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Abstract

Linking two data sources is a basic building block in

numerous computer vision problems. Canonical Correla-

tion Analysis (CCA) achieves this by utilizing a linear opti-

mizer in order to maximize the correlation between the two

views. Recent work makes use of non-linear models, includ-

ing deep learning techniques, that optimize the CCA loss in

some feature space. In this paper, we introduce a novel,

bi-directional neural network architecture for the task of

matching vectors from two data sources. Our approach

employs two tied neural network channels that project the

two views into a common, maximally correlated space us-

ing the Euclidean loss. We show a direct link between the

correlation-based loss and Euclidean loss, enabling the use

of Euclidean loss for correlation maximization. To over-

come common Euclidean regression optimization problems,

we modify well-known techniques to our problem, including

batch normalization and dropout. We show state of the art

results on a number of computer vision matching tasks in-

cluding MNIST image matching and sentence-image match-

ing on the Flickr8k, Flickr30k and COCO datasets.

1. Introduction

Computer vision emerged from its roots in image pro-

cessing when researchers began to seek an understanding

of the scene behind the image. Linking visual data X with

an external data source Y is, therefore, the defining task

of computer vision. When applying machine learning tools

to solve such tasks, we often consider the outside source

Y to be univariate. A more general scenario is the one in

which Y is also multidimensional. Examples of such view

to view linking include matching a video and concurrent au-

dio, matching an image with its textual description, match-

ing images from two fixed views, etc.

The classical method of matching vectors between two

different domains is Canonical Correlation Analysis (CCA).

The algorithm has been generalized in many ways: regular-

ization was added [29], kernels were introduced [2, 30, 4],

versions for more than two sources were developed [41] etc.

Recently, with the advent of deep learning methods, deep

versions were created and showed promise.

The current deep CCA methods optimize the CCA loss

on top of a deep neural network architecture. In this work,

an alternative is presented in which a network is built to

map one source X to another source Y and back. This ar-

chitecture, which bears similarities to the encoder-decoder

framework [11], employs the Euclidean loss.

The Euclidean loss is hard to optimize for, when com-

pared to classification losses such as the cross entropy loss.

We, therefore, introduce a number of contributions that are

critical to the success of our methods. These include: (i) a

mid-way loss term that helps support the training of the hid-

den layers; (ii) a decorrelation regularization term that links

the problem back to CCA; (iii) modified batch normaliza-

tion layers; (iv) a regularization of the scale parameter that

ensures that the variance does not diminish from one layer

to the next; (v) a tied dropout method; and (vi) a method for

dealing with high-dimensional data.

Taken together, we are able to present a general and ro-

bust method. In an extensive set of experiments, we present

clear advantages over both the classical and recent methods.

2. Previous work

Canonical Correlation Analysis (CCA) [14] is a statisti-

cal method for computing a linear projection for two views

into a common space which maximizes their correlation.

CCA plays a crucial role in many computer vision applica-

tions including multiview analysis [1], multimodal human

behavior analysis [39], action recognition [16], and linking

text with images [18]. There are a large number of CCA

variants including: regularized CCA [44], Nonparametric

canonical correlation analysis (NCCA) [31], and Kernel

canonical correlation analysis (KCCA) [2, 30, 4], a method

for producing non-linear, non-parametric projections using

the kernel trick. Recently, randomized non-linear compo-

nent analysis (RCCA) [32] emerged as a low-rank approxi-
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mation of KCCA. While CCA is restricted to linear projec-

tions, KCCA is restricted to a fixed kernel. Both methods

do not scale well with the size of the dataset and the size

of the representations. A number of methods [3, 46, 6, 34]

based on Deep Learning were recently proposed that aim

to overcome these drawbacks. Deep canonical correlation

analysis [3] processes the pairs of inputs through two net-

work pipelines and compares the results of each pipeline via

the CCA loss.

[48] and [45] extend [3] to the task of images and text

matching. The first employs the same model and training

process of [3] while the latter employs a different training

scheme on the same architecture. Unlike [48] and [45] we

present a novel deep model for matching images and text.

Other deep CCA methods, including ours, are inspired

by a family of encoding/decoding unsupervised generative

models [12, 5, 28, 42, 43] that aim to capture a meaningful

representation of input x by applying a non-linear encoding

function E(x), decoding the encoded signal using a non-

linear decoding function D(x) and minimizing the squared

L2 distance between the original input and the decoded out-

put. Some of the auto-encoder based algorithms incorporate

a noise on the input [42, 43] or enforce a desired property

using a regularization term [28].

Correlation Networks (CorrNet) [6] and Deep canoni-

cally correlated autoencoders (DCCAE) [46] expand the

auto-encoder scheme by considering two input views and

two output views. The encoding is shared between the two

views (CorrNet) or the differences in the encodings are min-

imized (DCCAE). In both cases, it serves as a common bot-

tleneck. Our model goes from one view to the other (in both

directions) and not from each view to a reconstructed view.

The CCA loss is used by both CorrNet and DCCAE. The

latter contribution explicitly states that the L2 loss is inferior

to the CCA loss term [46]. Our network, however, uses L2

successfully. This reinforces the need to apply the meth-

ods we propose in this work in order to enable effective

training based on the L2 loss. For this end, we introduce

innovative techniques based on common practices in deep

learning, adapted to the problem at hand. These techniques

include: dropout, batch normalization, and leaky ReLUs.

While the latter is applied as is, the former two need to be

carefully modified for our networks.

Dropout [40] is a regularization method developed to re-

duce over-fitting in deep neural networks by zeroing a group

of neurons at each training iteration. This stochastic elim-

ination reduces the co-adaptation between neurons in the

same layer and simulates the training of an ensemble of net-

works with shared weights.

Batch Normalization [37] is used as a stabilizing mech-

anism for training a neural network by scaling the output of

a hidden layer to zero norm and unit variance. This scaling

lowers the change of distribution between neurons through-

Figure 1: The 2-way network model. Each channel trans-

forms one view into the other. A middle representation is

extracted for correlation maximization

out the network and helps to speed up the training process.

Rectified Linear Unit (ReLU) [33] is a non-linear activa-

tion function that does not suffer from the saturation phe-

nomenon, which the classical sigmoids suffer from. Con-

ventional ReLU zero negative activations, and as a result,

no gradient is produced for many of the neurons. A few

variants of ReLU were, therefore, proposed [26, 9] that re-

duce the effect of negative activations, but do not zero them

completely. Similar to [26] and unlike [9], we do not train

the leakiness parameter and instead set it to a constant value.

As one of our contributions, we add a regularization term

that removes the pairwise covariances of the learned fea-

tures. A similar term was recently reported in work [7] as

part of a classification system (unrelated to modeling corre-

lations between vectors). We adapt their terminology when

describing our bi-directional term.

3. The Network Model

This section contains a detailed description of our pro-

posed model, which we term the 2-way net1 . The model

1Code can be found at https://github.com/aviveise/

2WayNet
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utilizes the L2 loss in order to create a bi-directional map-

ping between two vector spaces. The absence of a correla-

tion based loss (such as in DeepCCA [3] and CorrNet [6])

makes this model simpler. Like other regression problems,

there are inherent challenges in obtaining meaningful so-

lutions [8]. These challenges are further amplified by the

multivariate and layered structure of the performed regres-

sion. We, therefore, modify the problem in various ways,

each contributing to the overall success.

3.1. Basic Architecture

Our proposed architecture is illustrated in Fig. 1. It con-

tains two reconstruction channels. Both channels contains

k hidden layers {h1, h2, ..., hk} and {ĥ1, ĥ2, ..., ĥk}. Lets

define Hi(x) and ˆHi(y) as the output of each channel at

layer i given network inputs x and y respectively, the model

is optimized to minimize the Eucledean loss between both
ˆHi(y) and x, and Hi(x) and y. The two channels share

weights and dropout function as explained in 3.5

The activations of each hidden layer are computed by

a function h(x) = Φ (Wx+ b2) from R
d1 to R

d2 , where

W ∈ R
d2×d1 is the weight matrix, b2 ∈ R

d2 is the bias

vector and Φ is a non-linear function, which in our model is

a leaky rectified linear unit [26]. The tied layer is given as

ĥ(y) = Φ
(

WT y + b1
)

, and employs the transpose of the

matrix W and an untied bias term b1 ∈ R
d1 .

Given a pair of views x ∈ R
dx and y ∈ R

dy , two

reconstructions are created: x̃ ∈ R
dx and ỹ ∈ R

dy by

employing the two networks H = h1 ◦ h2 ◦ ... ◦ hk and

Ĥ = ĥk ◦ ĥxk−1
◦ ... ◦ ĥ1, as x̃ = Ĥ(y) and ỹ = H(x).

Loss is measured between x and x̃ and y and ỹ. More-

over, the Euclidean distance is also minimized directly on

the desired representations. In order to do so, we select a

mid-network position j = ⌈k/2⌉. We then add a loss term

by considering the two networks: Hj = h1 ◦ h2 ◦ ... ◦ hj ,

and Ĥj = ĥk ◦ ĥxk−1
◦ ... ◦ ĥj+1. A loss term is then added

that compares Hj(x) and Ĥj(y).
The overall loss is given by the three terms Lx = ‖x −

x̃‖2, Ly = ‖y − ỹ‖2, and Lh = ‖Hj(x) − Ĥj(y)‖2. Note

that minimizing Euclidean distances differs from maximiz-

ing the pairwise correlations as is done in CCA and its vari-

ants DeepCCA [3] and RCCA [32].

In our experiments, in order to compare with previous

work, we use the correlation as the success metric. As the

Lemma below shows, there is a connection between the cor-

relation of two vectors and their Euclidean distance, this

connection also depends on the variance of the vectors.

Lemma 1. Let x ∈ R
n and y ∈ R

n denote two paired

lists of n matching samples from two random variables with

zero mean and σ2
x and σ2

y variances. Then, the correla-

tion between the two n dimensional samples x and y equals
σx

2σy
+

σy

2σx
− ‖x−y‖2

2nσxσy
.

Proofs for the lemmas presented in this paper are de-

scribed in the appendix. Given a batch of samples from

views x and y, we measure the correlation between the

outputs of two matching layers, {hj(x1), ..., hj(xn)} and

{ĥj(yi), ..., ĥj(yn)} as the sum of correlations between the

activations of each matching neuron. The Lemma below

extends Lemma 1 and shows that the sum of correlations

which we aim to maximize is bounded by a function of the

Euclidean loss between the two representations.

Lemma 2. Given two matching hidden layers, hj and ĥj

with m neurons each. ak is the activation vector of neuron

k from hj with standard deviation σak
and bk is the acti-

vation vector of neuron k from ĥj with standard deviation

σbk . Each vector is produced by feeding a batch of samples

of size n from views x and y through channels H and Ĥ
respectively. The sum of correlations C is bounded by:

m
∑

k=1

Ck ≥ 1

2

m
∑

k=1

(
σ2
ak

+ σ2
bk

σak
σbk

)

− 1

2n

m
∑

k=1

‖ak − bk‖2
m
∑

k=1

σ−1
ak

σ−1

bk
(1)

From the above Lemma, we can conclude that by min-

imizing the L2 loss together with maximizing the variance

of each neuron activation will result in maximization of the

sum of correlations.

Solving this regression problem tends to eliminate the

variance of the output representations. To overcome this

limitation, we add two instruments. The first is batch nor-

malization layer [37] (BN) after each hidden layer. The set-

tings of the batch normalization layer differ from the com-

mon settings to adapt to this model. Another instrument is

regularizing the gamma parameter the batch normalization

layer introduces. More details can be found below.

To the loss term, we add regularization terms. The

first is weight decay Rw =
∑ ‖W‖2. A second reg-

ularization term is added in order to reduce the cross

correlations between the network activations of the same

layer. The property we encourage is inherent to CCA-

based solutions where decorrelation is enforced. In our

network solutions, we add a soft regularization term. Dur-

ing training, we consider the N samples of a single batch

{(xi, yi)}Ni=1 and consider the set of mid-network activa-

tions {(Hj(xi), Ĥ
j(yi))}Ni=1. The decorrelation regular-

ization term is given by:

Rdecov =
1

2

(

‖Ch‖2F − ‖diag (Ch) ‖22
)

+
1

2

(

‖C
ĥ
‖2F − ‖diag

(

C
ĥ

)

‖22
)

,

(2)

where Ch = 1

N

∑

i H
j(xi)

⊤Hj(xi) is the covariance es-

timator for Hj(x) and C
ĥ
= 1

N

∑

i Ĥ
j(yi)

⊤Ĥj(yi) is the
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covariance estimator for Ĥj(y). This regularization term

is minimized when the off-diagonal coefficients of both Ch

and C
ĥ

are zero.

3.2. Batch normalization layers

As shown above, in order to maximize the correlation

we need not only to minimize the Euclidean loss but also to

increase the variance of each neuron’s output. This is done

by introducing a batch normalization layer [37] customized

to meet the model’s needs.

Given a vector of activations a = [a1, . . . , ad] produced

by one of the network’s hidden layers for a given batch of

inputs, we normalize a to produce a′ = [a′1, . . . , a
′
d], where

a′k = ak−µk

σk
and µk and σ2

k are the mean and variance of

neuron k on the given batch. This is followed by scaling and

shifting by learned parameters to produce a′′k = γka
′
k + βk.

The BN layer mitigates the loss of variance by enforcing

unit variance and by removing the influence of the weights

of the hidden layer on the output’s variance.

BN layers are usually placed before the non-linearity or

on the input of the layer as a preprocessing phase as shown

in [10]. This setting poses several problems. First, ReLU

lowers the variance of the output which is counterproduc-

tive to our goal. Second, applying ReLU after BN has the

effect of zeroing every k when ak is below the mean in a

given batch plus the term βk/γk. Typically, βk is initialized

to zero and for a symmetric activation distribution, half of

the activations are zeroed. When employing a bi-directional

network, the zeroing effect occurs in both directions.

In order to estimate the magnitude of this effect, let us

assume that we have a process that at time i outputs two

vectors ui = Hj(xi) and vi = Ĥj(yi), both in R
d, which

are the hidden representation at layer j for a pair of samples

(xi, yi). Denote by ρk the correlation between the activa-

tions at neuron k.

Let si = {k|ui(k) > µk} be the group of indices of the

values in ui that are larger than their population mean. Let

ŝi = {k|vi(k) > µ̂k} be the equivalent for the vectors vi.
We observe the intersection si ∩ ŝi, which is the group of

active neurons, following a threshold at the mean value on

both ui and vi. As the Lemma below shows, even if the

correlation ρk is relatively high, the size of the intersection

set si ∩ ŝi is closer to the value d/4 obtained for randomly

permuted vectors than to the maximal value of d/2.

Lemma 3. Assume that ui and vi are drawn from a mul-

tivariate normal distribution with zero mean and the iden-

tity covariance matrix, such that the correlation between

ui(k) and vi(k) for all k is ρk = ρ. Then, E (|si ∩ ŝi|) =
d
[

1

4
+ sin

−1ρ
2π

]

.

Even in the case of a correlation as high as 0.6, the in-

tersection will include only about 35% of the neurons. For

neurons k not in this intersection, either both sides ui(k)

and vi(k) are zero, meaning that no backpropagation oc-

curs, or only one neuron is active, in which case only that

side is updated and the update is a simple shrinking effect,

since the loss is the magnitude of the activation.

In order to break this symmetry, we choose to employ

the BN after the non-linearity. This allows the network

to choose weights that result in mostly positive activations,

which remain positive after the ReLU activation units.

3.3. Highly leaky ReLU

Another method to prevent the harmful effects of zeroing

is by using leaky ReLU as our non-linear function. Leaky

ReLU was first introduced by [26] in order to overcome the

difficulties that arise from the elimination of the gradients

from neurons with negative activation. In the 2-Way net-

work, this effect is amplified, and we find leaky ReLU units

to be extremely important. Formally, a leaky ReLU is de-

fined as:

yi =

{

xi if x ≥ 0
axi if x < 0

where a < 1 is the leakiness coefficient and is fixed during

both training and testing. In all of our experiments, we use

a leakiness coefficient of 0.3. This value was selected on

the validation set of the Flickr8k experiment described in

Section 4 and is used for all experiments.

Using leaky ReLU helps to reduce the effect discussed

in Section 3.2 but does not replace the need for performing

BN after the non-linearity. As Lemma 3 shows, more than

half of the neurons will be multiplied by the leakiness coef-

ficient while their matching neuron will not. This asymmet-

ric scaling adds an artificial distance between the matching

neurons, which, in turn, increases the L2 loss and reduces

the training efficiency.

3.4. Variance injection

Applying BN on the output of each hidden layer is not

enough. The variance can still vanish during training. The

problem is that the γ factor introduced by each BN layer

can be arbitrary and can diminish during training, resulting

in low variance. To encourage high variance, we introduce a

novel regularization term of the form Rγ =
∑

j,k(1/γjk)
2,

where γjk is the scaling parameter for neuron k in layer j.

This regularization term is enough to force the network

to avoid solutions with low variance and to seek more infor-

mative output. This is demonstrated experimentally in the

ablation study of Section 4.

The compound loss term we employ is of the form:

L = Lx + Ly + Lh + λwRw + λdecovRdecov + λγRγ

Where λw,λdecov , and λγ are the regularization coefficients.

While it seems that three regularization tradeoff hyperpa-

rameters would make selecting the parameter values diffi-
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cult, the converse is true: in all of our varied set of exper-

iments λγ = λw, and λdecov is either set to a very high

value of 1/2 or, for small datasets, to 1/20 (see Section 4).

Moreover, by adding these terms, the network is much less

sensitive to the selection of λw and allows us to learn with

a much higher learning rate.

3.5. Tied dropout

Dropout [40] is a form of regularization method that

simulates the training of multiple networks with shared

weights. Dropout zeros neurons by element-wise multiply-

ing the output of a hidden layer consisting of d neurons

for a batch of n samples with a random matrix B of size

d × n. Each element of B is drawn independently from a

Bernoulli distribution with a parameter p. Since dropout

eliminates random neurons, it prevents co-adaptation of

neurons, which is a desirable property for correlation anal-

ysis. However, using dropout, as is, in our proposed model

is harmful. This is because the 2-Way network aims to en-

hance correlations between parallel layers hj and ĥj . The

elimination of neurons independently in the hidden layers

creates an artificial loss, even for a perfect matching.

Let p be the dropout parameter for layer j, assume that

the same parameter is applied on both directions. In proba-

bility (1− p)2, a pair of matching neurons is active on both

sides and learning occurs with the true gradient. In proba-

bility p2, the pair of matching neurons is silent on both sides

and no learning occurs. In probability 2p(1 − p), only one

neuron is active resulting in a shrinking effect on the other

neuron. Here, too, shrinking of activations is can be damag-

ing since it might lead to a state of constant representation.

For a dropout probability of p = 0.5, half of the gradi-

ents would stem from a match which is silent on exactly one

side, and the harmful effect is clearly seen in Section 4. To

overcome this problem, we introduce a tied dropout layer,

in which the same random matrix Bj is applied to pairs of

matching hidden layers: hj and ĥj , j = 1..K. This shar-

ing eliminates the artifacts introduced by the conventional

dropout while preserving the benefits of the stochastic pro-

cess and helps avoid over-fitting.

Using tied dropout layer changes the distribution of the

activations. In order to match the distribution at test time,

we incorporate a scaling factor at train time. Assume that

the activations of a single neuron are zero-centered. As dis-

cussed below, most post BN activations are almost exactly

centered. In this case, the variance of the neuron activations

is simply the sum of the squared activations. During train-

ing, only a ratio 1 − p of the activations contributes to the

variance. Therefore, we divide the activations by
√
1− p.

3.6. Training high dimensional inputs

Some of the experiments shown below contain high di-

mensional data. High dimensional input directly increases

the number of parameters and can cause over-fitting as well

as an increase in training time and memory usage. To lower

the number of parameters, we introduce a new type of layer

we term locally dense layer. Such layer of size n is com-

posed of m different dense layers h̄1, ..., h̄m of size n
m

each.

Input x of size dx is divided into m different parts of size dx

m

and each part xi is connected into one of the dense layers

h̄i. The outputs of all inner hidden layers are concatenated,

thus producing the locally dense layer’s output. To the out-

put, we add a regular bias term b of size n. Using this layer

reduces the number of parameters by a factor of m compar-

ing to a conventional dense layer. In the experiments below,

when dealing with high dimensional input, we use a locally

dense layer with two inner dense layers.

4. Experiments

We first present a detailed analysis of the two datasets

most commonly used in the literature for examining re-

cent CCA variants: MNIST half matching and X-Ray Mi-

crobeam Speech data (XRMB). We then provide additional

experiments on the problem of image to sentence matching,

showing state of the art results on the Flickr8k, Flickr30k

and COCO datasets.

4.1. Comparison with published results

We follow the conventional way of evaluating the perfor-

mance of CCA variants and compute the sum of the correla-

tions of the top c shared (canonical) representation variables

found. The datasets used for this comparison are MNIST

and XRMB. In both MNIST and XRMB experiments, we

set λdecov = λW = λγ = 0.05. For training, we used

stochastic gradient descent with a learning rate of 0.0001

which was halved every 20 epochs. A momentum of 0.9 is

used and a tied dropout probability of 0.5.

MNIST half matching The MNIST handwritten digits

dataset [19] contains 60,000 images of handwritten digits

for training and 10,000 images for testing. Each image is

cut vertically into two halves, resulting in 392 features each.

The goal is to maximize the correlation of the top c = 50
canonical variables. The model used is composed of three

layers of size 392, 50 and 392 respectively, noted as 392-

50-392. The middle layer was taken as the output.

X-Ray Microbeam Speech data The XRMB [47] dataset

contains simultaneous acoustic and articulatory recordings.

The articulatory data is represented as a 112 dimensional

vector. The acoustic data are the MFCCs [24] for the same

frames, yielding a 273 dimensional vector at each point in

time. For benchmarking, 30,000 random samples are used

for training, 10,000 for cross-validation and 10,000 for test-

ing. The correlation is measured across the c = 112 top

correlated canonical variables. The same training config-

uration of the MNIST experiment was used for the XRMB
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dataset. For XRMB, we tested our model using hidden layer

configuration of 560-280-112-680-1365.

Tab. 1 contains correlation comparisons on the MNIST

and XRMB datasets of six CCA variants besides our pro-

posed method. As can be seen, our method (“2WayNet”)

outperforms all literature methods by a large margin on the

XRMB dataset. On the MNIST dataset, in which the lit-

erature results are closer to the maximal value of 50, our

method is able to regain half of the remaining correlation.

Method MNIST XRMB

Regularized CCA [44] 28.0 16.9

DCCA [3] 39.7 92.9

RCCA [32] 44.5 104.5

DCCAE [46] 25.34 41.47

CorrNet [6] 48.07 95.01

NCCA [31] NA 107.9

2WayNet 49.15 110.18

Table 1: Comparison between various methods on the

XRMB and MNIST datasets. The reported values are the

sum of the correlations between the learned representations

of the two views. Following the literature, in these bench-

marks MNIST employs a 50D shared representation space,

and XRMB a 112D one.

4.2. Image annotation and search

We next evaluate the proposed model on the sentence-

image matching task. In this task, each dataset contains a set

of images and five matching sentences per image. For each

dataset, we test our model on two tasks, searching an im-

age given a query sentence and matching a sentence given

an image. We measure our performance on three datasets,

Flickr8k [13], Flickr30k [49] and COCO [22], each contain-

ing 8,000, 30,000 and 123,000 images respectively.

Images are presented by the representation layer of the

VGG network [38] as vectors of size 4096. Sentences are

represented using the published code of [18]. Among the

available text encodings, we employ the concatenation of

the Fisher Vector encoding (GMM) and the Fisher Vector

of the HGLMM distribution introduced in [18]. Each sen-

tence is thus represented as a 36,000D vector. Going from

the image to the much larger sentence representation, we

trained networks containing two conventional hidden lay-

ers of sizes 2000 and 3000 and an additional locally dense

layer of 16000 neurons and m = 2 for Flickr30k and COCO

datasets. For Flickr8k, due to the relatively small dataset,

we used a dense layer of 4000 neurons. Correlation is used

as a similarity measure between images and sentences. To

this end we use the middle network output from each chan-

nels, resulting in a representation vector of size 3000.

The Flickr8k dataset is provided with training, valida-

tion, and test splits. For Flickr30K and COCO, no splits

are given, and we use the same splits used by [18]. λdeconv

is set to a value of 1/2, which almost eliminated all off-

diagonal covariances at the middle layer. The other param-

eters are set as in the MNIST and XRMB experiments.

Tab. 2 compare our results to the state-of-the-art meth-

ods on the image-sentence matching task. We also report

results that we computed for the RCCA method [32]. The

open implementations of the various deep CCA methods do

not seem to scale well enough for this benchmark. Our pro-

posed method achieves best performance almost across all

scores, especially in the image annotation task, where we

improved by a large margin for the three datasets, and espe-

cially when considering the top result (r@1).

4.3. Ablation analysis

We perform an ablation analysis aimed at isolating

the effect of the various architectural novelties suggested.

Experiments were conducted on the Flickr8k, Flickr30k,

MNIST and XRMB datasets. Each experiment uses the

baseline configuration with only one alternation.

Batch Normalization For this experiment, we used differ-

ent settings for the BN layer. The configuration settings

include: (1) without BN, (2) with conventional BN (be-

fore ReLU) without regularizing γ, (3) with post-ReLU BN,

without regularizing γ, (4) using BN before the ReLU with

λγ = 0.05, and (5) our proposed method: BN applied only

after ReLU with λγ = 0.05. Tab. 3 report the performance

of the various configurations in terms of correlation and the

mean variance of all features on the validation set.

As Tab. 3 shows, batch normalization has a profound ef-

fect on the network’s results. Results taken without batch

normalization were trained with lower learning rate, us-

ing higher learning rate prevented the training from con-

verging. We can also see that using the 1/γ regularization

term significantly increases the variance of the hidden rep-

resentation, which, in turn, stabilizes the training process

and improves correlation. The effect studied in Section 3.2

is clearly visible in the ablation study, positioning the BN

layer after the Leaky ReLU prevents an unbalance represen-

tations as can be seen by the difference in variances, which

increases the correlation of two representation significantly.

Tab. 4 contains r@1 results for the same experiments on the

Flickr8k dataset. As in Tab. 3 our suggested configuration

achieves the base recall rates.

Tied Dropout We trained the same base configuration de-

scribed above. We also tested our proposed method using

a conventional dropout and without dropout. In all experi-

ments, the dropout probability p was set at 0.5.

As can be seen, the performance drops when using the

conventional dropout instead of the proposed tied dropout

layer. The benefits of the tied dropout layer are most sig-

nificant on the large datasets Flickr8k and Flickr30k, where

over-fitting is likely. The shrinking effect discussed in Sec-
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Model

Flickr8k Flickr30k COCO

Search Annotate Search Annotate Search Annotate

r@1 r@5 r@1 r@5 r@1 r@5 r@1 r@5 r@1 r@5 r@1 r@5

NIC [35] 19.0 NA 20.0 NA 17.0 NA 17.0 NA NA NA NA NA

SC-NLM [17] 12.5 37.0 18.0 40.9 16.8 42.0 23.0 50.7 NA NA NA NA

m-RNN [27] 11.5 31.0 14.5 37.2 22.8 50.7 35.4 63.8 29.0 42.2 41.0 73.0

m-CNN [25] 20.3 47.6 24.8 53.7 26.2 56.3 33.6 64.1 32.6 68.6 42.8 73.1

DCCA [48] 12.7 31.2 17.9 40.3 12.6 31.0 16.7 39.3 NA NA NA NA

BRNN [15] NA NA NA NA 15.2 37.7 22.2 48.2 27.4 60.2 38.4 69.9

RNN-FV [20] 23.2 53.3 31.6 61.2 27.4 55.9 35.9 62.5 30.2 65.0 40.9 75.0

VQA-A [23] 17.2 42.8 24.3 52.2 24.9 52.6 33.9 62.5 37.0 70.9 50.5 80.1

NLBD [45] NA NA NA NA 29.7 60.1 40.3 68.9 39.6 75.2 50.1 79.7

CCA [18] 21.3 50.1 31.0 59.3 23.5 52.8 35.0 62.1 25.1 59.8 39.4 67.9

RCCA [32] 18.7 31.1 11.7 19.2 22.7 34.2 28.3 48.2 NA NA NA NA

2WayNet 29.3 49.7 43.4 63.2 36.0 55.6 49.8 67.5 39.7 63.3 55.8 75.2

Table 2: The recall rates for the Flickr8k, Flickr30k and COCO image to sentence matching benchmarks. In image search,

we show the percent of correct matches for the top retrieval out of all test images (r@1 for search). In image annotation, given

a query image, fetching one of five matching sentences is considered a success. Recall rates for the top five (r@5) denote the

cases in which a successful match exists in any of the top five results. The experiments reported for regularized CCA, RCCA,

and our 2-way net all use the same sentence and image representation. Sentences are represented as the concatenation of the

GMM-FV and the HGLMM-FV representations of [18]. . Images are represented as in [18].

Scenario
Flickr8k Flickr30k MNIST XRMB

Corr Var x Var y Corr Var x Var y Corr Var x Var y Corr Var x Var y

Suggested method 1758 0.65 0.64 2135 0.41 0.43 49.15 1.32 1.27 110.18 1.08 1.06

No BN 1482 1.90 1.71 1562 1.38 1.40 13.14 0 0 25.58 0 0

before ReLU, λγ = 0 1313 0.66 0.44 1385 0.37 0.28 48.40 0.18 0.18 107.55 0.15 0.15
after ReLU, λγ = 0 1598 1.34 1.25 1655 0.73 0.74 48.98 0.38 0.37 109.42 0.40 0.39

before ReLU, λγ > 0 1423 0.33 0.21 1322 1.80 0.96 48.76 0.73 0.72 108.79 0.50 0.50

No Dropout 1091 0.34 0.33 1446 0.57 0.52 49.00 1.33 1.33 109.69 0.79 0.79

Conventional dropout 1557 0.17 0.17 1658 0.12 0.14 48.77 1.90 1.90 93.24 0.24 0.16

Table 3: Ablation study on the Flickr8k, Flickr30k, MNIST and XRMB datasets, testing various batch normalization (BN),

variance regularization and dropout options. We measure the variance in both views, X and Y (averaging the variance of all

dimensions), and the obtained correlation. The suggested method is to apply BN only after ReLU with λγ = 0.05 and to

employ tied dropout. All BN variants employ tied dropout with probability of 0.5. All dropout variants apply BN similarly

to the suggested method.

Scenario Search r@1 Annotate r@1

Suggested method 29.3 43.4

No BN 21.1 25.6

before ReLU, λγ = 0 26.9 39.6

after ReLU, λγ = 0 27.9 40.9

No Dropout 25.64 36.6

Conventional dropout 29.04 42.1

Table 4: Recall results on Flickr8k for the same experiments

as described at Tab. 3.

tion 3.5 is clearly visible and is manifested as low variance

of the output of the model based on conventional dropout,

compared to a higher variance when using the tied dropout.

Leaky ReLU We also tested the contribution of other pa-

rameters on the model’s performance. One of the major

benefits was using leaky ReLU non-linearity. Using con-

ventional ReLU resulted in large correlation loss of about

33% (1192 total correlation) for Flickr8k. Loss terms An-

other aspect we tested is the effect of various loss terms

on correlation and recall rates. Removing Lh term results

in a 31% (1230) decrease of correlation. This settles with

Lemma 2 which links the output’s correlation and Lh loss

term. While the Lh loss increases the output’s correlation,

the reconstruction loss terms Lx and Ly decreases the re-

sult’s correlation. Removing them both increases correla-

tion by 56% (2752). While the correlation produced be-
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tween the two views is higher without the two reconstruc-

tion losses, the dimensions of each representation are highly

correlated resulting in a decrease of 87% in image search

and 91% in image annotation performance as measured by

recall@1: from the full method’s performance of 29.3 and

43.4 for the tasks of image search and image annotation to

4.0 and 3.9 respectively. Regularization The effect for Rγ

can be viewed in Tab. 3. Removing the Rdecov results in

a decrease of all measures. Image search r@1 and r@5 re-

sults decrease by 14% and 10% respectively and the image

annotation r@1 and r@5 results decrease by 10% and 8%
respectively. Moreover, the correlation is reduced by 4%.

Locally dense layer To test the effect of the proposed lo-

cally dense layer, we trained our model on Flickr30k with a

regular dense layer of the same size (16000 neurons) and

with a regular dense layer of half the size. Image an-

notation r@1(r@5) results degrade by 7%(3%) and image

search by 1%(1%) when using conventional 16000 neurons

dense layer. Using dense layer half the size results in a

drop of 13%(9%) for image annotation r@1(r@5) rates and

11%(8%) for image search recall rates r@1(r@5).

Parameter sensitivity: Fig. 2(a) shows the effect of differ-

ent leakiness coefficient values on the correlation as mea-

sured on the validation sets of the MNIST and XRMB data

sets. The results were obtained by training the network us-

ing leakiness coefficients ranging between 0 and 0.7. As can

be seen, there is a large region of values that provide better

performance than the conventional zero-leakiness ReLU.

Fig. 2(b) shows the effect of the regularization weight λγ

that controls the learned variance of the BN layer. The value

used in our experiments seems to be beneficial and lies at a

relatively wide high-performance plateau.

5. Conclusions

In this paper, we present a method for linking paired

samples from two sources. The method significantly out-

performs all literature methods in the highly applicable and

well studied domain of correlation analysis, including the

classical methods, their modern variants, and the recent

deep correlation methods. We are unique in that we em-

ploy a tied 2-way architecture, reconstructing , and unlike

most methods, we employ the Euclidean loss. In order to

promote an effective training, we introduce a series of con-

tributions that are aimed at maintaining the variance of the

learned representations. Each of these modifications is pro-

vided with an analysis that explains its role and together

they work hand in hand in order to provide the complete

architecture, which is highly accurate.

Our method is generic and can be employed in any com-

puter vision domain in which two data modalities are used.

In addition, our contributions could also help in training

univariate regression problems. In the literature, the Eu-

clidean loss is often combined with other losses [36, 50],
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Figure 2: (a) The effect of the leakiness parameter on the

MNIST and XRMB benchmarks, as measured on the vali-

dation set using the sum of correlations divided by the di-

mension (in percent). The solid red line depicts the MNIST

results; the dashed black line depicts the XRMB results. (b)

A similar plot showing the effect of coefficient λγ .

or replaced by an alternative loss [21] in order to mitigate

the challenges of training regression problems. Our vari-

ance injection method can be easily incorporated into any

existing network.

As future work, we would like to continue exploring the

use of tied 2-Way networks for matching views from dif-

ferent domains. In almost all of our trained networks, the

biases of the batch normalization layers in the solutions

tend to have very low values. These biases can probably be

eliminated altogether. In addition, in many encoder/decoder

schemes, layers are added gradually during training. It is

possible to adopt such a scheme to our framework, adding

hidden layers in the middle of the network one by one.
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