
AGA : Attribute-Guided Augmentation

Mandar Dixit

UC San Diego

mdixit@ucsd.edu

Roland Kwitt

University of Salzburg

rkwitt@gmx.at

Marc Niethammer

UNC Chapel Hill

mn@cs.unc.edu

Nuno Vasconcelos

UC San Diego

nvasconcelos@ucsd.edu

Abstract

We consider the problem of data augmentation, i.e., gen-

erating artificial samples to extend a given corpus of train-

ing data. Specifically, we propose attributed-guided aug-

mentation (AGA) which learns a mapping that allows syn-

thesis of data such that an attribute of a synthesized sample

is at a desired value or strength. This is particularly inter-

esting in situations where little data with no attribute an-

notation is available for learning, but we have access to an

external corpus of heavily annotated samples. While prior

works primarily augment in the space of images, we pro-

pose to perform augmentation in feature space instead. We

implement our approach as a deep encoder-decoder archi-

tecture that learns the synthesis function in an end-to-end

manner. We demonstrate the utility of our approach on the

problems of (1) one-shot object recognition in a transfer-

learning setting where we have no prior knowledge of the

new classes, as well as (2) object-based one-shot scene

recognition. As external data, we leverage 3D depth and

pose information from the SUN RGB-D dataset. Our ex-

periments show that attribute-guided augmentation of high-

level CNN features considerably improves one-shot recog-

nition performance on both problems.

1. Introduction

Convolutional neural networks (CNNs), trained on large

scale data, have significantly advanced the state-of-the-

art on traditional vision problems such as object recogni-

tion [20, 30, 34] and object detection [14, 27]. Success

of these networks is mainly due to their high selectivity

for semantically meaningful visual concepts, e.g., objects

and object parts [29]. In addition to ensuring good perfor-

mance on the problem of interest, this property of CNNs

also allows for transfer of knowledge to several other vi-

sion tasks [9, 15, 6, 8]. The object recognition network

of [20], e.g., has been successfully used for object detec-

tion [14, 27], scene classification [15, 8], texture classifica-

tion [6] and domain adaptation [9], using various transfer

mechanisms.

Tables with depth in the range of 1-2 [m]

γ(x̂) ≈ 3[m]learn φ3
[1,2]

x 7→ x̂ = φ3
[1,2](x)

Instance x from a
new class

X ⊂ R
D

γ(x) = 1.3 [m]

x

(e.g., RCNN features)

(trained separately)

Chairs with depth in the range of 1-2 [m]

Chairs

Tables

Training
data

Training
data

γ ... Attribute (strength) predictor

(by using γ)

Figure 1: Given a predictor γ : X → R+ of some object attribute (e.g.,

depth or pose), we propose to learn a mapping of object features x ∈ X ,

such that (1) the new synthetic feature x̂ is “close” to x (to preserve object

identity) and (2) the predicted attribute value γ(x̂) = t̂ of x̂ matches a

desired object attribute value t, i.e., t − t̂ is small. In this illustration,

we learn a mapping for features with associated depth values in the range

of 1-2 [m] to t = 3 [m] and apply this mapping to an instance of a new

object class. In our approach, this mapping is learned in an object-agnostic

manner. With respect to our example, this means that all training data from

‘chairs’ and ‘tables’ is used to a learn feature synthesis function φ.

CNN-based transfer is generally achieved either by fine-

tuning a pre-trained network, such as in [20], on a new im-

age dataset or by designing a new image representation on

such a dataset based on the activations of the pre-trained

network layers [9, 15, 8, 6]. Recent proposals of trans-

fer have shown highly competitive performance on differ-

ent predictive tasks with a modest amount of new data (as

few as 50 images per class). The effectiveness of transfer-

based methods, however, has not yet been tested under more

severe constraints such as in a few-shot or a one-shot learn-

ing scenario. In these problems, the number of examples

available for learning may be as few as one per class. Fine-

tuning a pre-trained CNN with millions of parameters to

17455

such inadequate datasets is clearly not a viable option. A

one-shot classifier trained on CNN activations will also be

prone to over-fitting due to the high dimensionality of the

feature space. The only way to solve the problem of limited

data is to augment the training corpus by obtaining more

examples for the given classes.

While augmentation techniques can be as simple as flip-

ping, rotating, adding noise, or extracting random crops

from images [20, 5, 37], task-specific, or guided augmen-

tation strategies [4, 16, 28, 25] have the potential to gen-

erate more realistic synthetic samples. This is a particu-

larly important issue, since performance of CNNs heavily

relies on sufficient coverage of the variability that we ex-

pect in unseen testing data. In scene recognition, we desire,

for example, sufficient variability in the constellation and

transient states of scene categories (c.f . [21]), whereas in

object recognition, we desire variability in the specific in-

carnations of certain objects, lighting conditions, pose, or

depth, just to name a few. Unfortunately, this variability

is often dataset-specific and can cause substantial bias in

recognition results [35].

An important observation in the context of our work is

that augmentation is typically performed on the image, or

video level. While this is not a problem with simple tech-

niques, such as flipping or cropping, it can become compu-

tationally expensive if more elaborate augmentation tech-

niques are used. We argue that, in specific problem settings,

augmentation might as well be performed in feature space,

especially in situations where features are input to subse-

quent learning steps. This is common, e.g., in recognition

tasks, where the softmax output of trained CNNs is often

not used directly, but activations at earlier layers are input

to an external discriminant classifier.

Contribution. We propose an approach to augment the

training set with feature descriptors instead of images.

Specifically, we advocate an augmentation technique that

learns to synthesize features, guided by desired values for a

set of object attributes, such as depth or pose. An illustra-

tion of this concept is shown in Fig. 1. We first train a fast

RCNN [14] detector to identify objects in 2D images. This

is followed by training a neural network regressor which

predicts the 3D attributes of a detected object, namely its

depth from the camera plane and pose. An encoder-decoder

network is then trained which, for a detected object at a cer-

tain depth and pose, will “hallucinate” the changes in its

RCNN features for a set of desired depths/poses. Using this

architecture, for a new image, we are able to augment ex-

isting feature descriptors by an auxiliary set of features that

correspond to the object changing its 3D position. Since our

framework relies on object attributes to guide augmentation,

we refer to it as attribute-guided augmentation (AGA).

Organization. Sec. 2 reviews prior work. Sec. 3 introduces

the proposed encoder-decoder architecture for attribute-

guided augmentation. Sec. 4 studies the building blocks of

this approach in detail and demonstrates that AGA in fea-

ture space improves one-shot object recognition and object-

based scene recognition performance on previously unseen

classes. Sec. 5 concludes the paper with a discussion and an

outlook on potential future directions.

2. Related work

Our review of related work primarily focuses on data

augmentation strategies. While many techniques have been

proposed in the context of training deep neural networks

to avoid over-fitting and to increase variability in the data,

other (sometimes closely related) techniques have previ-

ously appeared in the context of one-shot and transfer learn-

ing. We can roughly group existing techniques into (1)

generic, computationally cheap approaches and (2) task-

specific, or guided approaches that are typically more com-

putationally involved.

As a representative of the first group, Krizhevsky et al.

[20] leverage a set of label-preserving transformations, such

as patch extraction + reflections, and PCA-based intensity

transformations, to increase training sample size. Simi-

lar techniques are used by Zeiler and Fergus [37]. In [5],

Chatfield and Zisserman demonstrate that the augmentation

techniques of [20] are not only beneficial for training deep

architectures, but shallow learning approaches equally ben-

efit from such simple and generic schemes.

In the second category of guided-augmentation tech-

niques, many approaches have recently been proposed.

In [4], e.g., Charalambous and Bharath employ guided-

augmentation in the context of gait recognition. The au-

thors suggest to simulate synthetic gait video data (obtained

from avatars) with respect to various confounding factors

(such as clothing, hair, etc.) to extend the training cor-

pus. Similar in spirit, Rogez and Schmid [28] propose an

image-based synthesis engine for augmenting existing 2D

human pose data by photorealistic images with greater pose

variability. This is done by leveraging 3D motion capture

(MoCap) data. In [25], Peng et al. also use 3D data, in the

form of CAD models, to render synthetic images of objects

(with varying pose, texture, background) that are then used

to train CNNs for object detection. It is shown that syn-

thetic data is beneficial, especially in situations where few

(or no) training instances are available, but 3D CAD mod-

els are. Su et al. [33] follow a similar pipeline of rendering

images from 3D models for viewpoint estimation, however,

with substantially more synthetic data obtained, e.g., by de-

forming existing 3D models before rendering.

Another (data-driven) guided augmentation technique is

introduced by Hauberg et al. [16]. The authors propose to

learn class-specific transformations from external training

data, instead of manually specifying transformations as in

[20, 37, 5]. The learned transformations are then applied to

7456

the samples of each class. Specifically, diffeomorphisms are

learned from data and encouraging results are demonstrated

in the context of digit recognition on MNIST. Notably, this

strategy is conceptually similar to earlier work by Miller

et al. [23] on one-shot learning, where the authors synthe-

size additional data for digit images via an iterative process,

called congealing. During that process, external images of

a given category are aligned by optimizing over a class of

geometric transforms (e.g., affine transforms). These trans-

formations are then applied to single instances of the new

classes to increase data for one-shot learning.

Marginally related to our work, we remark that alterna-

tive approaches to implicitly learn spatial transformations

have been proposed. For instance, Jaderberg et al. [18] in-

troduce spatial transformer modules that can be injected

into existing deep architectures to implicitly capture spa-

tial transformations inherent in the data, thereby improving

invariance to this class of transformations.

While all previously discussed methods essentially pro-

pose image-level augmentation to train CNNs, our approach

is different in that we perform augmentation in feature

space. Along these lines, the approach of Kwitt et al.

[21] is conceptually similar to our work. In detail, the au-

thors suggest to learn how features change as a function of

the strength of certain transient attributes (such as sunny,

cloudy, or foggy) in a scene-recognition context. These

models are then transferred to previously unseen data for

one-shot recognition. There are, however, two key differ-

ences between their approach and ours. First, they require

datasets labeled with attribute trajectories, i.e., all varia-

tions of an attribute for every instance of a class. We, on the

other hand, make use of conventional datasets that seldom

carry such extensive labeling. Second, their augmenters

are simple linear regressors trained in a scene-class specific

manner. In contrast, we learn deep non-linear models in a

class-agnostic manner which enables a straightforward ap-

plication to recognition in transfer settings.

3. Architecture

Notation. To describe our architecture, we let X denote

our feature space, x ∈ X ⊂ R
D denotes a feature descrip-

tor (e.g., a representation of an object) and A denotes a set

of attributes that are available for objects in the external

training corpus. Further, we let s ∈ R+ denote the value

of an attribute A ∈ A, associated with x. We assume (1)

that this attribute can be predicted by an attribute regressor

γ : X → R+ and (2) that its range can be divided into

I intervals [li, hi], where li, hi denote the lower and upper

bounds of the i-th interval. The set of desired object at-

tribute values is {t1, . . . , tT }.

Objective. On a conceptual level, we aim for a synthesis

function φ which, given a desired value t for some object

attribute A, transforms the object features x ∈ X such that

the attribute strength changes in a controlled manner to t.
More formally, we aim to learn

φ : X × R+ → X , (x, t) 7→ x̂, s.t. γ(x̂) ≈ t . (1)

Since, the formulation in Eq. (1) is overly generic, we con-

strain the problem to the case where we learn different φk
i

for a selection of intervals [li, hi] within the range of at-

tribute A and a selection of T desired object attribute val-

ues tk. In our illustration of Fig. 1, e.g., we have one in-

terval [l, h] = [1, 2] and one attribute (depth) with target

value 3[m]. While learning separate synthesis functions

simplifies the problem, it requires a good a-priori attribute

(strength) predictor, since, otherwise, we could not decide

which φk
i to use. During testing, we (1) predict the object’s

attribute value from its original feature x, i.e., γ(x) = t̂,
and then (2) synthesize additional features as x̂ = φk

i (x)
for k = 1, . . . , T . If t̂ ∈ [li, hi] ∧ tk /∈ [li, hi], φ

k
i is used.

Next, we discuss each component of this approach in detail.

3.1. Attribute regression

An essential part of our architecture is the attribute re-

gressor γ : X → R+ for a given attribute A. This regressor

takes as input a feature x and predicts its strength or value,

i.e., γ(x) = t̂. While γ could, in principle, be implemented

by a variety of approaches, such as support vector regres-

sion [10] or Gaussian processes [3], we use a two-layer

neural network instead, to accomplish this task. This is not

an arbitrary choice, as it will later enable us to easily re-

use this building block in the learning stage of the synthesis

function(s) φk
i . The architecture of the attribute regressor is

shown in Fig. 2, consisting of two linear layers, interleaved

by batch normalization (BN) [17] and rectified linear units

(ReLU) [24]. While this architecture is admittedly simple,

adding more layers did not lead to significantly better re-

sults in our experiments. Nevertheless, the design of this

component is problem-specific and could easily be replaced

by more complex variants, depending on the characteristics

of the attributes that need to be predicted.

In
p
u
t:

x
∈
X

⊂
R

D

O
u
tp
u
t:

t̂
∈
R

+

γ

L
i
n
.

[
D
,
M
]

B
N
+
R
e
L
U

L
i
n
.

[
M
,
1
]

R
e
L
U

D = 4096

A = 64

Config.:

Lin. [D,M]: x
︸︷︷︸

∈RD

7→ Ax+ b
︸ ︷︷ ︸

∈RM

Figure 2: Architecture of the attribute regressor γ.

Learning. The attribute regressor can easily be trained from

a collection of N training tuples {(xi, si)}
N
i=1 for each at-

tribute. As the task of the attribute regressor is to predict in

which interval the original feature x resides, we do not need

to organize the training data into intervals in this step.

7457

3.2. Feature regression

To implement1 φ, we design an encoder-decoder archi-

tecture, reminiscent of a conventional autoencoder [1]. Our

objective, however, is not to encode and then reconstruct

the input, but to produce an output that resembles a feature

descriptor of an object at a desired attribute value.

In other words, the encoder essentially learns to extract

the essence of features; the decoder then takes the encod-

ing and decodes it to the desired result. In general, we can

formulate the optimization problem as

min
φ∈C

L(x, t;φ) = (γ(φ(x))− t)2 , (2)

where the minimization is over a suitable class of functions

C. Notably, when implementing φ as an encoder-decoder

network with an appended (pre-trained) attribute predictor

(see Fig. 3) and loss (γ(φ(x)) − t)2, we have little con-

trol over the decoding result in the sense that we cannot

guarantee that the identity of the input is preserved. This

means that features from a particular object class might map

to features that are no longer recognizable as this class, as

the encoder-decoder will only learn to “fool” the attribute

predictor γ. For that reason, we add a regularizer to the

objective of Eq. (2), i.e., we require the decoding result to

be close, e.g., in the 2-norm, to the input. This changes the

optimization problem of Eq. (2) to

min
φ∈C

L(x, t;φ) = (γ(φ(x))− t)2
︸ ︷︷ ︸

Mismatch penalty

+λ ‖φ(x)− x‖2
︸ ︷︷ ︸

Regularizer

. (3)

Interpreted differently, this resembles the loss of an au-

toencoder network with an added target attribute mismatch

penalty. The encoder-decoder network that implements the

function class C to learn φ is shown in Fig. 3. The core

building block is a combination of a linear layer, batch nor-

malization, ELU [7], followed by dropout [32]. After the fi-

nal linear layer, we add one ReLU layer to enforce x̂ ∈ R
D
+ .

Learning. Training the encoder-decoder network of Fig. 3

requires an a-priori trained attribute regressor γ for each

given attribute A ∈ A. During training, this attribute regres-

sor is appended to the network and its weights are frozen.

Hence, only the encoder-decoder weights are updated. To

train one φk
i for each interval [li, hi] of the object attribute

range and a desired object attribute value tk, we partition the

training data from the external corpus into subsets Si, such

that ∀(xn, sn) ∈ Si : sn ∈ [li, hi]. One φk
i is learned from

Si for each desired object attribute value tk. As training

is in feature space X , we have no convolutional layers and

consequently training is computationally cheap. For test-

ing, the attribute regressor is removed and only the trained

encoder-decoder network (implementing φk
i) is used to syn-

thesize features. Consequently, given |A| attributes, I inter-

1We omit the sub-/superscripts for readability.

Lin. [A,B]

BN+ELU

Dropout

Block(A,B)

Block(D,A)

Block(A,B)

Block(B,A)

Lin. [A,D]

‖φk
i (x)− x‖2

Regularizer

γ

(γ(φk
i (x))− t)2

Mismatch penalty
(for the desired object attribute value)

(frozen during network training)

N
e
tw

o
rk

(i
m
p
le
m
en
ti
n
g
φ
k i
)

D = 4096

A = 256

B = 32

Attribute regressor

ReLU

Config.:

Input: x ∈ X ⊂ R
D

Figure 3: Illustration of the proposed encoder-decoder network for AGA.

During training, the attribute regressor γ is appended to the network,

whereas, for testing (i.e., feature synthesis) this part is removed. When

learning φk

i
, the input x is such that the associated attribute value s is

within [li, hi] and one φk

i
is learned per desired attribute value tk .

vals per attribute and T target values for an object attribute,

we obtain |A| · I · T synthesis functions.

4. Experiments

We first discuss the generation of adequate training data

for the encoder-decoder network, then evaluate every com-

ponent of our architecture separately and eventually demon-

strate its utility on (1) one-shot object recognition in a trans-

fer learning setting and (2) one-shot scene recognition.

Dataset. We use the SUN RGB-D dataset from Song et al.

[31]. This dataset contains 10335 RGB images with depth

maps, as well as detailed annotations for more than 1000

objects in the form of 2D and 3D bounding boxes. In our

setup, we use object depth and pose as our attributes, i.e.,

A = {Depth,Pose}. For each ground-truth 3D bounding

box, we extract the depth value at its centroid and obtain

pose information as the rotation of the 3D bounding box

about the vertical y-axis. In all experiments, we use the first

5335 images as our external database, i.e., the database for

which we assume availability of attribute annotations. The

remaining 5000 images are used for testing; more details

are given in the specific experiments.

Training data. Notably, in SUN RGB-D, the number of

instances of each object class are not evenly distributed,

simply because this dataset was not specifically designed

for object recognition tasks. Consequently, images are also

not object-centric, meaning that there is substantial varia-

tion in the location of objects, as well as the depth and pose

at which they occur. This makes it difficult to extract a suf-

ficient and balanced number of feature descriptors per ob-

7458

Garbage bin

Ground-truth

RCNN detection(s)

Chair

Monitor Printer

D: d
P: α◦

D: d
P: α◦

Figure 4: Illustration of training data generation. First, we obtain fast

RCNN [14] activations (FC7 layer) of Selective Search [36] proposals that

overlap with 2D ground-truth bounding boxes (IoU > 0.5) and scores >

0.7 (for a particular object class) to generate a sufficient amount of train-

ing data. Second, attribute values (i.e., depth D and pose P) of the corre-

sponding 3D ground-truth bounding boxes are associated with the propos-

als (best-viewed in color).

ject class, if we would only use the ground-truth bounding

boxes to extract training data. We circumvent this problem

by leveraging the fast RCNN detector of [14] with object

proposals generated by Selective Search [36]. In detail, we

finetune the ImageNet model from [14] to SUN RGB-D,

using the same 19 objects as in [31]. We then run the de-

tector on all images from our training split and keep the

proposals with detection scores > 0.7 and a sufficient over-

lap (measured by the IoU >0.5) with the 2D ground-truth

bounding boxes. This is a simple augmentation technique

to increase the amount of available training data. The asso-

ciated RCNN activations (at the FC7 layer) are then used as

our features x. Each proposal that remains after overlap and

score thresholding is annotated by the attribute information

of the corresponding ground-truth bounding box in 3D. As

this strategy generates a larger number of descriptors (com-

pared to the number of ground-truth bounding boxes), we

can evenly balance the training data in the sense that we

can select an equal number of detections per object class to

train (1) the attribute regressor and (2) the encoder-decoder

network. Training data generation is illustrated in Fig. 4 on

four example images.

Implementation. The attribute regressor and the encoder-

decoder network are implemented in Torch. All models

are trained using Adam [19]. For the attribute regressor, we

train for 30 epochs with a batch size of 300 and a learning

rate of 0.001. The encoder-decoder network is also trained

for 30 epochs with the same learning rate, but with a batch

size of 128. The dropout probability during training is set

to 0.25. No dropout is used for testing. For our classifica-

Object
D (MAE [m]) P (MAE [deg])

per-object agnostic per-object agnostic

bathtub 0.23 0.94 37.97 46.85

bed 0.39 0.30 44.36 42.59

bookshelf 0.57 0.43 52.95 41.41

box 0.55 0.51 27.05 38.14

chair 0.37 0.31 37.90 32.86

counter 0.54 0.62 40.16 52.35

desk 0.41 0.36 48.63 41.71

door 0.49 1.91 52.73 102.23

dresser 0.32 0.41 67.88 70.92

garbage bin 0.36 0.32 47.51 45.26

lamp 0.42 0.69 25.93 23.91

monitor 0.24 0.22 34.04 25.85

night stand 0.56 0.65 23.80 20.21

pillow 0.38 0.43 32.56 35.64

sink 0.20 0.19 56.52 45.75

sofa 0.40 0.33 34.36 34.51

table 0.37 0.33 41.31 37.30

tv 0.35 0.48 35.29 24.23

toilet 0.26 0.20 25.32 19.59

∅ 0.39 0.51 40.33 41.12

Table 1: Median-Absolute-Error (MAE), for depth / pose, of the attribute

regressor, evaluated on 19 objects from [31]. In our setup, the pose esti-

mation error quantifies the error in predicting a rotation around the z-axis.

D indicates Depth, P indicates Pose. For reference, the range of of the

object attributes in the training data is [0.2m, 7.5m] for Depth and [0◦,

180◦] for Pose. Results are averaged over 5 training / evaluation runs.

tion experiments, we use a linear C-SVM, as implemented

in liblinear [11]. On a Linux system, running Ubuntu

16.04, with 128 GB of memory and one NVIDIA Titan X,

training one model (i.e., one φk
i) takes ≈ 30 seconds. The

relatively low demand on computational resources high-

lights the advantage of AGA in feature space, as no convolu-

tional layers need to be trained. All trained models+source

code are publicly available online2.

4.1. Attribute regression

While our strategy, AGA, to data augmentation is ag-

nostic to the object classes, in both the training and testing

dataset, it is interesting to compare attribute prediction per-

formance to the case where we train object-specific regres-

sors. In other words, we compare object-agnostic training

to training one regressor γj , j ∈ {1, . . . , |S|} for each ob-

ject class in S . This allows us to quantify the potential loss

in prediction performance in the object-agnostic setting.

Table 1 lists the median-absolute-error (MAE) of depth

(in [m]) and pose (in [deg]) prediction per object. We train

on instances of 19 object classes (S) in our training split

of SUN RGB-D and test on instances of the same object

classes, but extracted from the testing split. As we can

see, training in an object-specific manner leads to a lower

MAE overall, both for depth and pose. This is not sur-

prising, since the training data is more specialized to each

particular object, which essentially amounts to solving sim-

pler sub-problems. However, in many cases, especially for

depth, the object-agnostic regressor performs on par, except

for object classes with fewer training samples (e.g., door).

2https://github.com/rkwitt/GuidedAugmentation

7459

https://github.com/rkwitt/GuidedAugmentation

We also remark that, in general, pose estimation from 2D

data is a substantially harder problem than depth estimation

(which works remarkably well, even on a per-pixel level,

c.f . [22]). Nevertheless, our recognition experiments (in

Secs. 4.3 and 4.4) show that even with mediocre perfor-

mance of the pose predictor (due to symmetry issues, etc.),

augmentation along this dimension is still beneficial.

4.2. Feature regression

We assess the performance of our regressor(s) φk
i , shown

in Fig. 3, that are used for synthetic feature generation. In

all experiments, we use an overlapping sliding window to

bin the range of each attribute A ∈ A into I intervals

[li, hi]. In case of Depth, we set [l0, h0] = [0, 1] and

shift each interval by 0.5 meter; in case of Pose, we set

[l0, h0] = [0◦, 45◦] and shift by 25◦. We generate as many

intervals as needed to cover the full range of the attribute

values in the training data. The bin-width / step-size were

set to ensure a roughly equal number of features in each

bin. For augmentation, we choose 0.5, 1, . . . ,max(Depth)
as target attribute values for Depth and 45◦, 70◦, . . . , 180◦

for Pose. This results in T = 11 target values for Depth

and T = 7 for Pose.

We use two separate evaluation metrics to assess the per-

formance of φk
i . First, we are interested in how well the

feature regressor can generate features that correspond to

the desired attribute target values. To accomplish this, we

run each synthetic feature x̂ through the attribute predictor

and assess the MAE, i.e., |γ(x̂)−t|, over all attribute targets

t. Table 2 lists the average MAE, per object, for (1) features

from object classes that were seen in the training data and

(2) features from objects that we have never seen before.

As wee can see from Table 2, MAE’s for seen and unseen

objects are similar, indicating that the encoder-decoder has

learned to synthesize features, such that γ(x̂) ≈ t.

Second, we are interested in how much synthesized fea-

tures differ from original features. While we cannot eval-

uate this directly (as we do not have data from one partic-

ular object instance at multiple depths and poses), we can

assess how “close” synthesized features are to the original

features. The intuition here is that closeness in feature space

is indicative of an object-identity preserving synthesis. In

principle, we could simply evaluate ‖φk
i (x) − x‖2, how-

ever, the 2-norm is hard to interpret. Instead, we compute

the Pearson correlation coefficient ρ between each original

feature and its synthesized variants, i.e., ρ(x, φk
i (x)). As

ρ ranges from [−1, 1], high values indicate a strong linear

relationship to the original features. Results are reported

in Table 2. Similar to our previous results for MAE, we

observe that ρ, when averaged over all objects, is slightly

lower for objects that did not appear in the training data.

This decrease in correlation, however, is relatively small.

In summary, we conclude that these results warrant the

Object ρ D (MAE [m]) ρ P (MAE [deg])

S
ee

n
o
b
je

ct
s,

se
e

T
ab

le
1

bathtub 0.75 0.10 0.68 3.99

bed 0.81 0.07 0.82 3.30

bookshelf 0.80 0.06 0.79 3.36

box 0.74 0.08 0.74 4.44

chair 0.73 0.07 0.71 3.93

counter 0.76 0.08 0.77 3.90

desk 0.75 0.07 0.74 3.93

door 0.67 0.10 0.63 4.71

dresser 0.79 0.08 0.77 4.12

garbage bin 0.76 0.07 0.76 5.30

lamp 0.82 0.08 0.79 4.83

monitor 0.82 0.06 0.80 3.34

night stand 0.80 0.07 0.78 4.00

pillow 0.80 0.08 0.81 3.87

sink 0.75 0.11 0.76 4.00

sofa 0.78 0.08 0.78 4.29

table 0.75 0.07 0.74 4.10

tv 0.78 0.08 0.72 4.66

toilet 0.80 0.10 0.81 3.70

∅ 0.77 0.08 0.76 4.10

U
n
se

en
o
b
je

ct
s

(T
1

)

picture 0.67 0.08 0.65 5.13

ottoman 0.70 0.09 0.70 4.41

whiteboard 0.67 0.12 0.65 4.43

fridge 0.69 0.10 0.68 4.48

counter 0.76 0.08 0.77 3.98

books 0.74 0.08 0.73 4.26

stove 0.71 0.10 0.71 4.50

cabinet 0.74 0.09 0.72 3.99

printer 0.73 0.08 0.72 4.59

computer 0.81 0.06 0.80 3.73

∅ 0.72 0.09 0.71 4.35

Table 2: Assessment of φk

i
w.r.t. (1) Pearson correlation (ρ) of synthe-

sized and original features and (2) mean MAE of predicted attribute values

of synthesized features, γ(φk

i
(x)), w.r.t. the desired attribute values t. D

indicates Depth-aug. features (MAE in [m]); P indicates Pose-aug. fea-

tures (MAE in [deg]).

use of φk
i on feature descriptors from object classes that

have not appeared in the training corpus. This enables us

to test φk
i in transfer learning setups, as we will see in the

following one-shot experiments of Secs. 4.3 and 4.4.

4.3. One­shot object recognition

First, we demonstrate the utility of our approach on the

task of one-shot object recognition in a transfer learning

setup. Specifically, we aim to learn attribute-guided aug-

menters φk
i from instances of object classes that are avail-

able in an external, annotated database (in our case, SUN

RGB-D). We denote this collection of object classes as our

source classes S . Given one instance from a collection of

completely different object classes, denoted as the target

classes T , we aim to train a discriminant classifier C on T ,

i.e., C : X → {1, . . . , |T |}. In this setting, S ∩ T = ∅.

Note that no attribute annotations for instances of object

classes in T are available. This can be considered a vari-

ant of transfer learning, since we transfer knowledge from

object classes in S to instances of object classes in T , with-

out any prior knowledge about T .

Setup. We evaluate one-shot object recognition perfor-

mance on three collections of previously unseen object

classes in the following setup: First, we randomly select

two sets of 10 object classes and ensure that each object

class has at least 100 samples in the testing split of SUN

7460

Baseline AGA+D AGA+P AGA+D+P

One-shot

T1 (10) 33.74 38.32 X 37.25 X 39.10 X

T2 (10) 23.76 28.49 X 27.15 X 30.12 X

T3 (20) 22.84 25.52 X 24.34 X 26.67 X

Five-shot

T1 (10) 50.03 55.04 X 53.83 X 56.92 X

T2 (10) 36.76 44.57 X 42.68 X 47.04 X

T3 (20) 37.37 40.46 X 39.36 X 42.87 X

Table 3: Recognition accuracy (over 500 trials) for three object recogni-

tion tasks; top: one-shot, bottom: five-shot. Numbers in parentheses indi-

cate the #classes. A ’X’ indicates that the result is statistically different (at

5% sig.) from the Baseline. +D indicates adding Depth-aug. features to

the one-shot instances; +P indicates addition of Pose-aug. features and

+D, P denotes adding a combination of Depth-/Pose-aug. features.

RGB-D. We further ensure that no object class is in S . This

guarantees (1) that we have never seen the image, nor (2) the

object class during training. Since, SUN RGB-D does not

have object-centric images, we use the ground-truth bound-

ing boxes to obtain the actual object crops. This allows us to

tease out the benefit of augmentation without having to deal

with confounding factors such as background noise. The

two sets of object classes are denoted T1
3 and T2

4. We ad-

ditionally compile a third set of target classes T3 = T1 ∪ T2
and remark that T1 ∩ T2 = ∅. Consequently, we have two

10-class problems and one 20-class problem. For each ob-

ject image in Ti, we then collect RCNN FC7 features.

As a Baseline, we “train” a linear C-SVM (on 1-norm

normalized features) using only the single instances of each

object class in Ti (SVM cost fixed to 10). Exactly the same

parameter settings of the SVM are then used to train on the

single instances + features synthesized by AGA. We repeat

the selection of one-shot instances 500 times and report the

average recognition accuracy. For comparison, we addition-

ally list 5-shot recognition results in the same setup.

Remark. The design of this experiment is similar to [25,

Section 4.3.], with the exceptions that we (1) do not detect

objects, (2) augmentation is performed in feature space and

(3) no object-specific information is available. The latter

is important, since [25] assumes the existence of 3D CAD

models for objects in Ti from which synthetic images can

be rendered. In our case, augmentation does not require

any a-priori information about the objects classes.

Results. Table 3 lists the classification accuracy for the dif-

ferent sets of one-shot training data. First, using original

one-shot instances augmented by Depth-guided features

(+D); second, using original features + Pose-guided fea-

tures (+P) and third, a combination of both (+D, P); In gen-

eral, we observe that adding AGA-synthesized features im-

proves recognition accuracy over the Baseline in all cases.

3T1 = {picture, whiteboard, fridge, counter, books, stove,

cabinet, printer, computer, ottoman}
4T2 = {mug, telephone, bowl, bottle, scanner, microwave,

coffee table, recycle bin, cart, bench}

Computer @ 2.6 [m]

Abs. gradient diff.: 3 [m] vs. 4 [m] Abs. gradient diff.: 3 [m] vs. 4.5 [m]

Figure 5: Illustration of the difference in gradient magnitude when back-

propagating (through RCNN) the 2-norm of the difference between an

original and a synthesized feature vector for an increasing desired change

in depth, i.e., 3[m] vs. 4[m] (middle) and 3[m] vs. 4.5[m] (right).

For Depth-augmented features, gains range from 3-5 per-

centage points, for Pose-augmented features, gains range

from 2-4 percentage points on average. We attribute this ef-

fect to the difficulty in predicting object pose from 2D data,

as can be seen from Table 1. Nevertheless, in both augmen-

tation settings, the gains are statistically significant (w.r.t.

the Baseline), as evaluated by a Wilcoxn rank sum test for

equal medians [13] at 5% significance (indicated by ’X’ in

Table 3). Adding both Depth- and Pose-augmented fea-

tures to the original one-shot features achieves the greatest

improvement in recognition accuracy, ranging from 4-6 per-

centage points. This indicates that information from depth

and pose is complementary and allows for better coverage

of the feature space. Notably, we also experimented with

the metric-learning approach of Fink [12] which only led to

negligible gains over the Baseline (e.g., 33.85% on T1).

Feature analysis/visualization. To assess the nature of fea-

ture synthesis, we backpropagate through RCNN layers the

gradient w.r.t. the 2-norm between an original and a syn-

thesized feature vector. The strength of the input gradient

indicates how much each pixel of the object must change to

produce a proportional change in depth/pose of the sample.

As can be seen in the example of Fig. 5, a greater desired

change in depth invokes a stronger gradient on the monitor.

Second, we ran a retrieval experiment: we sampled 1300

instances of 10 (unseen) object classes (T1) and synthesized

features for each instance w.r.t. depth. Synthesized features

were then used for retrieval on the original 1300 features.

This allows to assess if synthesized features (1) allow to re-

trieve instances of the same class (Top-1 acc.) and (2) of

the desired attribute value. The latter is measured by the co-

efficient of determination (R2). As seen in Table 4, the R2

scores indicate that we can actually retrieve instances with

the desired attribute values. Notably, even in cases where

R2 ≈ 0 (i.e., the linear model does not explain the variabil-

ity), the results still show decent Top-1 acc., revealing that

synthesis does not alter class membership.

4.4. Object­based one­shot scene recognition

Motivation. We can also use AGA for a different type of

transfer, namely the transfer from object detection networks

to one-shot scene recognition. Although, object detection is

7461

Object Top-1 R2 Object Top-1 R2

picture 0.33 0.36 whiteboard 0.12 0.30

fridge 0.26 0.08 counter 0.64 0.18

books 0.52 0.07 stove 0.20 0.13

cabinet 0.57 0.27 printer 0.31 0.02

computer 0.94 0.26 ottoman 0.60 0.12

Table 4: Retrieval results for unseen objects (T1) when querying with

synthesized features of varying depth. Larger R2 values indicate a stronger

linear relationship (R2 ∈ [0, 1]) to the depth values of retrieved instances.

Method Accuracy [%]

max. pool (Baseline) 13.97

AGA FV (+D) 15.13

AGA FV (+P) 14.63

AGA CL-1 (+D, max.) 16.04

AGA CL-2 (+P, max.) 15.52

AGA CL-3 (+D, +P, max.) 16.32

Sem-FV [8] 32.75

AGA Sem-FV 34.36

Places [38] 51.28

AGA Places 52.11

Table 5: One-shot classification on 25 indoor scene classes [26]:

{auditorium, bakery, bedroom, bookstore, children room, classroom, com-

puter room, concert hall, corridor, dental office, dining room, hospital

room, laboratory, library, living room, lobby, meeting room, movie the-

ater, nursery, office, operating room, pantry, restaurant}. For Sem-FV [8],

we use ImageNet CNN features extracted at one image scale.

a challenging task in itself, significant progress is made, ev-

ery year, in competitions such as the ImageNet challenge.

Extending the gains in object detection to other related

problems, such as scene recognition, is therefore quite ap-

pealing. A system that uses an accurate object detector such

as an RCNN [14] to perform scene recognition, could gen-

erate comprehensive annotations for an image in one for-

ward pass. An object detector that supports one-shot scene

recognition could do so with the least amount of additional

data. It must be noted that such systems are different from

object recognition based methods such as [15, 8, 6], where

explicit detection of objects is not necessary. They apply

filters from object recognition CNNs to several regions of

images and extract features from all of them, whether or not

an object is found. The data available to them is therefore

enough to learn complex descriptors such as Fisher vectors

(FVs). A detector, on the other hand, may produce very

few features from an image, based on the number of ob-

jects found. AGA is tailor-made for such scenarios where

features from an RCNN-detected object can be augmented.

Setup. To evaluate AGA in this setting, we select a 25-class

subset of MIT Indoor [26], which may contain objects that

the RCNN is trained for. The reason for this choice is our

reliance on a detection CNN, which has a vocabulary of 19

objects from SUN RGB-D. At present, this is the largest

such dataset that provides objects and their 3D attributes.

The system can be extended easily to accommodate more

scene classes if a larger RGB-D object dataset becomes

available. As the RCNN produces very few detections per

scene image, the best approach, without augmentation, is

to perform pooling of RCNN features from proposals into

a fixed-size representation. We used max-pooling as our

baseline. Upon augmentation, using predicted depth/ pose,

an image has enough RCNN features to compute a GMM-

based FV. For this, we use the experimental settings in [8].

The FVs are denoted as AGA FV(+D) and AGA FV(+P),

based on the attribute used to guide the augmentation. As

classifier, we use a linear C-SVM with fixed parameter (C).

Results. Table 5 lists the avgerage one-shot recognition ac-

curacy over multiple iterations. The benefits of AGA are

clear, as both aug. FVs perform better than the max-pooling

baseline by 0.5-1% points. Training on a combination (con-

catenated vector) of the augmented FVs and max-pooling,

denoted as AGA CL-1, AGA CL-2 and AGA CL-3 fur-

ther improves by about 1-2% points. Finally, we com-

bined our aug. FVs with the state-of-the-art semantic FV

of [8] and Places CNN features [38] for one-shot classifica-

tion. Both combinations, denoted AGA Sem-FV and AGA

Places, improved by a non-trivial margin (∼1% points).

5. Discussion

We presented an approach toward attribute-guided aug-

mentation in feature space. Experiments show that object

attributes, such as pose / depth, are beneficial in the con-

text of one-shot recognition, i.e., an extreme case of lim-

ited training data. Notably, even in case of mediocre per-

formance of the attribute regressor (e.g., on pose), results

indicate that synthesized features can still supply useful in-

formation to the classification process. While we do use

bounding boxes to extract object crops from SUN RGB-D

in our object-recognition experiments, this is only done to

clearly tease out the effect of augmentation. In principle, as

our encoder-decoder is trained in an object-agnostic man-

ner, no external knowledge about classes is required.

As SUN RGB-D exhibits high variability in the range of

both attributes, augmentation along these dimensions can

indeed help classifier training. However, when variability is

limited, e.g., under controlled acquisition settings, the gains

may be less apparent. In that case, augmentation with re-

spect to other object attributes might be required.

Two aspects are specifically interesting for future work.

First, replacing the attribute regressor for pose with a specif-

ically tailored component will potentially improve learning

of the synthesis function(s) φk
i and lead to more realistic

synthetic samples. Second, we conjecture that, as additional

data with more annotated object classes and attributes be-

comes available (e.g., [2]), the encoder-decoder can lever-

age more diverse samples and thus model feature changes

with respect to the attribute values more accurately.

Acknowledgments. This work is supported by NSF awards

IIS-1208522, CCF-0830535, ECCS-1148870 and a gener-

ous donation of GPUs from Nvidia.

7462

References

[1] Y. Bengio. Learning deep architectures for AI. Found. Trends

Mach. Learn., 2(1):1–127, 2009. 4

[2] A. Borji, S. Izadi, and L. Itti. iLab-20M: A large-scale con-

trolled object dataset to investigate deep learning. In CVPR,

2016. 8

[3] C. W. C.E. Rasmussen. Gaussian Processes for Machine

Learning. The MIT Press, 2005. 3

[4] C. Charalambous and A. Bharath. A data augmentation

methodology for training machine/deep learning gait recog-

nition algorithms. In BMVC, 2016. 2

[5] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. In BMVC, 2014. 2

[6] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for

texture recognition and segmentation. In CVPR, 2015. 1, 8

[7] D.-A. Clevert, T. Unterhiner, and S. Hochreiter. Fast and

accurate deep network learning by exponential linear units

(ELUs). In ICLR, 2016. 4

[8] M. Dixit, S. Chen, D. Gao, N. Rasiwasia, and N. Vascon-

celos. Scene classification with semantic Fisher vectors. In

CVPR, 2015. 1, 8

[9] J. Donahue, Y. Jia, O. Vinyals, J. Huffman, N. Zhang,

E. Tzeng, and T. Darrell. DeCAF: A deep convolutional acti-

vation feature for generic visual recognition. In ICML, 2014.

1

[10] H. Drucker, C. Burges, L. Kaufman, and A. Smola. Support

vector regression machines. In NIPS, 1997. 3

[11] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C. J.

Lin. LIBLINEAR: A library for large linear classification.

JMLR, 9(8):1871–1874, 2008. 5

[12] M. Fink. Object classification from a single example utiliz-

ing relevance metrics. In NIPS, 2004. 7

[13] J. Gibbons and S. Chakraborti. Nonparametric Statistical

Inference. Chapman & Hall/CRC Press, 5th edition, 2011. 7

[14] R. Girshick. Fast R-CNN. In ICCV, 2015. 1, 2, 5, 8

[15] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale

orderless pooling of deep convolutional activation features.

In ECCV, 2014. 1, 8

[16] S. Hauberg, O. Freifeld, A. Boensen, L. Larsen, J. F. III, and

L. Hansen. Dreaming more data: Class-dependent distribu-

tions over diffeomorphisms for learned data augmentation.

In AISTATS, 2016. 2

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 3

[18] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks. In

NIPS, 2015. 3

[19] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In ICLR, 2015. 5

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 1, 2

[21] R. Kwitt, S. Hegenbart, and M. Niethammer. One-shot learn-

ing of scene locations via feature trajectory transfer. In

CVPR, 2016. 2, 3

[22] F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields

for depth estimation from a single image. In CVPR, 2015. 6

[23] E. Miller, N. Matsakis, and P. Viola. Learning from one-

example through shared density transforms. In CVPR, 2000.

3

[24] V. Nair and G. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In ICML, 2010. 3

[25] X. Peng, B. Sun, K. Ali, and K. Saenko. Learning deep ob-

ject detectors from 3d models. In ICCV, 2015. 2, 7

[26] A. Quattoni and A. Torralba. Recognizing indoor scenes. In

CVPR, 2009. 8

[27] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection. In NIPS, 2015. 1

[28] G. Rogez and C. Schmid. MoCap-guided data augmentation

for 3D pose estimation in the wild. CoRR, abs/1607.02046,

2016. 2

[29] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and

Y. LeCun. OverFeat: Integrated recognition, localization and

detection using convolutional networks. In ICLR, 2014. 1

[30] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 1

[31] S. Song, S. Lichtenberg, and J. Xiao. SUN RGB-D: A RGB-

D scene understanding benchmark suite. In CVPR, 2015. 4,

5

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neural

networks from overfitting. JMLR, 15:19291958, 2014. 4

[33] H. Su, C. Qi, Y. Li, and L. Guibas. Render for CNN: View-

point estimation in images using cnns trained with rendered

3d model views. In ICCV, 2015. 2

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 1

[35] A. Torralba and A. Efros. Unbiased look at dataset bias. In

CVPR, 2011. 2

[36] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders.

Selective search for object recognition. IJCV, 104(2):154–

171, 2013. 5

[37] M. Zeiler and R. Fergus. Visualizing and understanding con-

volutional networks. In ECCV, 2014. 2

[38] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.

Learning deep features for scene recognition using Places

database. In NIPS, 2014. 8

7463

