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Abstract

In dynamic object detection, it is challenging to con-

struct an effective model to sufficiently characterize the

spatial-temporal properties of the background. This pa-

per proposes a new Spatio-Temporal Self-Organizing Map

(STSOM) deep network to detect dynamic objects in com-

plex scenarios. The proposed approach has several con-

tributions: First, a novel STSOM shared by all pixels in a

video frame is presented to efficiently model complex back-

ground. We exploit the fact that the motions of complex

background have the global variation in the space and the

local variation in the time, to train STSOM using the w-

hole frames and the sequence of a pixel over time to tackle

the variance of complex background. Second, a Bayesian

parameter estimation based method is presented to learn

thresholds automatically for all pixels to filter out the back-

ground. Last, in order to model the complex background

more accurately, we extend the single-layer STSOM to the

deep network. Then the background is filtered out layer by

layer. Experimental results on CDnet 2014 dataset demon-

strate that the proposed STSOM deep network outperforms

numerous recently proposed methods in the overall perfor-

mance and in most categories of scenarios.

1. Introduction

Dynamic object detection is a critical task for video

processing in computer vision and it is fundamental for

many applications such as target tracking, recognition and

behavioral analysis [20]. Modern detection algorithms

[9][15][4][21] are generally attained by background mod-
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eling. The difficulty of background modeling is to tackle

background motions. We conclude that the motions of com-

plex background mainly have two properties:

• Variation of the global background in the space. It is

mainly caused by the zoom, translation, jitter, etc, of

the camera. We refer to it as the spatial property of

background motion.

• Variation of the local background in the time. It mainly

indicates the dynamic elements in background and at

different frames, such as river, fountain and bad weath-

er. We refer to it as the temporal property of back-

ground motion.

In human visual system, visual cortex (V1) simultane-

ously perceives the stimuli of background and dynamic ob-

jects. Input-driven Self-Organizing Map (SOM) [19] is con-

structed by imitating the structures of superficial areas in

the V1 to restore how the neurons in the essential visual

cortex respond to input stimuli. SOM has been successful-

ly used in dynamic object detection [16]. Generally, SOM

based methods learn the information of background by up-

dating the weights of neural nodes. Subsequently via setting

a threshold for it, each pixel is filtered as the foreground or

background. Weight updating and threshold setting are two

key problems in the SOM based dynamic object detection.

Previous SOM based methods cannot sufficiently char-

acterize the spatial-temporal properties of the background

and are not well suitable for complex scenarios. In terms

of the two properties of background motions, we propose

a new STSOM and train it in two aspects, using the whole

frames from spatial perspective and using the sequence of

a pixel over time from temporal perspective. Then we pro-

pose a new method based on Bayesian parameter estimation
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[17] to automatically learn the spatio-temporal threshold of

background filtering.

In order to further accurately model the complex back-

ground, we stack multiple STSOMs to form a deep network

with a STSOM as a layer. The different parts of com-

plex background are accurately modeled by different lay-

ers. The dynamic objects are detected by filtering out the

background layer by layer and the segments are increasing-

ly accurate with the deeper layer. Experiments prove that

the proposed STSOM is able to effectively learn the spatio-

temporal property of background in complex scenarios.

The architecture of this paper is arranged as follows.

Some related works are briefly reviewed in Section 2. Then

we briefly introduce the general Self-Organizing Map in

Section 3. Subsequently, the dynamic object detection

based on the STSOM deep network is detailed in Section

4. The comparison experiments are shown in Section 5.

Finally, conclusions are given in Section 6.

2. Related Works

Non parametric methods [7] [8] directly rely on the ob-

served data to statistically model the background. Although

these methods can deal with fast changes in the background,

they are time consuming and have an high memory require-

ment. Improvements have been proposed in [32][26][29] to

overcome these problems. Some methods based on SOM

[13] are proven to outperform traditional methods, such as

KDE [8] and GMM [24][25][12][2]. But they cannot adapt

to complex scenarios well.

SOM is used in background modeling by [16] for the first

time and this method is called SOBS. Each pixel is modeled

by a SOM and it is trained by updating weights of the win-

ner node which has the smallest distance with the weight

vectors, and its neighbouring nodes. This method utilizes

the temporal property by modeling each pixel and utilizes

the part of spatial property by the adjacent arrangement of

SOMs of all pixels. An advanced method proposed by [5]

reduces the numbers of neural nodes connecting to each

pixel to one (called one-to-one SOM) and achieves good

experimental results. Another relative method proposed by

[6] automatically sets the threshold in one-to-one SOM [5]

by fuzzy methods instead of manual setting. In [18], a

neural network based on Retinoscopic Self-Organzing Map

(RESOM) is proposed to accomplish background modeling.

The background features are extracted by averaging weight

matrixes of RESOM which has been trained sufficiently by

input images. In [31], a Stacked Multilayer Self-Organizing

Map (SMSOM) is proposed based on SOBS.

SOBS and some methods based on SOBS such as SM-

SOM have a large-scale arrangement of SOMs. It leads to a

complex calculation. Specifically, every pixel is modeled by

an individual SOM and is influenced by the adjacent SOM

of other pixels. Assume the sizes of every SOM and a frame

Figure 1. Structure of a self-organizing map.

are 5x5 and WxH respectively, the size of whole SOM is

5x5xWxH in SMSOM and SOBS. In our model, all pixels

in a frame share a SOM of 5x5. We reduce the parameter

numbers significantly.

Moreover, the above methods mainly consider either of

spatial or temporal property, therefore it is hard to learn

a sufficient background model in complex scenarios. Not

considering the temporal property of background, RESOM

is not very appropriate to the application where there are

much dynamic elements in background. SOBS and SM-

SOM mainly consider the temporal property of background

and the method to learn threshold is not precise enough.

So they do not have a very good performance in complex

scenarios. We train our network from spatio-temporal per-

spectives and propose a method of Bayesian parameter es-

timation to calculate the threshold. It makes SOM much

adaptive in more scenarios in which previous SOM based

methods nearly cannot work.

3. Self-Organizing Map

In this section, we briefly introduce the SOM [14]. The

general SOM consists of a set of neural nodes which learn

feature patterns of the input stimulus through the self-

organizing of the weights of the neural nodes. The structure

of SOM is shown in Figure 1. Assume that the input stim-

ulus is a time sequence {F (t)}Nt=1, where F (t) is the t-th
input of a P -dimensional real vector and N is the length of

the input. There are Q neural nodes which are denoted as

nodeq (q = 1, 2, .., Q) in the SOM. The elements of input

are fully connected to all nodes, and the connection is rep-

resented by a weight vector, denoted as wq(t). Specifically,

the winner node nodec is defined as the one with the weight

vector wc(t) that has the smallest Euclidean distance from

F (t). The index c of nodec is formulated as:

c = argmin
q

{||F (t)− wq(t)||}. (1)

The learning rule of SOM is that, finding the winner node

then updating the weights of the winner node and its neigh-

bouring nodes. This updating rule is the criteria of SOM

proposed by Kohonen [14]. The weights of SOM are up-

dated by,

wq(t+ 1) = wq(t) + ucq ∗ α(t) ∗ [F (t)− wq(t)], (2)
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Figure 2. The architecture of the STSOM deep network.

where α(t) is the learning rate and ucq is the neighborhood

function. Generally, ucq = exp
(

− ||q−c||
2σ2

)

. This function

resembles the kernel that is applied in usual smoothing pro-

cesses. SOM uses this neighborhood function to preserve

the topological properties of the input space by updating

their weights of neighboring nodes of the winner node.

4. STSOM Deep Network for Dynamic Object

Detection

In this section, we firstly give an overview of the pro-

posed STSOM deep network and then present a pre-training

method of the network. Subsequently, we describe the fine-

tuning of this network. Finally, we describe how the final

dynamic objects are detected from the STSOM deep net-

work.

4.1. Overview

The basic structure of the STSOM is the same with SOM

as illustrated in Figure 1. All input pixels are fully con-

nected to neural nodes which learn feature patterns of the

input stimulus through the self-organizing of the weight-

s between neural nodes and input pixels. We construct a

STSOM deep network containing multiple stacked STSOM

layers to model all pixels of each frame from a video, as

shown in Figure 2. We assume that F l
i (t) represents a pixel

in a frame, where i (1 ≤ i ≤ P ) is the index of the pixel, P

is the number of all pixels in a frame, l (1 ≤ l ≤ L) is the

index of the layer, L is the number of STSOM layers, and t

is the temporal index of the frame. For each layer, we use

a STSOM to model all pixels in a frame. The neural node

of the STSOM in the l-th layer is denoted as nodelq , where

q represents the index of the node, q = 1, 2, ..., Q (Q is the

number of neural nodes). The node number of STSOM can

be customized and the weight of the connection between

F l
i (t) and nodelq is denoted by wl

iq(t). For example, we

assume the node number of the first layer is 9 (3 × 3), so

every pixel is associated with 9 neural nodes in this layer.

In order to obtain a highly accurate background model, we

stack multiple STSOM layers with the same structures to

construct a deep network, in which the next STSOM layer

models the left background filtered by the previous STSOM

layer. In theory, the deeper layer obtains the more accurate

modeling of the background. The input of the 1-th STSOM

layer is the input video sequence. Subsequently, the input

video is filtered by the threshold τ1i and the filtered results

are propagated forward to the next layer as the input. The

output of the last layer is the dynamic object. Next we will

introduce how to pre-train this network, namely learning

the weights of every neural node and the spatial-temporal

threshold of background filtering.

4.2. Pre­training

We propose a new spatio-temporal updating method

to pre-train this deep network. Specifically, a video

with N frames {F 1
i (t), t = 1, 2, ..., N} is used to train

the first STSOM layer one by one. Since HSV col-

or model is similar to human perception so we use

HSV color information to represent each pixel. Namely,

F 1
i (t) = {h1

i (t), s
1
i (t), v

1
i (t)}. The input of the other lay-

ers F l
i (t) (l = 2, ..., L) has the same form with F 1

i (t).
As SOM uses the weights of neural nodes to learn the

patterns of input, the weight of the connection between

F l
i (t) and nodelq has the same form. Namely, wl

iq(t) =

{wl
hiq

(t), wl
siq

(t), wl
viq

(t)}. Because HSV color model lies

in Hexcone Space, we calculate the distance dliq(t) between

F l
i (t) and nodelq in Catesian space [31] as follows,

dliq(t) = ||(vli(t)s
l
i(t) cos(h

l
i(t)), v

l
i(t)s

l
i(t) sin(h

l
i(t))

, vli(t))− (wl
viq

(t)wl
siq

(t) cos(wl
hiq

(t)),

wl
viq

(t)wl
siq

(t) sin(wl
hiq

(t)), wl
viq

(t))||22. (3)

As a result, we obtain a distance matrix Dl(t), which con-

sists of dliq(t) between the input pixel and the neural n-

ode. This matrix is the fundamental tool of spatio-temporal
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weight updating. This updating process is divided into two

steps, which includes spatial weight updating and temporal

weight updating.

4.2.1 Spatial Weight Updating

The deep model based on STSOM must has a representa-

tive ability to tolerate the global variance of the background.

So the first step is to let the deep network learn the spatial

characteristics of the background using the whole frames to

train this network. The distance between the t-th frame and

the q-th node nodelq in the l-th STSOM layer is defined as

follows,

Dl
spatial.q(t) =

P
∑

i=1

dliq(t). (4)

The node with the minimum distance among the distances

between the t-th frame and all nodes, is selected as the win-

ner node for this frame. The position of the winner node is

defined as q∗spatial(t), formulated as follows,

q∗spatial(t) = argmin
q

{Dl
spatial.q(t), q = 1, 2, ..., Q}. (5)

After the position of the winner node q∗spatial(t) is calculat-

ed, the weights between the winner node and all input pixels

as well as the weights between each of the neighboring n-

odes of the winner node and all input pixels are updated.

The weight is updated by the following formula,

wl
iq(t+1) = uq ∗ (w

l
iq(t)+αtrain ∗ (F

l
i (t)−wl

iq(t)), (6)

where αtrain is the learning rate of the STSOM deep net-

work and it is set manually and uq represents the updating

degree of the weight. In this paper, uq is set as a Gaussian

kernel function uq = exp
(

−
||q−q∗spatial(t)||

2σ2

)

, where σ2 is

the variance of Gaussian kernel function. When the winner

node is updated, uq = 1 . Its value changes smaller when

the physical distance of the neighbouring node towards the

winner node is further.

4.2.2 Temporal Weight Updating

The training process should consider the variation of each

pixel at different frames to adapt to the variation of local

background. So the second step is to let the deep network

learn the temporal characteristics of the background by train

it using the sequence of values taken by a pixel over time.

For the pixel i in the l-th layer, its winner node is the node

with the minimum distance from this pixel among all nodes,

which are connected to this pixel. The position of the i-th
pixel’s winner node is

q∗i.temporal(t) = argmin
q

{dliq(t), q = 1, 2, ..., Q}. (7)

Figure 3. Estimation of γi and δ2i with MLE.

It is similar to spatial weight updating. After the winner n-

ode q∗i.temporal(t) is obtained, the weights between the pixel

i and its winner node as well as its neighbours are updat-

ed by Eq. 6. Combination of both the spatial and temporal

weight updating makes STSOM have superiorly representa-

tive ability. So it is able to tolerate both the global variation

of the whole frame and the partial variation of single pixel

in the background.

4.2.3 Forward Propagation

The STSOM deep network consists of cascaded STSOM

layers and the pre-training process proceeds layer by lay-

er. The extracted foreground is transferred from the current

layer to the next layer till the last STSOM layer. Assume

that the first layer has been trained successfully, then the in-

put data of the next layer is filtered by a threshold for each

pixel. The variation of whole frame and the variation of sin-

gle pixel at different frames will simultaneously contribute

to the threshold of each pixel, so the threshold of each pixel

is obtained by fusion of spatial and temporal thresholds.

First, we obtain a rough background model from the

training frames by follows, F l
ave.i =

1
N

∑N

t=1 F
l
i (t). Nex-

t, we use the method of Bayesian parameter estimation to

achieve the final background model. Let Bl
i (i is the in-

dex of pixel) denote the final background model. Assume

that Bl
i ∼N(µi, σ

2
i ), µi ∼N(γi, δ

2
i ), and F l

i (t) is sampled

from the Bl
i, its probability density function is denoted as

N(F l
i (t)|µi, σ

2
i ), where N denotes the Gaussian distribu-

tion and the distribution of µi is the prior distribution of

background in this video. We estimate γi and δ2i of pix-

el i by its surrounding pixels using Maximum Likelihood

Estimation (MLE), formulated as follows,

γ̂i = 1/|Ci|
∑

i∈Ci

F l
ave.i,

δ̂2i = 1/|Ci|
∑

i∈Ci

(F l
ave.i − γ̂i)(F

l
ave.i − γ̂i)

T , (8)

where Ci denotes the surrounding pixels of the pixel i as

shown in Figure 3. Experiments demonstrate that the radius

of Ci within 7 to 10 pixels is effective. Smaller radius has

slightly improvement on the result and bigger radius drop-

s results from good performance. By derivations, we can
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estimate µi as follows,

µ̂i =
N/σ2

i

N/σ2
i + 1/δ̂2i

F l
ave.i +

1/δ̂2i

N/σ2
i + 1/δ̂2i

γ̂i. (9)

We derive that σ2
i can be expressed as a function of µ̂i.

Then, the logarithm likelihood function L(µ̂i, σ
2
i ) of µ̂i and

σ2
i is formulated as follows,

L(µ̂i, σ
2
i ) =

N
∑

t=1

lnN(Fl
i(t)|µ̂i, σ

2

i ). (10)

Next, we use Maximum Likelihood Estimation to maximize

L(µ̂i, σ
2
i ),

µ̂i| ∂L
∂µ̂i

=0 = argmax
µ̂i

{L(µ̂i, σ
2
i )}. (11)

Finally we use µ̂i to estimate Bl
i. Using the obtained back-

ground model Bl
i, we calculate the distance matrix Dl =

(dliq)i=1,2,...,P ;q=1,2,...,Q where dliq is the distance between

Bl
i and nodelq . According to the matrix Dl, we define t-

wo thresholds to filter out the background. Using Eq. 4,

the spatial threshold τ lspatial.i of each pixel is calculated as

follows,

τ lspatial.i = max{Dl
spatial.q, q = 1, 2, ..., Q}/P. (12)

Next we calculate the temporal threshold τ ltemporal.i of each

pixel by the following formula,

τ ltemporal.i = max{dliq, q = 1, 2, ..., Q}. (13)

The final threshold τ li is calculated by the average of them,

τ li = (τ ltemporal.i + τ lspatial.i)/2. (14)

After the pre-training of the l-layer STSOM of our

method, the threshold of every pixel is learnt automatically

by the formula above. We recompute the distance between

all pixels in the training frames and the newest learnt nodes

of the l-layer, and obtain the distance between F l
i (t) and

its winner node, denoted as d̂li(t), namely,

d̂li(t) = min{d̂li1(t), d̂
l
i2(t), ..., d̂

l
iQ(t)}. (15)

If d̂li(t) > τ li , F l
i (t) is considered as the dynamic ob-

ject and is used as the input of the next layer, namely

F l+1
i (t) = F l

i (t). Otherwise, this pixel is considered as

the background and F l+1
i (t) = 0. So far the training data

of the next STSOM layer has been determined in the for-

m of {F l+1
i (1), F l+1

i (2), ..., F l+1
i (N)}. By repeating the

process of spatial and temporal weight updating, the nex-

t STSOM layer will be trained so that this deep network

will be pre-trained layer by layer and meanwhile spatio-

temporal thresholds of every layer will be obtained in order

to generate the input of the next layer.

4.3. Fine­tuning

The pre-training process provides the STSOM deep net-

work with an effective initialization. In order to make it

more adaptive for the change of complex scenarios, the

weights of each layer are online updated by the fine-tuning

process but the thresholds are not updated, when a new

frame enters into this deep network. Specifically, both the

spatial weights and the temporal weights are updated. This

process is similar to pre-training as follows,

wl
iq(t+1) = wl

iq(t)+uq∗αupdate∗(F
l
i (t)−wl

iq(t)). (16)

In pre-training, we use background frames to train STSOM

and set αtrain to a bigger value to converge STSOM ef-

ficiently. In fine-tuning, we adjust αupdate to tackle the

change of background. The thresholds are learnt in pre-

training and do not change in fine-tuning. αupdate is set

according to the change rate of background. Generally it is

set as a small value so that the deep network will not change

too fast and be stable.

4.4. Dynamic Object Detection

When the deep network is completely trained, this mod-

el can be used for dynamic object detection. A new frame

of a video enters into this network and then its dynamic ob-

jects will be extracted layer by layer till the last output lay-

er. More specifically, the deeper layer represents the more

accurate modeling of the background and the result of dy-

namic object detection will be more effective with the deep-

er layers in theory. At the last layer, a binary matrix of the

same size as the original frame is constructed as follows,

Vdetected.i =

{

1, d̂Li (t) > τLi ,

0, otherwise.
(17)

5. Experiments

In this section, we evaluate the proposed STSOM in four

aspects and the parameters are set as follows, αtrain = 0.8,

αupdate = 0.005, Q = 25, L = 3, Ci = 8.

5.1. Evaluation on the CDnet 2014 Dataset

We evaluate our method on the CDnet 2014 dataset

which totally includes 53 scenarios, categorized into 11

classes, baseline (BL), dynamic background (DB), cam-

era jitter (CJ), shadow (SH), intermittent object motion

(IOM), thermal (TH), bad weather (BW), low framer-

ate (LF), night videos (NV), PTZ (PTZ) and turbu-

lence (TU). The state-of-the-art experimental results on

CDnet 2014 can be downloaded from CDnet website:

http://changedetection.net/. The official metrics [28][10]

used to evaluate methods are Recall (Re), Specificity (Sp),

False Positive Rate (FPR), False Negative Rate (FNR), Per-

centage of Wrong Classifications (PWC), Precision (Pr) and
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Category Recall Specificity FPR FNR PWC Precision F -Measure

baseline 0.9644 0.9985 0.0015 0.0356 0.3960 0.9546 0.9576

camera jitter 0.8677 0.9908 0.0092 0.1323 1.8882 0.9094 0.8881

dynamic background 0.8970 0.9991 0.0009 0.1030 0.4397 0.9557 0.9235

intermittent object motion 0.8698 0.9936 0.0064 0.1302 1.1467 0.8041 0.8357

shadow 0.9203 0.9920 0.0080 0.0897 1.3050 0.8812 0.9003

thermal 0.8258 0.9912 0.0088 0.1742 1.9796 0.8732 0.8488

bad weather 0.9125 0.9975 0.0025 0.0875 0.4080 0.8736 0.8926

low framerate 0.8056 0.9923 0.0077 0.1944 1.5475 0.8197 0.8125

night videos 0.5974 0.9654 0.0346 0.4026 3.4946 0.5325 0.5631

ptz 0.7909 0.9731 0.0269 0.2091 3.1760 0.4462 0.5759

turbulence 0.8398 0.9989 0.0011 0.1602 0.1780 0.7662 0.8009

Overall 0.8447 0.9902 0.0098 0.1563 1.4508 0.7988 0.8164

Table 1. Complete results of the proposed STSOM deep network on the CDnet2014 dataset.

F-Measure (FM). We primarily use FM to compare the per-

formance as it is closely correlated with the ranks used on

the CDnet website, and is generally accepted as a good in-

dicator of overall performance. We compare our results

with the methods mentioned in Related Works and the best

methods reported on the official website above, including

12 methods in total, IUTIS-5 [3], SharedModel [30], SuB-

SENSE [22], PAWCS [23], C-EFIC [1], MBS [11], FTSG

[27], S-Subsense, SMSOM, SOBS, KDE and GMM.

Table 5.1 shows complete results of STSOM deep net-

work on the CDnet2014 dataset and Table 5.1 shows the

overall and per-category FM of our method and the state-

of-the-art methods. The following points are concluded ac-

cording to different scenario classes.

• dynamic background includes river, dynamic trees ,

fountains and etc. The videos in bad weather con-

sists of outdoor surveillance footage taken under s-

nowy conditions and turbulence shows long distance

thermal-infrared video surveillance with important air

turbulence due to a high temperature environment.

Both of these three classes have dynamic elements of

partial background over time. And there are global jit-

ter of background in the camera jitter. Our method

promotes 5.5% performance in camera jitter scenar-

ios and promotes 3.3% average performance in these

four classes compared with the best one among state-

of-the-art methods. It demonstrates our model can tol-

erate both the change of the overall region in the space

and local pixels of the background over time.

• thermal are composed of gray scale images so sim-

ilar gray scale results in detection difficulty for fore-

ground. The shadow contains videos with prevalent

hard and soft shadow which is challenging to be differ-

entiated from dynamic objects. There are similar color

elements in both foreground and background in these t-

wo classes. Experimental results show that our method

is able to accurately model the background which is d-

ifficult to be differentiated from foreground by color.

• The intermitten object motion and low framerate
classes, which are challenging for the adaptability of

methods, contain background objects moving away,

discontinuous frames, abandoned objects and objects

stopping for a short while and then moving away. Our

network achieves the best results on them since we can

effectively update our model in real time.

• The difficulty of PTZ lies in that the background is

moving all the way and the neon glow in night videos
makes it hard to distinguish the foreground covered

by the light. Our method has unsatisfactory results on

night videos and PTZ but they are still comparable

to other top-ranked methods.

• In general, we can find that our method has nearly 82%

overall performance on CDnet 2014 and outranks the

state-of-the-art methods in overall performance and in

most categories. Moreover, our method exceeds the

currently best method IUTIS-5 5% and another SOM

based method SOBS 20%.

5.2. Evaluation of Pre­training and Fine­tuning

We respectively test our method in the pre-training way

and the way without pre-training on the video canoe from

the 838th frame. canoe is a video with dynamic back-

ground and a boat appears in the river from the 838th frame.

The first 837 frames are all the background. Nearly 70%

of the background is the dynamic river so that it is chal-

lenging to exclude the disturbance of dynamic background.

For the pre-training method, weights are initialized with the

first frame of background, namely, wl
iq(1) = F l

i (1), q =
1, 2, .., Q. This network is pre-trained and thresholds are

learnt by using the first 837 frames. The results are shown

in Figure 4(a). It can be seen that STSOM shows a strong
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Method FMoverall FMBL FMCJ FMDB FMIOM FMSH FMTH FMBW FMLF FMNV FMPTZ FMTU

STSOM 0.816 0.957 0.888 0.923 0.835 0.910 0.848 0.892 0.812 0.563 0.575 0.800

IUTIS-5 0.771 0.956 0.833 0.890 0.729 0.908 0.830 0.824 0.774 0.529 0.428 0.783

SharedModel 0.747 0.952 0.814 0.822 0.672 0.845 0.831 0.798 0.728 0.541 0.386 0.733

SuBSENSE 0.741 0.950 0.815 0.817 0.656 0.864 0.817 0.861 0.644 0.559 0.347 0.779

PAWCS 0.740 0.939 0.813 0.893 0.776 0.871 0.832 0.815 0.658 0.415 0.461 0.645

C-EFIC 0.730 0.930 0.824 0.562 0.622 0.845 0.834 0.786 0.680 0.667 0.620 0.627

MBS 0.728 0.928 0.836 0.791 0.756 0.826 0.819 0.798 0.635 0.515 0.552 0.585

FTSG 0.728 0.933 0.751 0.879 0.789 0.853 0.776 0.822 0.625 0.513 0.324 0.712

S-Subsense 0.717 0.948 0.807 0.815 0.601 0.865 0.685 0.859 0.651 0.534 0.339 0.751

SMSOM - 0.944 0.732 0.675 - - 0.793 - - - - -

SOBS 0.596 0.933 0.705 0.643 0.562 0.721 0.683 0.662 0.546 0.450 0.040 0.488

KDE 0.568 0.909 0.572 0.596 0.408 0.766 0.742 0.757 0.547 0.436 0.036 0.447

GMM 0.556 0.838 0.596 0.633 0.520 0.715 0.662 0.738 0.537 0.409 0.152 0.466

Table 2. Overall and per-category FM of our method and the state-of-the-art methods tested on the CDnet 2014 recently. Bold entries

indicate the best results and blue/italics the second best.
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= 0.03, without pre-training

(e) τ
l
i

= 0.01, with pre-training (f) τ
l
i

= 0.02, with pre-training

(g) τ
l
i

= 0.03, with pre-training

Figure 4. Curves of Precision, Recall and F -Measure with

respects to the time on canoe.

representative ability from the 838th frame. If there is only

fine-tuning without pre-training, weights are initialized with

zeros, namely, wl
iq(1) = 0. In Figure 4(b) - 4(d), these

experiments are implemented without pre-training process

(only fine-tuning process) and τ li is artificially set to a fixed

value. We can find that the performance of STSOM deep

network is poor at first but these curves rise gradually and

converge to the state with good and steady detection results

later. The detection starts from the 838th frame in both two

ways. All of these results demonstrate that pre-training pro-

vides a nice initialization including thresholds and weights

of STSOM, and fine-tuning makes STSOM much adaptive.

In order to evaluate the effectiveness of the learnt thresh-

olds based on Bayesian parameter estimation, we respec-

tively test our STSOM methods with the fixed thresholds

and the learnt thresholds after pre-training. The results of

our method with the learnt thresholds after pre-training are

shown in Figure 4(a). The results of our method with the

fixed thresholds after pre-training are shown in Figure 4(e)

- 4(g). We can find that the method with the learnt thresh-

olds largely outperforms that with the fixed thresholds at the

beginning. Later, results of the latter converge to a satisfac-

tory state by fine-tuning but are still worse than the former.

It demonstrates that the learnt thresholds are more effective.

The actual detection results of the 977th frame corre-

sponding to Figure 4(a) and Figure 4(c) on canoe are

shown in Figure 5(c) and Figure 5(d).

5.3. Evaluation of SSOM, TSOM and STSOM

We compare our STSOM with another two methods, one

is Spatial SOM (SSOM), which only has spatial weight up-

dating and spatial thresholds. The other one is Temporal
SOM (TSOM), which only has temporal weight updating

and temporal thresholds. Quantitative results of SSOM, T-

SOM and STSOM on CDnet2014 are shown in Figure 6(a)
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(a) original image (b) ground truth (c) with pre-training (d) no pre-training (e) TSOM result (f) SSOM result

(g) result of 1st layer (h) result of 2nd layer (i) result of 4th layer (j) result of 5th layer (k) result of 6th layer (l) result of 7th layer

Figure 5. Detection results of frame 977 on canoe.

(a) F-measure (b) Recall

(c) Precision (d) Results about layers

Figure 6. Performance curves of STSOM, SSOM ,TSOM and mul-

tiple layers.

- 6(c). STSOM promotes nearly 20 % and 10 % on overall

performance compared with SSOM and TSOM respective-

ly. Results show that STSOM has a better overall perfor-

mance and is more universal. STSOM is slightly slower

than SOM and TSOM in pre-training, while the speed of

them are nearly same in detection process with the same

size of video. In Figure 5, we show the detection result-

s of the 977th frame of canoe by several methods. Fig-

ure 5(a) is the original frame, which mainly includes three

parts: static region composed of trees, detection region and

dynamic region composed of changeable river. From Fig-

ure 5(f) and Figure 5(e), It can be seen that SSOM is more

effective than TSOM in static region and the result is op-

posite in dynamic region. The result of STSOM in Figure

5(c) shows that our model for combining spatial and tempo-

ral properties of background is more effective in both static

and dynamic backgrounds.

5.4. Evaluation of Deep Network

In order to demonstrate that our deep network is more

effective than single layer, we list 6 results of other layers

on frame 977 as shown in Figure 5(g) - 5(l). In order to

exclude the influence of pre-training, this experiment was

implemented without pre-training. The result of the third

layer is shown in Figure 5(d). In the first layer and the

second layer the detection results are bad, but from the 3rd

layer we begin to obtain satisfactory results. So other exper-

iments in this paper are implemented with the three-layers

architecture taking both the speed and effect into consider-

ation. Quantitative results on frame 977 is shown in Figure

6(d). This result demonstrates that more superior detection

performance can be obtained by constructing more deeper

network of STSOM.

6. Conclusion

In this paper, we have proposed a Spatio-Temporal Self-

Organizing Map (STSOM) and a new training method

which is composed of both spatial and temporal weight up-

dating. Then, all pixels in the same frame have been effi-

ciently modeled by a shared STSOM. Based on Bayesian

parameter estimation, the threshold for object detection

has been learnt by exploiting spatio-temporal properties of

the background. Moreover, we have extended the single

STSOM to a deep network with a more superior perfor-

mance than other existing methods in numerous comparison

experiments.
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