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Abstract

In this work, we present a novel method for capturing

human body shape from a single scaled silhouette. We com-

bine deep correlated features capturing different 2D views,

and embedding spaces based on 3D cues in a novel con-

volutional neural network (CNN) based architecture. We

first train a CNN to find a richer body shape representa-

tion space from pose invariant 3D human shape descriptors.

Then, we learn a mapping from silhouettes to this represen-

tation space, with the help of a novel architecture that ex-

ploits correlation of multi-view data during training time, to

improve prediction at test time. We extensively validate our

results on synthetic and real data, demonstrating significant

improvements in accuracy as compared to the state-of-the-

art, and providing a practical system for detailed human

body measurements from a single image.

1. Introduction

Human body shape estimation has recently received a

lot of interest. This partially relates to the growth in de-

mand of applications such as tele-presence, virtual and aug-

mented reality, virtual try-on, and body health monitoring.

For such applications, having an accurate and practical sys-

tem that estimates the 3D human body shape is of crucial

importance. It needs to be accurate such that automated

body measurements agree with the real ones, and needs

to be practical such that it is fast and utilizes as few sen-

sors as possible. With respect to the sensors utilized, in

increasing order of simplicity, we can distinguish multi-

ple cameras [10, 46], RGB and Depth [25] or a single im-

age [20, 67, 29, 23, 5, 17].

In this work we tackle the problem of shape estimation

from a single or multiple silhouettes of a human body with

poses compliant with two main applications: virtual gar-

ment fitting assuming a neutral pose [13, 6, 16], and shape

from individually taken pictures or “Selfies” (e.g. through

a mirror or a long selfie stick), assuming poses that exhibit

mild self occlusion [17]. Compared to state-of-the-art in

this domain, we achieve significantly higher accuracy on

the reconstructed body shapes and simultaneously improve

in speed if a GPU implementation is considered (or obtain

similar run-times as previous works [17] on the CPU). This

is achieved thanks to a novel Neural Network architecture

(Fig.1) consisting of various components that (a) are able to

learn a body shape representation from 3D shape descrip-

tors and map this representation to 3D shapes, (b) can suc-

cessfully reconstruct a 3D body mesh from one or two given

body silhouettes, and (c) can leverage multi-view data at

training time, to boost predictions for a single view at test

time through cross-modality learning.

Previous methods attempt to find a mapping from silhou-

ettes to the parameters of a statistical body shape model [2],

utilizing handcrafted features [17], silhouette PCA repre-

sentations [13] possibly with local fine tuning [6], or CNN-

s [16]. Based on the obtained parameters, a least squares

system is solved to obtain the final mesh. We also use CNN-

s to learn silhouette features, but unlike [16], we first map

them to a shape representation space that is generated from

3D shape descriptors (Heat Kernel Signature (HKS) [57])

invariant to isometric deformations and maximizing intra-

human-class variation, and then decode them to full body

vertex positions. Regressing to this space improves the pre-

dictions and speeds up the computation.

Recently, Dibra et al. [17] demonstrated how to boost

features coming from one view (scaled frontal) during test

time, utilizing information from two views (front and side)

at training time, by projecting features with Canonical Cor-

relation Analysis (CCA) [26] for a regression task. CCA

comes with shortcomings though as (1) it computes a linear

projection, (2) it is hard in practice to extend it to more than

two views, and (3) suffers from lack of scalability to large

datasets as it has to “memorize” the whole training data set.

As part of this work, we propose an architecture (which

we call Cross-Modal Neural Network (CMNN)) that is able

to overcome the mentioned challenges, by first generating

features from various views separately, and then combining

them through shared layers. This leads to improvements in
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Figure 1. Our body shape estimation method. (1) HKS-Net: HKS projected features as input, generates an embedding space which is

mapped to 3D meshes. (2),(3) and (4) Three modes of the Cross-Modal Neural Network (CMNN) (only (2) is used at test time). (5) An

architecture that requires both views at test time. The method uses either CMNN or (5), depending on the number of available input views.

predictive capabilities with respect to the uni-modal case.

Abstracting away from silhouettes, this network can be used

as-is for other tasks where multiple views on the data are

present, such as image and text retrieval, or audio and im-

age matching.

In summary, the contributions of this paper are: (1) A

novel neural network architecture for 3D body shape esti-

mation from silhouettes consisting of three main compo-

nents, (a) a generative component that can invert a pose-

invariant 3D shape descriptor to reconstruct its neutral

shape, (b) a predictive component that combines 2D and 3D

cues to map silhouettes to human body shapes, (c) a cross-

modal component that leverages multi-view information to

boost single view predictions; and (2) a state-of-the-art sys-

tem for human body shape estimation that significantly im-

proves accuracy as compared to existing methods.

2. Related Work

Human Body Shape from an Image. Early works in

estimating 3D body shapes make assumptions on the num-

ber of views [33] or simple geometric models [30, 41] of-

ten achieving coarse approximations of the underlying ge-

ometry. As scanning of a multitude of people in various

poses and shapes was made possible [47], more complete,

parametric human body shape models were learned [2,

24, 42, 36] that capture deformations due to shape and

pose. The effectiveness of such models with human pri-

ors, gave rise to methods that try to estimate the human

body shape from single [20, 67, 29, 23, 12, 46] or mul-

tiple input images [4, 10, 23, 46], by estimating the pa-

rameters of the model, through matching projected silhou-

ettes of the 3D shapes to extracted image silhouettes by

correspondence. Assumptions on the view, calibration, er-

ror metrics [10, 20, 29] and especially speed and manual

interaction, needed to estimate pose and shape by silhou-

ette matching, in the presence of occlusions and challeng-

ing poses [67, 29, 12], are common limitations of these

methods, despite promising work to automatize the match-

ing process [52, 53, 32]. A very recent work by Bogo et

al. [5] attempts at estimating both the 3D pose and shape

from a single 2D image with given 2D joints, making use

of a 3D shape model based on skinning weights [36]. It

utilizes a human body prior as a regularizer, for uncommon

limb lengths or body interpenetrations, achieving excellent

results on 3D pose estimations, however, lacking accuracy

analysis on the generated body shapes.

While the abovementioned works tackle the shape esti-

mation problem by iteratively minimizing an energy func-

tion, another body of works estimate the 3D body shape by

first constructing statistical models of 2D silhouette features

and 3D bodies, and then defining a mapping between the pa-

rameters of each model [62, 55, 13, 15, 14, 6, 17]. In terms

of silhouette representation they vary from PCA learned sil-

houette descriptors [13, 6] to handcrafted features such as

the Radial Distance Functions and Shape Contexts [55] or
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the Weighted Normal Depth and Curvature [17]. The statis-

tical 3D body model is learned by applying PCA on triangle

deformations from an average human body shape [2]. With

respect to the body parameter estimations, Xi et al. [62] uti-

lize a linear mapping, Sigal et al. [55] a mixture of kernel

regressors, Chen et al. [13] a shared Gaussian process latent

variable model, Dibra et al. [17] a combination of projec-

tions at Correlated Spaces and Random Forest Regressors

and Boisvert et al. [6] an initial mapping with the method

from [13] which is further refined by an optimization pro-

cedure with local fitting. The mentioned methods target

applications similar to ours, however except for [17], they

are lacking practicality for interactive applications due to

their running times, and have been evaluated under more re-

strictive assumptions with respect to the camera calibration,

poses, and amount of views required. Under similar set-

tings, a more recent work [16] attempts at finding a mapping

from the image directly, by training an end-to-end Convolu-

tional Neural Network to regress to body shape parameters.

In contrast to these methods, we first learn an embed-

ding space from 3D shape descriptors, that are invariant to

isometric deformations, by training a CNN to regress di-

rectly to 3D body shape vertices. Then we learn a mapping

from 2D silhouette images to this new embedding space.

We demonstrate improved performance over the previous

methods [16, 6] working under restrictive assumptions (two

views and known camera calibration) with this set-up. Fi-

nally, by incorporating cross-modality learning from multi-

ple views, we also outperform Dibra et al. [17] under a more

general setting (one view and unknown camera calibration).

CNN-s on 3D shapes. The improvement in accuracy and

performance by utilizing Convolutional Neural Networks

for 2D image related tasks is widely aknowledged in the

community by now. Once one goes to 3D, one of the main

paradigms utilized is to represent the data as a low reso-

lution voxelized grid [61, 56, 48]. This representation has

been mainly utilized for shape classification and retrieval

tasks [61, 56, 51] or to find a mapping from 2D view rep-

resentations of those shapes [48], and has been geared to-

wards rigid objects (like chairs, tables, cars etc.). Another

possibility to represent the 3D shape, stemming more from

the Computer Graphics community is that of 3D Shape De-

scriptors, which have been extensively studied for shape

matching and retrieval [28, 58, 59].

Various shape descriptors have been proposed, with most

recent approaches being diffusion based methods [57, 9,

49]. Based on the Laplace-Beltrami operator that can ro-

bustly characterize the points on a meshed surface, some

of the proposed descriptors are the global point signature

(GPS) [49], the heat kernel signature (HKS) [57] and the

Wave Kernel Signature (WKS) [3]. Further works build on

these and related descriptors and learn better descriptors,

mainly through CNN-s that are utilized in shape retrieval,

classification and especially shape matching [44, 7, 8, 38,

39, 60, 63, 35, 18]. Their main objective is either to maxi-

mize the inter class variance or to design features that find

intra-class similarities. We, on the other hand, want to find

suitable descriptors that maximize intra-class variance (here

human body shapes), and learn a mapping by regression to

3D body shapes, which to the best of our knowledge has not

been explored.

Due to the properties of the HKS, such as invariance

to isometric deformations and insensitivity to small pertur-

bations on the surface, which are very desirable in order

to consistently explain the same human body shape under

varying non-rigid deformations, we start from the HKS and

encode it into a new shape embedding space, from which we

can decode the full body mesh or to which we can regress

possible views of the bodies. In this way, our method can be

thought of as a generative technique that learns an inverse

mapping, from the descriptor space to the shape space.

Cross-Modality Learning. In the presence of multiple

views or modalities representing the same data, unsuper-

vised learning techniques have been proposed that leverage

such modalities during training, to learn better representa-

tions that can be useful when one of them is missing at test

time. There exist a couple of applications that rely on learn-

ing common representations, including 1) transfer learning,

2) reconstruction of a missing view, 3) matching accross

views, and directly related to our work 4) boosting single

view performance utilizing data from other views or other-

wise called cross-modality learning.

Early works, like Canonical Correlation Analysis

(CCA) [26] and it’s kernelized version [22] find maxi-

mally correlated linear and non-linear projections of two

random vectors with the intention of maximizing mutual in-

formation and minimizing individual noise. Fusing learned

features for better prediction [50], hallucinating multiple

modalities from a single view [40] as well as a generalized

version of CCA [54] for a classification and retrieval task,

have been proposed. Except for a few works [17, 40], utiliz-

ing cross-modality learning to improve regression has had

little attention. To tackle the inability of CCA to scale well

to large datasets, there have been recent attempts that utilize

neural networks like Deep CCA [1] and its GPU counter-

part [64], Multimodal Autoencoders [43] and Correlational

Neural Networks [11] but these methods do not focus on

boosting single view predictions.

Unlike these techniques, we present a way to perform

cross-modality learning by first learning representative fea-

tures through CNN-s, and then passing them through shared

encoding layers, with the objective of regressing to the

embedding space. We demonstrate significant increase in

performance over uni-modal predictions, and scalability to

higher dimensional large scale data.
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3. The Generative and Cross-Modal Estimator

The main goal of our method is to accurately estimate

a 3D body shape from a silhouette (or two) of a person

adopting poses in compliance with two applications - vir-

tual cloth fitting and self shape monitoring. On par with

the related work, we consider either a single frontal sil-

houette scaled to a fixed size (no camera calibration infor-

mation) with poses exhibiting mild self occlusions, or two

views simultaneously (front and side, scaled or unscaled) of

a person in a neutral pose. We propose to tackle this prob-

lem with a deep network architecture (Fig.1). Our network

is composed of three core components: a generative com-

ponent that can invert pose-invariant 3D shape descriptors,

obtained from a multitude of 3D meshes (Sec.3.1) to their

corresponding 3D shape, by learning an embedding space

(Sec.3.2); a cross-modal component that leverages multi-

view information at training time to boost single view pre-

dictions at test time (Sec.3.3); and a combination of losses

to perform joint training over the whole network (Sec.3.4).

3.1. Shape Model and Data Generation

In order to properly train our network, we recur to syn-

thetic data as in the previous works since they best approxi-

mate our real input requirements. We need to obtain a large

number of meshes from which we can extract 3D descrip-

tors and 2D silhouettes in various poses. We make use of

existing datasets [66, 45] consisting of meshes fitted to the

commercially available CAESAR [47] dataset that contains

3D human body scans. Starting from these datasets, we

can generate hundreds of thousands of human body meshes

by learning a statistical model. The methods we compare

to [62, 13, 6, 16, 17] utilize a low-dimensional paramet-

ric human model (SCAPE [2]) that is based on triangle de-

formations learned from 3D range scans of people in var-

ious shapes and poses. Despite more recent body mod-

els [42, 36], for fair comparisons and evaluation, we also

utilize SCAPE, which is defined as a set of 12894 trian-

gle deformations applied to a reference template 3D mesh

consisting of 6449 vertices, with parameters α and β rep-

resenting pose and intrinsic body shape deformations, re-

spectively. From these parameters, each edge ei1 and ei2
of the ith triangle of the template mesh, defined as the dif-

ference vectors between the vertices of the triangle, can be

transformed as

e
′

ij = Ri(α)Si(β)Qi(Ri(α))eij , (1)

with j ∈ {1, 2}. Matrices Ri(α), Qi(Ri(α)) and Si(β)
correspond to joint rotations, pose induced non-rigid defor-

mations, and intrinsic shape variation, respectively. Similar

to [16, 17], we learn a deformation space by applying PCA

to the set of deformations for all meshes in the datasets,

with respect to a template mesh, all in the same pose. To

synthesize new meshes, we sample from a 20 dimensional

multivariate normal distribution, given by the first 20 com-

ponents obtained via PCA that capture 95% of the energy.

Under the common assumption that the intrinsic body

shape does not change significantly due to pose changes [2],

we decouple pose from shape deformations. Hence, for a

neutral pose we have e
′

ij = Si(β)eij . To add pose variation

to the mesh synthesis process, instead of the transforma-

tion Ri(α) parametrized by alpha, we utilize Linear Blend

Skinning (LBS) [34], as in previous works [29, 19, 65],

which computes the new position of each restpose ver-

tex v1, ...,vn ∈ R4 in homogenous coordinates, with a

weighted combination of the bone transformation matrices

T1, ...,Tm ∈ R4×4 of an embedded skeleton controlling

the mesh, and skinning weights wi,1, ..., wi,m ∈ R for a

vertex vi and the mth bone transformation, as follows:

v
′

i =

m
∑

j=1

wi,jTjvi =





m
∑

j=1

wi,jTj



vi. (2)

Combining various intrinsic shapes and poses as generated

above, we create a synthetic dataset consisting of half a mil-

lion meshes, from which we extract HKS descriptors and

silhouettes for training.

3.2. Generating 3D Shapes from HKS (HKS­Net)

The first part of our architecture aims at learning a map-

ping from 3D shape descriptors to 3D meshes via a shape

embedding space. We start by extracting Heat Kernel Sig-

natures (HKS) and then projecting them to the eigenvectors

of the Laplace-Beltrami operator to obtain a global descrip-

tor. This is used to learn the embedding space, as well as

an inverse mapping that can generate 3D shapes in a neutral

pose given the corresponding descriptor.

Heat Kernel Signatures (HKS). Let a 3D shape be rep-

resented as a graph G = (V,E,W ), where V, E and W

represent the set of vertices, edges, and some weights on

the edges, respectively. The weights encode the underlying

geometry of the shape, and can be computed via standard

techniques from the mesh processing literature [57]. Given

such a graph constructed by connecting pairs of vertices on

a surface with weighted edges, the heat kernel Ht(x, y) is

defined as the amount of heat that is transferred from the

vertex x to vertex y at time t, given a unit heat source at

x [57]:

Ht(x, y) =
∑

i

e−λitφi(x)φi(y), (3)

where Ht denotes the heat kernel, t is the diffusion time, λi

and φi represent the ith eigenvalue and the corresponding

eigenvector of the Laplace-Beltrami operator, respectively,

and x and y denote two vertices. Heat kernel has various

nice properties that are desirable to represent human body
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shapes under different poses. In particular, it is invariant un-

der isometric deformations of the shape, captures different

levels of detail and global properties of the shape, and it is

stable under perturbations [57].

The heat kernel at vertex x and time t can be used to

define the heat kernel signature HKSx(t) for this vertex:

HKSx(t) = Ht(x, x) =
∑

i

e−λitφ2

i (x). (4)

Hence, for each vertex x, we have a corresponding func-

tion HKSx(t) that provides a multi-scale descriptor for x.

As the scale (i.e. t) increases, we capture more and more

global properties of the intrinsic shape. In practice, the

times t are sampled to obtain a vector HKSx(tj), j ≤ J

for each vertex x. In our technique, we use J = 100
time samples. Then for each tj , we can form the vectors

hj := [HKSx1
(tj), HKSx2

(tj) · · · ]
T .

Projected HKS Matrix. To learn the embedding space,

the HKS for all vertices at a given time tj are projected onto

the eigenvectors of the Laplace-Beltrami operator in order

to obtain a 2D image capturing the global intrinsic shape.

Specifically, we compute a matrix M with Mij = φT
i hj ,

i.e. the dot product of the ith eigenvector of the Laplace-

Beltrami operator and the heat kernel vector defined over

the vertices for time tj . Since we use 300 eigenvectors φi,

we thus get a 300× 100 matrix M.

This is then used as input to the top part of our network

(that we call HKS-Net, Fig.1 (1)) to learn an embedding

space of about 4000 dimensions, by minimizing the per-

vertex squared norm loss LV ert. A simplistic representa-

tion of this embedding, computed utilizing T-SNE [37], is

also presented in Fig.1, where female meshes are depicted

in green dots and male meshes in red. An important prop-

erty of HKS-Net is that we can reconstruct a 3D mesh in a

neutral pose when HKS-Net is presented with a computed

M. Hence, HKS-Net can invert the HKS descriptors. Al-

though we do not utilize this property in the scope of this

work, we believe that this could be a valuable tool for ge-

ometry processing applications. But instead, we use the em-

bedding space with 4000 dimensions as the target space for

the cross-modal silhouette-based training of our network,

which we explain next.

3.3. Cross­Modal Neural Network (CMNN)

The second component thus consists of finding a map-

ping from silhouettes to the newly learned embedding

space. We generate five types of silhouettes that can be re-

ferred to as modes : frontal view scaled in various poses

with minor self occlusion, frontal view scaled in a neutral

pose, side view scaled in a neutral pose and front and side

view unscaled in a neutral pose (Fig.1).1 Here, unscaled im-

1Please note that throughout the text mode and view are used inter-

changeably to emphasize different ways of representing the same 3D mesh.

plies known camera calibration, and scaled means we resize

the silhouettes such that they have the same height. Frontal

means that the plane of the bones that form the torso is par-

allel to the camera plane, and side is a 90 degrees rotated

version of the frontal view. At test time, our results are

not affected by slight deviations from these views. We thus

center the silhouettes, and resize them to an image of resolu-

tion 264× 192 before inputting them to the CMNN. We, of

course, do not expect to use all the modes/views at once dur-

ing testing, but our intention is to leverage the vast amount

of data from various modes at training time for robust pre-

dictions at test time.

We start by training a network similar in size to the pre-

vious works [16] (5 convolutional and 3 dense layers), with

AdaMax optimizer [31], and learning rate of e−4, to map

each mode individually to the embedding space by mini-

mizing squared losses on the 4000 embedding space param-

eters (Fig.1 (2),(3) and (4) with the respective losses LSF ,

LUF and LSS). As shown in Tab.2, we already achieve

better results for the one-view case as compared to related

works. This pre-training serves as an initialization for the

convolutional weights of the Cross-Modal Neural Network

(CMNN). The final cross-modal training is performed by

starting from the weights given by the pre-training, and opti-

mizing for the shared weights for the fully connected layers

with a combined loss, e.g. for scaled-front and scaled-side

we minimize LSF + LSS , or for three modes, the loss is

LSF + LUF + LSS .

The idea is to let each single convolutional network com-

pute silhouette features separately first, and then correlate

these high-level features at later stages. We observed that

we obtain significant improvements when cross-correlating

various combinations of 2 modes and 3 modes during train-

ing (Tab.2) as compared to the uni-modal results. CMNN

offers several advantages as compared to CCA. First, we

obtain a non-linear correlation between high-level features.

Second, we can add as many modes as we want, while it

is not trivial to correlate more than two spaces with CCA.

Finally, we do not need to store all training data in memory

as in the case of CCA.

One of the main focuses of this paper is estimating a 3D

shape for the scaled-frontal case, with similar application

scenarios as in the previous works [17]. Hence, our desired

test time mode, i.e. the desired input at test time, is a silhou-

ette from a frontal view with unknown camera parameters.

Without loss of generality, we consider the unscaled-frontal

and scaled-side as the other additional modes. Note that this

can be extended with more views and further variations.

3.4. Joint Training

Finally, we would like to jointly train HKS-Net and

CMNN for obtaining the final generative network. This

is done by using all losses at the same time and back-
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Table 1. Nomenclature for the various experiments. For the archi-

tecture components highlighted in colors and with numbers, please

refer to Fig.1.

Name Training Input Test Input Architecture

SF-1 Scaled Frontal View (SFV), Neutral Pose SFV 2

SF-1-P SFV, Various Poses SFV 2

SFU-1 SFV, Unscaled Frontal View (UFV) SFV 2 3

SFS-1 SFV, Scaled Side View (SSV) SFV 2 4

SFUS-1 SFV, UFV, SSV SFV 2 3 4

SFUS-HKS-1 SFV, UFV, SSV, projected HKS (PHKS) SFV 1 2 3 4

SF-SS-2 SFV, SSV SFV, SSV 5

UF-US-2 UFV, Unscaled Side View (USV) UFV, USV 5

UF-US-HKS-2 UFV, USV, PHKS UFV, USV 1 5

propagating them to all parts of the architecture. We thus

perform a joint training with the HKS-Net by minimizing

LSF + LUF + LSS + LV ert. This training not only im-

proves the mappings from 2D silhouettes to the 3D meshes,

but also improves the generative capabilities of the HKS-

Net by learning a better embedding space (Tab.2 and Tab.3).

Two-View Case. We also consider the case when two

complementary input silhouette images (front and side) are

given simultaneosuly, which further allows comparisons to

some of the related works [62, 13, 6, 16]. For this case, we

mainly consider neutral poses. As the architecture, we use

the HKS-Net along with a network similar to the one used in

a recent work [16] (Fig.1 (5)) where, unlike in CMNN, the

weight sharing is performed at early stages during convolu-

tions, and the last convolutional layers are merged through

a max-pooling operation. This is then trained with the sum

of squared losses LTwo−V iew + LV ert, on the embedding

space and the mesh vertex locations, as before. Similarly,

the mapping to the embedding space is decoded to a 3D

mesh space through a forward pass in the dense layers of the

HKS-Net. This achieves better results than in the previous

works [16], due to the newly learned embedding (Tab.3).

4. Experiments and Results

We have run an extensive set of experiments to ensure the

reliability of our technique. In this section, we report results

of our qualitative and quantitative tests, with thorough com-

parisons to the state-of-the-art. In order to quantitatively as-

sess our method, we perform experiments on synthetic data

similar to previous works [6, 17, 16] by computing errors on

the same 16 body measurements widely utilized in tailor fit-

ting, as shown in Fig. 2. Since all the methods we compare

to, as well as ours, make use of the same shape model [2],

the comparisons become more reliable through these mea-

surements on estimated meshes in full correspondence.

From the combined datasets [66, 45] of meshes fitted

to real body scans, where duplicate removal is ensured as

in [16, 17], we set 1000 meshes apart for testing, and utilize

the rest for generating the human body model and training

data (Sec.3.1). For these left-out meshes we then extract

HKS descriptors and silhouettes in various views and poses.
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Figure 2. Plot of the mean error over all body measurements illus-

trated on a mesh, for the methods from Tab.2 abd Tab.3.

We apply LBS [34] to deform the meshes into desired poses

compliant with our applications (see supplementary).

We run the methods from two previous works [17, 16]

on the silhouettes extracted from these meshes, while for

others [62, 13, 6], we report the numbers from their ex-

periments performed on similar but fewer meshes (around

300). In addition to comparisons with the state-of-the-art,

we thoroughly evaluate the added value of each component

in our network. In the end we conclude with qualitative re-

sults and run-time evaluations.

Quantitative Experiments. The 16 measurements are

calculated as follows: straight line measurements are com-

puted by Euclidean distances between two extreme vertices,

while for the ellipsoidal ones, we calculate the perimeter

on the body surface. For each measurement, we report the

mean and standard deviations of the errors over all esti-

mated meshes with respect to the ground truth ones. We

report errors when only the frontal view silhouette is uti-

lized at test time in Tab. 2, and if both frontal and side view

silhouettes are available at test time in Tab. 3. For both

tables, we distinguish between two cases: known camera

distance (unscaled) and unknown camera distance (called

scaled in the subsequent analysis, since we scale the silhou-

ettes to have the same height in this case, as elaborated in

Sec. 3.3). The nomenclature for our experiments is sum-

marized in Tab. 1. Note that for all methods in the tables,

the errors are for a neutral pose, except for SF − 1 − P ,

where we show the error measures when we train and test

using different poses. The mean error over all body mea-

surements for the methods we consider is depicted in Fig. 2.

Our best mean error for the one view cross-modal case is

4.01 mm and for the two-view case is 3.77 mm, showing a

very high accuracy for the tasks we consider. These are sig-

nificantly better than the mean error of the previous works

with 19.19 mm [17], 10.8 mm [16], 11 mm [6], and 10.1
mm [25], even though some of these methods operate under

more restrictive assumptions. Our best results, that achieve

state-of-the-art, are highlighted in bold.

For the one view case (Tab. 2), one can see that as we go
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Table 2. Body measurement errors comparison with shapes reconstructed from one scaled frontal silhouette. The nomenclature is presented

in Tab. 1. Last two columns show the results of the state-of-the-art methods. The measurements are illustrated in Fig. 2 (top-right). Errors

are expressed as Mean±Std. Dev in millimeters. Our best achieving method SFUS-HKS-1 is highlighted.

Measurements SF-1-P SF-1 SFS-1 SFU-1 SFUS-1 SFUS-HKS-1 HS-Net-1-S [16] CCA-RF [17]

A. Head circumference 4.3±3.5 3.9±3.1 3.7±2.9 3.7±2.9 3.9±2.9 3.1±2.6 4±4 8±8

B. Neck circumference 2.2±1.8 2.3±1.8 2.3±1.8 2.3±1.8 2.2±1.7 2.1±1.7 8±5 7±7

C. Shoulder-blade/crotch length 6.2±4.9 6.1±4.8 5.3±4.2 5.3±4.1 5.4±4.1 4.9±3.8 20±15 18±17

D. Chest circumference 6.7±5.4 6.7±5.3 5.9±4.9 5.9±4.7 5.8±4.8 5.8±4.8 13±7 25±24

E. Waist circumference 8.1±6.1 7.8±6.2 7.5±5.9 7.5±5.9 7.5±5.7 6.4±5.2 19±13 24±24

F. Pelvis circumference 9.3±7.5 8.8±7.2 8.4±6.7 8.2±6.6 8.1±6.5 7.1±5.9 19±14 26±25

G. Wrist circumference 2.1±1.7 2.1±1.7 1.9±1.6 1.9±1.6 1.9±1.6 1.7±1.5 5±3 5±5

H. Bicep circumference 3.9±3.1 3.3±2.6 2.9±2.4 2.9±2.4 2.9±2.5 2.9±2.5 8±4 11±11

I. Forearm circumference 3.1±2.4 2.9±2.3 3.1±2.3 2.7±2.3 2.9±2.3 2.6±2.2 7±4 9±8

J. Arm length 4.1±3.1 3.8±2.9 3.3±2.5 3.3±2.5 3.2±2.5 2.9±2.4 12±8 13±12

K. Inside leg length 7.3±5.1 6.8±5.2 6.2±4.8 6.5±4.9 5.7±4.5 5.4±4.3 20±14 20±19

L. Thigh circumference 6.3±4.9 6.3±5.5 5.8±4.9 5.7±4.7 5.8±4.8 5.8±4.9 13±8 18±17

M. Calf circumference 3.6±2.9 3.5±3.1 3.3±2.7 3.3±2.6 3.5±2.8 2.9±2.5 12±7 12±12

N. Ankle circumference 2.1±1.5 2.1±1.7 1.9±1.5 1.8±1.4 2.1±1.5 1.6±1.3 6±3 6±6

O. Overall height 12.6±9.9 12.4±9.9 11.2±8.6 10.9±8.4 10.4±8.1 9.8±7.7 50±39 43±41

P. Shoulder breadth 2.3±1.9 2.3±1.8 2.2±1.2 2.2±1.9 2.1±1.7 1.9±1.7 4±4 6±6

Table 3. Same as in Tab. 2, however with shapes reconstructed from two views at the same time. Last four columns show the results of the

other state-of-the-art methods for the same task. Our best achieving method UF-US-HKS-2 is highlighted.

Measurements SF-SS-2 UF-US-2 UF-US-HKS-2 HS-2-Net-MM [16] Boisvert et al. [6] Chen et al. [15] Xi et al. [62]

A. Head circumference 3.9±3.2 3.3±2.6 3.2±2.6 7.4±5.8 10±12 23±27 50±60

B. Neck circumference 1.9±1.7 2.0±1.6 1.9±1.5 5.3±3.1 11±13 27±34 59±72

C. Shoulder-blade/crotch length 5.1±4.1 4.3±3.5 4.2±3.4 9.9±7.0 4±5 52±65 119±150

D. Chest circumference 5.4±4.8 5.8±4.3 5.6±4.7 19.1±12.5 10±12 18±22 36±45

E. Waist circumference 7.5±5.7 7.6±5.9 7.1±5.8 18.4±13.2 22±23 37±39 55±62

F. Pelvis circumference 8.0±6.4 8.0±6.4 6.9±5.6 14.9±11.3 11±12 15±19 23±28

G. Wrist circumference 1.9±1.6 1.6±1.4 1.6±1.3 3.8±2.7 9±12 24±30 56±70

H. Bicep circumference 3.0±2.6 2.6±2.1 2.6±2.1 6.5±4.9 17±22 59±76 146±177

I. Forearm circumference 3.0±2.4 2.9±2.1 2.2±1.9 5.5±4.2 16±20 76±100 182±230

J. Arm length 3.3±2.6 2.4±1.9 2.3±1.9 8.1±6.4 15±21 53±73 109±141

K. Inside leg length 5.6±5.1 4.3±3.8 4.3±3.8 15.6±12.4 6±7 9±12 19±24

L. Thigh circumference 5.8±5.1 5.1±4.3 5.1±4.3 13.7±10.8 9±12 19±25 35±44

M. Calf circumference 3.9±3.2 3.1±2.1 2.7±1.9 8.5±6.5 6±7 16±21 33±42

N. Ankle circumference 2.1±1.5 1.6±1.1 1.4±1.1 4.6±3.2 14±16 28±35 61±78

O. Overall height 10.6±8.6 7.2±6.1 7.1±5.5 25.9±20.4 9±12 21±27 49±62

P. Shoulder breadth 2.2±1.8 2.1±1.8 2.1±1.8 5.6±3.9 6±7 12±15 24±31

from uni-modal to cross-modal training, by using multiple

views at training time and sharing weights in the fully con-

nected layers, the errors constantly decrease. We show the

effect of adding a side scaled view only (SFS − 1), an un-

scaled frontal view only (SFU−1), and combining all three

(SFUS − 1). The lowest errors are achieved through joint

training (SFUS −HKS − 1) of the CMNN and HKS-Net

(Sec. 3.4). In this case, not only the accuracy of predictions

from silhouettes, but also the accuracy of the HKS-Net itself

is improved as compared to when it is separately trained, re-

ducing the mean error over all the meshes from 4.74 to 3.77
mm. We further report results when different poses are ap-

plied on the test meshes (SF − 1 − P ), in contrast to all

other methods considered. Even in this case, the errors do

not differ much from the neutral pose case (SF −1), imply-

ing robustness to variations for the pose space we consider.

For the two view case, we compare to the results of the

works that require two views at test time [6, 62, 13, 16].

We utilize the same camera calibration assumptions, and

again achieve significant improvements in accuracy (UF −
US − HKS − 2), due to the new shape embedding space

jointly trained with the prediction network. For the two

view-case, we do not test on multiple poses, since the pre-

vious works we compare to are also tested on neutral poses

for this particular application. One interesting observation

here is that the results for the single view cross-modal case

(SFUS− 1 in Tab. 2) are comparable to, and in some mea-

surements even better than those of the two-view network

(SF − SS − 2 in Tab. 3). Since no joint training was per-

formed in either case, and the loss for both cases is in the

shape embedding space, this demonstrates the importance

of the shared fully connected layers and cross-modal train-

ing for boosting prediction performance at test time.

Qualitative Experiments. We evaluate our method on

three test subjects from a previos work [17] in a neutral and

selfie pose, and four new subjects with other poses. As can

be observed in Fig. 3, our reconstructions resemble the real

individuals more closely, as compared to those from Dibra
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Figure 3. Results for predictions on the test images from Dibra et

al. [17]. From left to right: the two input images in a rest and

selfie pose, the corresponding silhouettes, the estimated mesh by

our method SF − 1− P , and by the method of Dibra et al. [17].

Figure 4. Predictions results on four test subjects in different poses

and with clothes. From left to right: input image, the correspond-

ing silhouette, the estimated mesh by our method SF − 1− P .

et al. [17] (last column), especially for the second subject.

We additionally show mesh overlays over the input images,

applied also to the method from Bogo et al. [5] in the sup-

plementary. The results in Fig. 4 illustrate harder cases,

where the silhouettes differ more from those of the train-

ing data due to clothing, poses, and occlusions. Our results

still explain the silhouettes well for all cases.

Speed. The training of our network was performed on

an Intel(R) Core(TM) i7 CPU 4770 3.4 GHz with NVIDIA

GTX 1080 (8G) GPU. It took around 50 min per epoch, with

one epoch consisting of roughly 50, 000 samples. The total

training time for the various architectures considered in the

experiments varies from 15-30 epochs. We conducted our

test time experiments on an Intel(R) Core(TM) i7 CPU 950

3.0 GHz with NVIDIA GTX 940 (2GB) GPU. Since our

method directly outputs the vertices of a mesh, and does

not need to solve a least squares system (Eq. 1), it is much

faster (0.15 seconds) than other methods when using the

GPU for prediction. Even when using a CPU, our method

takes about 0.3 seconds, similar to the fastest method [17],

and less than 6 seconds [6] and 0.45 seconds [16], as re-

ported in other previous works. As a result, our method

scales to higher mesh resolutions, and can be directly used

as an end-to-end pipeline, outputting a full 3D mesh. With

the advances in compressed deep networks (e.g. [21, 27]),

this can potentially be ported to mobile devices, which is in

line with our targeted application of shape from selfies.

Finally, we perform a further experiment with noise

added to the silhouettes, as in the previous works [17, 16].

The method is robust to silhouette noise, with a mean er-

ror increase of 4.1 mm for high levels of noise. We present

further results on poses, silhouette noise, failure cases and

a comparison to CCA applied instead of our Cross-Modal

Network in the supplementary material.

5. Conclusion and Discussion

We presented a novel method for capturing a 3D human

body shape from a single silhouette with unknown cam-

era parameters. This is achieved by combining deep cor-

related features capturing different 2D views, and embed-

ding spaces based on 3D shape descriptors in a novel CNN-

based architecture. We extensively validated our results on

synthetic and real data, demonstrating significant improve-

ment in accuracy as compared to the state-of-the-art meth-

ods. We illustrated that each component of the architecture

is important to achieve these improved results. Combined

with the lowest running times over all the state-of-the-art,

we thus provide a practical system for detailed human body

measurements with millimetric accuracy.

The proposed cross-modal neural network enhances fea-

tures by incorporating information coming from different

modalities at training time. The idea of such correlating

networks can be extended for many other problems where

privileged data is available, or correlations among differ-

ent data types (e.g image, text, audio) are to be exploited.

HKS-Net like architectures can be used for inverting shape

descriptors, which can have various applications for under-

standing and generating shapes.

Inferring 3D shapes from 2D projections is an ill-posed

problem. As in the previous works, we operate under mild

occlusions and a certain level of silhouette noise, which

are realistic assumptions for many scenarios including ours.

However, especially for severe occlusions, we would need

stronger priors to infer correct 3D shapes. We believe that

extending our techniques for images with shading cues can

provide accurate estimations even for such cases. A train-

ing covering different environments and textures would be

necessary for this case.
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