512. We use 8 com-

ponents in the output GMM of MDN. The output layer

comprises 8 × d activations for means and 8 softmax-ed

activations for mixture weights of the 8 components. We

use a fixed spherical variance of .1. The MDN network

uses 5 convolutional layers followed by two fully connected

layers and can be written as, Input: 28 × 28 × 512 →
CReLU (5, 1, 384) → B → CReLU (5, 1, 320) → B →
CReLU (5, 1, 288) → B → CReLU (5, 2, 256) → B →
CReLU (5, 1, 128) → B → FC(4096) → FC(8 × d + 8).
Equivalently, the MDN is a network with 12 convolutional

and 2 fully connected layers, with the first 7 convolutional

layers pre-trained on task of [30] and held fixed.

At test time, we can sample multiple embeddings from

MDN and then generate diverse colorizations using VAE

decoder. However, to study diverse colorizations in a prin-

cipled manner we adopt a different procedure. We order the

predicted means µi in descending order of mixture weights

πi and use these top-k (k = 5) means as diverse coloriza-

tions shown in Figure 7 (See ours, ours+skip).

6.3. CVAE

In CVAE, the encoder and the decoder both take an ad-

ditional input G. We need an encoder for grey-level images

as shown in Figure 3. The color image encoder and the de-

coder are same as the VAE (Section 6.1). The grey-level

encoder of CVAE can be written as, Input: 64 × 64 →
CReLU (5, 2, 128) → B → CReLU (5, 2, 256) → B →
CReLU (5, 2, 512) → B → CReLU (4, 2, d). This produces

an output feature map of 4 × 4 × d. The d-dimensional

latent variable generated by the VAE (or color) encoder is

spatially replicated (4 × 4) and multiplied to the output of

grey-level encoder, which forms the input to the decoder.

Additionally, we add skip connections from the grey-level

encoder to the decoder similar to [10].

At test time, we feed multiple embeddings (randomly

sampled) to the CVAE decoder along with fixed grey-level

input. We feed 256 embeddings and cluster outputs to 5
colorizations (See CVAE in Figure 7).

Refer to http://vision.cs.illinois.edu/

projects/divcolor for our tensorflow code.

7. Results

In Section 7.2, we evaluate the performance improve-

ment by the loss terms we construct for the VAE decoder.

Section 7.3 shows the diverse colorizations obtained by our

method and we compare it to the CVAE and the cGAN. We

also demonstrate the performance of another variant of our

method: “ours+skip”. In ours+skip, we use a VAE with an

additional grey-level encoder and skip connections to the

decoder (similar to cGAN in Figure 3) and the MDN step

is the same. The grey-level encoder architecture is the same

as CVAE described above.

7.1. Datasets

We use three datasets with varying complexity of color

fields. First, we use the Labelled Faces in the Wild dataset

(LFW) [17] which consists of 13, 233 face images aligned

by deep funneling [7]. Since the face images are aligned,

this dataset has some structure to it. Next, we use the

LSUN-Church [29] dataset with 126, 227 images. These

images are not aligned and lack the structure that was

present in the LFW dataset. They are however images of

the same scene category and therefore, they are more struc-

tured than the images in the wild. Finally, we use the valida-

tion set of ILSVRC-2015 [22] (called ImageNet-Val) with

50, 000 images as our third dataset. These images are the

6841
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Figure 5: Qualitative results with different loss terms for the VAE decoder network. Top or 1st Row uses only the L2 loss,

2nd row uses Lmah, 3rd row uses all the loss terms: mahalanobis, colorfulness and gradient (See Ldec of Equation 4) and

last row is the ground-truth color field. These qualitative results show that using all our loss terms generates better quality

color fields as compared to the standard L2 loss for VAE decoders.

Dataset L2-Loss Mah-Loss

Mah-Loss

+ Colorfulness

+ Gradient

All Grid All Grid All Grid

LFW .034 .035 .034 .032 .029 .029

Church .024 .025 .026 .026 .023 .023

ImageNet

-Val
.031 .031 .039 .039 .039 .039

Table 1: For test set, our loss terms show better mean ab-

solute error per pixel (wrt ground-truth color field) when

compared to the standard L2 loss on LFW and Church.

most un-structured of the three datasets. For each dataset,

we randomly choose a subset of 1000 images as test set and

use the remaining images for training.

7.2. Effect of Loss terms on VAE Decoder

We train VAE decoders with: (i) the standard L2 loss,

(ii) the specificity loss Lmah of Section 3.1, and (iii) all

our loss terms of Equation 4. Figure 5 shows the coloriza-

tions obtained for the test set with these different losses.

To achieve this colorization we sample the embedding from

the encoder network. Therefore, this does not comprise a

Dataset L2-Loss Mah-Loss

Mah-Loss

+ Colorfulness

+ Gradient

All Grid All Grid All Grid

LFW 7.20 11.29 6.69 7.33 2.65 2.83

Church 4.9 4.68 6.54 6.42 1.74 1.71

ImageNet

-Val
10.02 9.21 12.99 12.19 4.82 4.66

Table 2: For test set, our loss terms show better weighted

absolute error per pixel (wrt ground-truth color fields) when

compared to L2 loss on all the datasets. Note, having lower

weighted error implies, in addition to common colors, the

rarer colors are also predicted correctly. This implies a

higher quality colorization, one that is not washed out.

true colorization task. However, it allows us to evaluate the

performance of the decoder network when the best possible

embedding is available. Figure 5 shows that the coloriza-

tions obtained with the L2 loss are greyish. In contrast, by

using all our loss terms we obtain plausible and realistic col-

orizations with vivid colors. Note the yellow shirt and the

yellow equipment, brown desk and the green trees in third

row of Figure 5. For all datasets, using all our loss terms
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Method LFW Church ImageNet-Val

Eob. Var. Eob. Var. Eob. Var.

CVAE .031 1.0× 10−4 .029 2.2× 10−4 .037 2.5× 10−4

cGAN .047 8.4× 10−6 .048 6.2× 10−6 .048 8.88× 10−6

Ours .030 1.1× 10
−3 .036 3.1× 10

−4 .043 6.8× 10
−4

Ours+

skip
.031 4.4× 10−4 .036 2.9× 10−4 .041 6.0× 10−4

Table 3: For every dataset, we obtain high variance (proxy

measure for diversity) and often low error-of-best per pixel

(Eob.) to the ground-truth using our method. This shows

our methods generate color fields closer to the ground-truth

with more diversity compared to the baseline.

provides better colorizations compared to the standard L2

loss. Note, the face images in the second row have more

contained skin colors as compared to the first row. This

shows the subtle benefits obtained from the specificity loss.

In Table 1, we compare the mean absolute error per-pixel

with respect to the ground-truth for different loss terms.

And, in Table 2, we compare the mean weighted absolute

error per-pixel for these loss terms. The weighted error uses

the same weights as colorfulness loss of Section 3.1. We

compute the error over: 1) all pixels (All) and 2) over a

8 × 8 uniformly spaced grid in the center of image (Grid).

We compute error on a grid to avoid using too many cor-

related neighboring pixels. On the absolute error metric of

Table 1, for LFW and Church, we obtain lower errors with

all loss terms as compared to the standard L2 loss. Note

unlike L2 loss, we do not specifically train for this absolute

error metric and yet achieve reasonable performance with

our loss terms. On the weighted error metric of Table 2, our

loss terms outperform the standard L2 loss on all datasets.

7.3. Comparison to baseline

In Figure 7, we compare the diverse colorizations gener-

ated by our strategy (Sections 3, 4) and the baseline methods

– CVAE and cGAN (Section 5). Qualitatively, we observe

that our strategy generates better quality diverse coloriza-

tions which are each, realistic. Note that for each dataset,

different methods use the same train/test split and we train

them for 10 epochs. The diverse colorizations have good

quality for LFW and LSUN Church. We observe different

skin tones, hair, cloth and background colors for LFW, and

we observe different brick, sky and grass colors for LSUN

Church. Some additional colorizations are in Figure 6.

In Table 3, we show the error-of-best (i.e. pick the col-

orization with minimum error to ground-truth) and the vari-

ance of diverse colorizations. Lower error-of-best implies

one of the diverse predictions is close to ground-truth. Note

that, our method reliably produces high variance with com-

parable error-of-best to other methods. Our goal is to gener-

ate diverse colorizations. However, since diverse coloriza-

Ours GT

Figure 6: Diverse colorizations from our method. Top

two rows are LFW, next two LSUN Church and last two

ImageNet-Val. See Figure 7 for comparisons to baseline.

tions are not observed in the ground-truth for a single image,

we cannot reliably evaluate them. Therefore, we use the

weaker proxy of variance to evaluate diversity. Large vari-

ance is desirable for diverse colorization, which we obtain.

We rely on qualitative evaluation to verify the naturalness

of the different colorizations in the predicted pool.

8. Conclusion

Our loss terms help us build a variational autoencoder

for high fidelity color fields. The multi-modal conditional

model produces embeddings that decode to realistic diverse

colorizations. The colorizations obtained from our methods

are more diverse than CVAE and cGAN. The proposed

method can be applied to other ambiguous problems.

Our low dimensional embeddings allow us to predict

diversity with multi-modal conditional models, but they do

not encode high spatial detail. In future, our work will be

focused on improving the spatial detail along with diversity.
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Figure 7: Diverse colorizations from our methods are compared to the CVAE, cGAN and the ground-truth (GT). We can

generate diverse colorizations, which cGAN [10] do not. CVAE colorizations have low diversity and artifacts.
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