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Abstract

In this paper, we study learning visual classifiers from un-

structured text descriptions at part precision with no training

images. We propose a learning framework that is able to con-

nect text terms to its relevant parts and suppress connections

to non-visual text terms without any part-text annotations.

For instance, this learning process enables terms like “beak”

to be sparsely linked to the visual representation of parts

like head, while reduces the effect of non-visual terms like

“migrate” on classifier prediction. Images are encoded by a

part-based CNN that detect bird parts and learn part-specific

representation. Part-based visual classifiers are predicted

from text descriptions of unseen visual classifiers to facili-

tate classification without training images (also known as

zero-shot recognition). We performed our experiments on

CUBirds 2011 dataset and improves the state-of-the-art text-

based zero-shot recognition results from 34.7% to 43.6%.

We also created large scale benchmarks on North American

Bird Images augmented with text descriptions, where we also

show that our approach outperforms existing methods. Our

code, data, and models are publically available link [1].

1. Introduction

Recognizing visual categories only from the class de-

scription is an appealing characteristic of human learning

and generalization, which is desirable to be modeled for

better machine intelligence. This problem is known as “zero-

shot” learning/classification. In practice, this is motivated by

the lack of annotated training data for most object categories

and especially at the fine-grained level, which has been ob-

served by several researches (e.g., [40, 52]). For instance,

there exist tens of thousands of bird categories among which

images are available for only few-hundred-categories in ex-

isting datasets (< 5%) [48]. Some bird categories are scarce

in the real-world– it is very hard to find the “Crested ibis”

around us and even in a zoo.

Earlier zero-shot recognition methods rely on describing

* Both authors contributed equally to this work

Figure 1. People can learn from text descriptions at part-level

visual classes by a set of semantically meaningful proper-

ties known as attributes [16, 24]. The underlying princi-

ple behind the success of attributes on zero-shot learning

is that they are modeled as an intermediate layer between

class labels and images, which enable transfer of shared con-

cepts/attributes from seen classes to unseen classes. More

recent attribute methods improve the information transfer

across classes by joint embedding of images and attributes

[4, 49, 10, 5]. While attributes can semantically describe

classes with human interpretability without any images, they

typically require domain experts to be defined. It is also nec-

essary to collect hundreds of these attribute annotations for

each of the seen and unseen classes which is discouraging.

Towards reducing the gap between machine and human

intelligence on this task, recent methods [14, 26, 6, 36]

explored zero-shot learning from online text descriptions,

which in turn avoids the burden of heavy attributes anno-

tations for each class. What makes this setting very chal-

lenging is that these descriptions comes in the form of noisy

encyclopedia articles that include not only visual descrip-

tions about the visual appearance but also discussion about

the category’s behavior, breading, immigration, etc. Our

work aims at designing an interpretable model in this di-

rection. Prior works [36, 39, 26, 6] use a wholistic feature

representation for both the object and the text description

(e.g., term frequency vector is common for the bird text

description and a visual feature vector for the whole object).

Contributions In our work, we propose an effective model

that can relate text information of visual categories to im-

ages with part-based regularization. Fig. 1 illustrates the

text-part connectivity capability that we aim to model in our

work, where birds are recognized from text description by

relating text terms to parts in the image (e.g, relating the
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bill to the head of the bird). Note that this task is unlike

existing visual grounding tasks (e.g., [35, 18]), which re-

quires object-(text phrase) annotations during training and

has been mainly studied at the object level/not at part-level.

Our method is able to quell the noise in the text descriptions

by eliminating irrelevant text information without requiring

part-text correspondence annotation or part annotations at

test time. Our model is composed of two networks, “Visual

Part Detector / Encoder network” (VPDE-net) and “Part

Zero-Shot Classifier prediction network” (PZSC-net). The

VPDE-net is fed with bird images, detects the bird parts,

and learns CNN feature representation for every part. The

PZSC-net predicts part-based zero-shot classifier from the

noisy text description of bird classes, which is executed on

the part-CNN representation produced by the VPDE-net.

Besides evaluating on the CUB dataset [48], we also set

up new zero-shot benchmarks by extending the NABirds

dataset [43] with a corresponding unstructured text article

extracted from Wikipedia and AllaboutBirds website [2].

This is five times bigger than the largest existing benchmark

for text-based zero shot learning.

2. Related Work
Attribute-based methods: Besides manually specified at-

tributes (e.g., [25, 16, 24, 33]), several researchers have

explored various attribute applications and attempted to au-

tomatically discover these attributes [9, 37, 29, 38]. Re-

cent approaches model attributes in a continuous space

(e.g., [4, 21]). The main idea of these approaches is to learn a

transformation matrix W that correlates attributes to images

–we name these methods transformation-based approaches.

Other zero-shot approaches used graph/hyper-graphs built

on attributes and class labels (e.g., [17, 20]). In contrast to

graph/hyper-graph based approaches, transformation-based

approaches have recently shown better performance and

are meanwhile simpler and more efficient on fine-grained

recognition (e.g., [39, 6, 5]).

Text-based methods: More relevant to this paper is the

research direction exploring using text articles from the web

to predict zero-shot visual classifiers. Elhoseiny et al. [14]

proposed an approach to that combines domain transfer and

regression to predict visual classifiers from a TF-IDF textual

representation. Bo et al. [26] adopted deep neural networks

to predict convolutional classifiers, leading to a noticeable

improvement on zero-shot classification. Very recently, Qiao

et al. [36] revisited the importance of regularization on zero-

shot learning. They show that attribute-based formulation

like [39] achieves competitive zero-shot performance when

applied to text by just replacing the attribute representation

with textual feature vectors. They further demonstrated that

the noise in the text descriptions could be suppressed by

encouraging group sparsity on the connections to the textual

terms. Similar to transformation-based approaches, most

of these text-based methods (e.g., [14, 36, 39]) are based

also on learning transformations that relates images to text

in a common space. In our view, most of the recent progress

has been achieved by better visual representations using

deep neural networks (e.g., [26]) and/or better regularization

to suppress noise in texts (e.g. [36, 39]). In our work, we

build on top the existing methods and demonstrate that zero-

shot recognition could be significantly improved by part-

based regularization in contrast to the whole image in the

aforementioned approaches. It is important to mention that in

[3], Akata et al. studied zero-shot learning with multiple cues

and they used bird parts. There are two key differences to our

work. (1) In [3], multiple sources from WordNet [31] and

word embeddings [30, 34] are used in addition to text terms,

while we only uses text terms. (2) They used annotations of

19 bird parts for training, however, at test time the method

is not able to locate these parts and hence require the part

test annotations to relate to their multiple cues. In our work,

we demonstrated significantly better performance using only

text terms and with no part annotation needed at test time.

Moreover, at training time, only annotations of 7 parts are

needed instead of 19 that are easier to collect.

Other language& vision methods: In other tasks like

image-captioning (e.g., [22, 47, 15]),VQA (e.g., [7]), and

image-sentence similarity (e.g., [23, 45]), better performance

has been demonstrated with better image and language rep-

resentations. The text annotations in the typical datasets

for these methods are carefully collected at the image-level

by crowdsourcing services (e.g., 5 captions per sentences

in MS-COCO [28] or Flick30K datasets [50]). In contrast

to these settings, the text descriptions in our work come at

the category level (e.g., one text description for “Cardinal”

class). Hence, there is much less text in our setting and

meanwhile the text is much noisier as we described earlier.

In our experiments, we set up an image-sentence similarity

baseline to study the performance of the representations in

methods when applied to very noisy text as in our setting

with only the small portion of the text is related visually.

3. Proposed Approach
Connecting unstructured text into bird parts requires lan-

guage and a visual representations that facilitates mutual

transfer at the part level from text to images and vice versa.

We also aim at a formulation that does not require text-to-

part labeling at training time nor it does require oracle part

annotations at test time (e.g., [3]). Fig. 2 shows an overview

of our learning framework. Our approach starts by a sim-

ple raw text representation involving term frequencies; see

Sec 3.1. The text representation is then fed into a dimension-

ality reduction step followed by multi-part transformation

to predict a visual classifier at the visual part level. The

predicted classifier is applied on the part-based feature rep-

resentations that are learnt through a deep Convolutional

Neural Network (CNN). In the following subsections, we

describe the text and visual part encoders, then define our
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Figure 2. Our approach (best seen in color): On the bottom is the core of our approach where the input is a pure text description and

produces classifier through a dimensionality reduction transformation Wt following by part projections W p
x , p = 1 : P , where P is the

number of parts. The produced P classifiers are then applied on the part learning representation produced through detected parts from the

top visual CNN. RoI refers to Region of Interest Pooling [19].FC refers to Fully connected layers. VGG conv layers refer to the first five

convolutional layers in VGGNet-16 [42]

problem and the proposed approach on top of these encoders.

3.1. Text Encoder

Similar to [14, 26], text articles are first tokenized into

words and the stop words are removed. Then, a simple Term

Frequency-Inverse Document Frequency(TF-IDF) feature

vector is extracted [41]. We denote the TF-IDF representa-

tion of a text article t by t ∈ R
dT , where dT is the number

of terms in the TF-IDF text representation.

3.2. Visual Parts CNN Detector/Encoder (VPDE)

Detecting semantic parts facilitates modeling a represen-

tation that can be related to unstructured text terms at the

part-level. It was shown in [51] that bird parts can be de-

tected at precision of 93.40% vs 74.0% with earlier meth-

ods [27]. We adopt fast-RCNN framework [19] with VGG16

architecture [42] to detect seven small bird-parts using the

small-part proposal method proposed in [51]. The seven

parts in order are (1) head, (2) back, (3) belly, (4) breast, (5)

leg, (6) wing and (7) tail; see Fig. 2. We denote the input

image to the visual part encoder as x. First, the image x is

processed through VGG16 convolutional layers. The pro-

posed regions by [51] on x are then ROI pooled with a 3×3
grid. Then, they are then passed through an 8-way classifier

(7 parts + background) and a bounding box regressor. Each

part p is assigned to the region with the highest confidence

of part p if that confidence is greater than a threshold (i.e.

1/7). If the highest confidence of part p is less than the

threshold, part p is considered as missing. The detected part

regions are then passed to the visual encoder sub-network,

which ROI(3× 3) pools these regions and eventually encode

each part into a 512 dimensional learning representation.

When a part is missing, a region of all zeros is passed to

the encoder-sub-network. We denote these part-learning rep-

resentations of a bird image x as x(1), x(2), · · · , x(P ); see

the flow from x to the part representation in Fig. 2 (top-part

starting from the blue arrow at the top-left). We will detail

later how the Visual Part Detector/Encoder (VPDE) network

is trained. We denote the dimensionality of the part features

as dP , where x
(p) ∈ R

dP ∀p and dP = 512 in our work.

3.3. Problem Definition

During training, the information comes from images and

text descriptions of K seen classes. We denote the learning
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representations of the detected parts of N training examples

as {X
(p)

∈ R
dP×N}, p = 1 : P , where P is the number of

parts. We denote the text representation of K seen classes

as T ∈ R
dT×K . We define Y ∈ {0, 1}N×K as the label

matrix of each example in one-hot representation (i.e., each

row in Y is a vector of zeros except at the corresponding

class label index). At test time, the text features are given for

K̂ classes, where we need to assign the right label among

them to each test image. Formally, the label assignment of

an image x is defined as

k
∗ = argmax

k

P∑

p=1

z
(p)(tk)

T

· x(p)
, k = 1 : K̂ (1)

where {x(1),x(2), · · · ,x(P )} is the part learned representa-

tion of image x, tk is the text representation of class k, and

z(p)(t) is a function that takes a text representation t and

predicts a visual classifier weights for part p. In our work, we

aim at jointly learning and regularizing z(p)(·), ∀p ∈ 1 : P
to encourage text terms to correlate with sparse set of parts.

3.4. Part Zero­Shot Classifier Prediction (PZSC)

Part visual classifier prediction functions are defined as

z
(p)(t) = t

T
Wt

T
W

p
x, ∀p ∈ 1 : P (2)

where Wt ∈ R
d×dT is a dimensionality reduction matrix,

which projects the text representation t ∈ R
dT into a latent

space, Wp
x
∈ R

d×dP for each part p then regress the pro-

jected text representation into a classifier for part p; see Fig. 2

(bottom part starting from the blue arrow at the bottom-left).

Hence, z(p)(t) ∀p are mainly controlled by W
p
x

and Wt

since t is the input. We will elaborate next on how Wt and

W
p
x
∀p are trained jointly.

3.5. Model Optimization and Training

An interesting research direction regularizes zero-shot

learning by introducing different structures to the learning

parameters (e.g., [39, 36]). In [39]. Minimizing the variance

of the projections from image to attribute space and vice

versa is the key to improving attribute-based zero-shot pre-

diction. In [36], Qiao et al. used l2,1 sparsity regularization,

proposed in [32], to encourage sparsity on the text terms,

and showed its capability to suppress noisy text terms and

improve zero-shot classification from text. We got inspired

by these regularization techniques to train our our framework

in Fig. 2 with the following cost function:

min
W1

x
,··· ,WP

x
,Wt

||(

P∑

p=1

X
(p)T

W
p
x

T)WtT−Y||2F+

λ1

P∑

p=1

||Wp
x

T
WtT||2F + λ2

P∑

p=1

||Wp
x

T
Wt||2,1

(3)

where || · ||F is the Frobenius norm. The first term in Eq. 3

encourages that for every image xj ,
∑P

p=1 z
(p)(tk)

T

·x
(p)
j =

∑P

p=1(t
T

kWt
T
W

p
x
)T ·x

(p)
j to be equal to 1 if k is the ground

truth class, 0 if other classes. This enables z(p)(t) to predict

part classifiers for an arbitrary text t (i.e. high (→ 1) for the

right class, low (→ 0) for others). The second term bounds

the variance of the functions {z(p)(t) = tTWt
T
W

p
x
∀p}.

More importantly, the third term imposes structure on Wt

and {Wp
x
∀p}, to encourage connecting every text term with

sparse set of parts (i.e., every text term attends to as few parts

as possible ). The third term
∑P

p=1 ||W
p
x

T
Wt||2,1 is defined

as
∑P

p=1

∑dT

i=1 ||W
p
x

T
w

i
t
||2, wi

t
is the ith column in Wt

matrix that corresponds to the ith text term, Wp
x

T
w

i
t
∈ R

dX

are the weights that connect the pth part to ith text term.

Hence, the third term encourages group sparsity over the

parameter groups that connect every text term i to every part

p (i.e. Wp
x

T
w

i
t
), which encourages terms to be connected

to parts sparsely.

Optimization: The parameters of our model include part

detection sub-network parameters and part representation

sub-network parameters for Visual Part Detector/Encoder

(VPDE) network, and {Wp
x
, p = 1 : P}, Wt for the part

zero-shot classifier predictor (PZSC) network. The VPDE

network is trained by alternate optimization over the detector

and the representation sub-networks with the training images.

The detector sub-network is optimized through softmax loss

over 8 outputs (7 parts and background) and bounding box

regression to predict the final box for each detected part. The

representation sub-network is optimized over by softmax

loss over the seen/training classes. The convolutional layers

are shared between the detection and representation sub-

networks (VGG16 conv layers in our work); see Fig. 2(top-

part) and supplementary for architecture details. After train-

ing VPDE network, we solve the objective function in Eq. 3

to train the Part Zero-Shot Classifier predictor.

The cost function in Eq. 3 is convex if optimized for either

Wt or {Wp
x
, p = 1 : P} individually but not convex on

both. Hence, we solve Eq. 3 by an alternate optimization,

where we fix Wt and solve for {Wp
x
, p = 1 : P}, then fix

{Wp
x
, p = 1 : P} and solve for Wt.

Solving for Wt: Following the efficient l2,1 group spar-

sity optimization method in [32], the solution to this sub-

problem could be efficiently achieved by sequentially solving

to following problem until convergence.

min
Wt,{D

p
l
,∀p}

||(

P∑

p=1

X
(p)T

W
p
x

T
)WtT − Y||

2
F + λ1

P∑

p=1

||W
p
x

T
WtT||

2
F

+ λ2

P∑

p=1

Tr (W
p
x

T
WtD

p

l
Wt

T
W

p
x
)

(4)
where D

p
l is a diagonal matrix with the i-th diagonal element

is 1/(2||Wp
x
(wi

z
)(l−1)||2)

2 at the the l-th iteration, where
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Algorithm 1: Alternate Optimization to solve Eq. 3

Input :T,Y,X(1), · · ·X(p)

Output :Wt, W1
x, · · · ,W

P
x

1 Initialize Wt and W
1
x, · · · ,W

P
x with standard Gaussian

distribution.

2 Initialize Wt turn = false

3 for l=1 · · · L do

4 Update D
(p)
l ∀p

5 if (Wt turn = true) then

6 Find Wt with Eq. 4 by Quassi-Newton BFGS ;

7 else

8 Find {Wp
x} with Eq. 5 by Quassi-Newton BFGS ;

9 Wt turn = notWt turn

10 if Converges then

11 Break

12 end

13 end

(wi
z
)(l−1) is the i-th column of Wt solution at iteration l−1.

We realized that it is hard to find a closed-form solution to

Eq. 4 or even reduce it to the Sylvester Equation [8]. Hence,

we solve Eq. 4 by Quasi-Newton with Limited Memory

BFGS Updating (i.e., gradient-based optimization). The

derived gradients for Eq. 4 sub-problem are attached in the

supplementary materials.

Solving for W
p
x : In this step, we solve the following

sub-problem.

min
{D

p

l
,W

p
x,∀p}

||(

P∑

p=1

X
(p)T

W
p
x

T)WtT−Y||2F + λ1

P∑

p=1

||Wp
x

T
WtT||2F

+ λ2

P∑

p=1

Tr (Wp
x

T
WtD

p

l
Wt

T
W

p
x)

(5)
where D

p
l is a diagonal matrix with the i-th diagonal ele-

ment is 1/(2||(Wp
x
)(l−1)

w
i
z
||2)

2 at the l-th iteration, where

(Wp
x
)(l−1) is the solution of Wp

x
for part p at iteration l− 1.

Similar to Eq. 4, we solve Eq. 5 by Quasi-Newton with BFGS

Updating. The derived gradients for Eq. 5 sub-problem

are attached in the supplementary materials. Algorithm 1

shows the overall optimization process that solves Wt and

W
1
x
, · · · ,WP

x
jointly.

4. Experiments

4.1. Experiment setting

Datasets: We compare the proposed method with state-

of-the-art approaches on two datasets: CUB2011 [48] and

NABirds [44]. Both are bird datasets for fine-grained clas-

sification. Important parts of the bird in each image are

annotated with locations by experts. CUB2011 dataset con-

tains 200 categories of bird species with a total of 11,788

images. Compared with CUB2011, NABirds is a larger

dataset of birds with 1011 classes and 48562 images. It

constructs a hierarchy of bird classes, including 555 leaf

nodes and 456 parent nodes, starting from the root class

“bird”. Only leaf nodes are associated with images, and the

images for parent class can be collected by merging all im-

ages of its children nodes. In practice, we found some pairs

of classes merely differ in gender. For example, the parent

node “American Kestrel” are divided to “American Kestrel

(Female, immature)” and “American Kestrel (Adult male)”.

Since we cannot find the Wikipedia articles for this subtle

division of classes, we merged such pairs of classes to their

parent. After such processing, we finally have 404 classes,

each one is associated with a set of images, as well as the

class description from Wikipedia. We collected the raw tex-

tual sources from English-language Wikipedia-v01.02.2016.

We manually verified all the articles and augmented classes

with limited descriptions from the all-about-birds website [2].

We plan to release this data and the NABird benchmarks that

we set up.

Two split setting: To split the dataset to training/testing

set, we have designed two kinds of splitting schemes, in

terms of how close the seen classes are to the unseen classes:

Super-Category-Shared splitting (SCS), Super-Category-

Exclusive splitting(SCE). In the dataset, some classes often

are the further division of one category. For example, both

“Black footed Albatross” and “Laysan Albatross” belong to

the category “Albatross” in CUB2011, and both “Cooper’s

Hawk” and “Harris’s Hawk” are under the category “Hawks”

in NABirds. For SCS, unseen classes are deliberately picked

in the condition that there exists seen classes with the same

Super-Category. In this scheme, the relevance between seen

classes and unseen classes is very high. On the contrary, in

SCE, all classes under the same category as unseen classes

would either belong to the seen or the unseen classes. For

instance, if “Black Footed Albatross” is an unseen class then

all other albatrosses are unseen classes as well and so no

albatrosses are seen during training. It is not hard to see

that the relevance between seen and unseen classes is mini-

mal in the SCE-split. Intuitively, SCE-split is much harder

compared to SCS-split.

These strategies for zero-shot splits were used on CU-

Birds dataset in the literature but in different works and were

not compared to each other. For SCS-split on CUB2011, we

use the same splitting to [3, 36], where 150 classes for train-

ing and 50 classes for testing. For SCE-split on CUB2011,

we use the same splitting to [14], where the first 80% classes

are considered as seen classes and used for training. To

design these two splitting schemes in the NABirds, we first

check the class hierarchy. There exist 22 children nodes un-

der the root category (bird) in the hierarchy. We found that

the number of descendants under the 22nd children (Perch-

ing Birds) are much greater than the average descendants

of the remaining 21 classes (205 vs.10). To eliminate this
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imbalance, we further divide this category to its children.

With the combination of 29 children of this category and

other 21 children of the root, we ended up with 50 super

categories (21+29). For SCS-split, we randomly pick 20%

of descendant classes under each super categories as unseen

classes. For SCE-split, we randomly pick 20% of super cat-

egories and consider all their-descendant classes as unseen

are considered the seen classes. For both splits, there are

totally 323 training (seen) classes and 81 testing (unseen)

classes, respectively. For ease of presentation, we sometimes

refer to the SCS-split as the easy-split and to SCE-split as

the hard-split.

Textual Representation: We extract the text represen-

tation according to the scheme described in Section 3.1.

The dimensionality of TF-IDF feature for CUB2011 and

NABirds are 11083 and 13585, respectively.

Image representation: As described in Section 3.2, the

part regions are first detected and then passed to the VPDE

network. 512-dimensional feature vector is extracted for

each semantic part. For CUB2011 dataset, we only use

seven semantic parts to train the VPDE network; illustrated

in Fig. 2. For NABird dataset, we used only six visual parts

with the “leg” part removed, since there is no annotations for

the “leg” part in the NABirds dataset.

4.2. Performance evaluation

Baselines and Competing Methods: The performance of

our approach is compared to six state-of-the-art algorithms:

SJE [6], MCZSL [3], ZSLNS [36], ESZSL [39], WAC [14].

The source code of ESZSL and ZSLNS are available online,

and we get the code of WAC [14, 13] from its author. For

MCZSL and SJE, since their source codes are not available,

we directly copy the highest scores for non-attribute settings

reported in [3, 6]. Image-sentence baseline [46]: Addition-

ally, we used a state of the art Model [46] for image-sentence

similarity by breaking down each text document into sen-

tences and considering it as a positive sentence for all images

in the corresponding class. Then we measure the similari-

ties between an image to class by averaging its similarity

to all sentences in that class. Images were encoded using

VGGNet [42] and sentences were encoded by an RNN with

GRU activations [12]. The purpose of this experiment is to

study how RNN representation of the sentences perform in

our setting with noisy text descriptions.

We first compare our approach with MCZSL, which is

among the best performing state-of-art methods. Both our

approach and MCZSL utilizes part annotations provided

by the CUB2011 datasets.However, in contrast to MCZSL,

which directly uses part annotations to extract image feature

in the test phase, our approach is merely based on the de-

tected semantic parts during both training and testing. Less

accurate detection of semantic parts will surely degrade the

accuracy for the final zero-shot classification. In order to

methods Accuracy

MCZSL [3](BoW) 26.0

MCZSL [3](word2vec) 32.1

MCZSL [3](Comb) 34.7

Ours-DET 37.2

Ours-ATN 43.6

Table 1. Performance comparison with the accuracy (%) on

CUB2011 Dataset. In [3], the approach is evaluated with different

textual representation: BoW, word2vec, and their combination.

make a fair comparison with MCZSL, we also report our

result using the ground-truth annotations of semantic parts at

test-time. The results of our approach based on the detected

parts and ground-truth parts are denoted by “Ours-DET” and

“Ours-ATN”, respectively. In Table 1, we compared to the

same benchmark reported in [3], which is the SCS-split on

CUBirds 2011 dataset. The results show that our perfor-

mance is 9% better than [3] (43.6% vs 34.7%) although we

only used a simple TF-IDF text representation compared

to multiple cues used in MCZSL like text, WordNet and

word2vec. Note also that the 34.7% achieved by [3] used 19

part annotations during training and testing (the whole im-

age, head, body, full object, and 15 part locations annotated),

while we only used 7 parts to achieve the 43.6%. Table 1

also shows that our method still perform 2.5% better even

when using the detected parts at test time (37.2% Ours-DET

vs 34.7% MCSZSL using ground truth annotations). In all

the following experiments, we only used our approach with

the detected parts (i.e. “Ours-DET”).

Zero-shot Top-1 Accuracy. For standard zero-shot im-

age classification, we calculate the mean Top-1 accuracy

obtained on unseen classes. We performed comprehen-

sive experiments on both SCS-(easy) and SCS-(hard) splits

on both CUBirds and NABirds. Note that some of these

methods were applied on attributes prediction (e.g., ZSLNS

[36], SynC [10], ESZSL [39] ) or image-sentence similarity

(e.g.,Order Embedding [46]). We used the publicly available

code of these methods and other text-based methods like

(ZSLNS [36], WAC [14], WAC-kernel [13]) to apply them

on our setting. Note that the conventional split setting for

zero-shot learning is Super-Category Shared splitting (i.e.

SCS-(easy) split). We think evaluating the performance on

both the SCS-(easy) and the SCE-(hard) splits are comple-

mentary and hence we report the performance on both of

them. In Table 2, we show the comparisons between our

method to all the baselines on the CUB2011 easy and hard

benchmarks, where method outperforms all the baselines by

a noticeable margin on both the easy and the hard bench-

marks. Note that the image-sentence similarity baseline

(i.e. Order Embedding [46]) is among the least-performing

methods. We think the reason is the level of noise which is

addressed by the other methods by regularizing the text infor-

mation at the term level, while the representation unit in [46]

is the whole sentence. Similarly, Table 3 shows the results

on NABirds easy and hard benchmarks, where the perfor-
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mance of our approach is also superior over the competing

methods. It is worth mentioning that the WAC-method is not

scalable since the its training parameters depend on the num-

ber of image-class pair. We trained it for 6 days on 64GB

RAM machine and report the results of the latest snapshot

in Table 3.

methods SCS(Easy) SCE(Hard)

WAC-Linear [14] 27.0 5.0

WAC-Kernel [13] 33.5 7.7

ESZSL [39] 28.5 7.4

SJE [6] 29.9 –

ZSLNS [36] 29.1 7.3

SynCfast [10] 28.0 8.6

SynCOV O [10] 12.5 5.9

Order Embedding [46] 17.3 5.9

Ours-DET 37.2 9.7

Table 2. Top-1 accuracy (%) on CUB2011 Dataset in two different

split settings. Note that some of these methods are attribute-based

methods but applicable in our setting by replacing attribute vectors

with text features.

methods SCS(Easy) SCE(Hard)

WAC-Kernel [13] 11.4 6.0

ESZSL [39] 24.3 6.3

ZSLNS [36] 24.5 6.8

SynCfast [10] 18.4 3.8

Ours-DET 30.3 8.1

Table 3. Top-1 accuracy (%) on NABird Dataset splits.

Generalized Zero-Shot Learning Performance. The con-

ventional zero-shot learning that we discussed earlier classi-

fies test examples into unseen classes without considering

the seen classes in test phase. Because the seen classes are

often the most common, it is hardly realistic to assume that

we will never encounter them during the test phase [11].

To get rid of such an assumption, Chao et al. [11] recently

proposed a more general metric for generalized zero-shot

learning (GZSL). We here briefly review how it generally

measures the capability of recognizing not only unseen data,

but also seen data. Let S , U denote the label spaces of seen

classes, unseen classes; T = S ∪ U , the joint label space.

AU→T and AS→T are the accuracies of classifying seen

data and unseen data into joint label space. The labels are

computed using the Eq. 6:

y = argmax
c∈T

f(x)− λI[c ∈ S] (6)

where I[.] ∈ {0, 1} indicates whether c is a seen class and

λ is the penalty factor. x is set to seen data or unseen data

to calculate AU→T and AS→T , respectively. As λ increases

or decreases, data are encouraged to be classified to unseen

classes or seen classes, respectively. In the cases where λ is

extremely large or small, all data will assigned with unseen

class label or seen class label, respectively. Therefore, we

can generate a series of pairs of classification accuracies

(〈AU→T , AS→T 〉) by tuning values of λ. Considering these

pairs as points with AU→T as x-axis and AS→T as y-axis,

we can draw the Seen-Unseen accuracy Curve(SUC). The

Area Under SUC (AUSUC), as a widely-used measure of

curves, can well assess the performance of an classifier in

balance of the conflicting AU→T and AS→T ) measurements.

The Seen-Unseen accuracy Curve of our method and

other state-of-the-art approaches are shown in Fig. 3. The

performance of our work is superior over all other methods in

term of the AUSUC score. Although WAC linear apparently

achieves a high performance on seen classes, its poor perfor-

mance of classifying unseen classes indicates that it doesn’t

learn much knowledge that can be effectively transferred

to unseen classes. On the contrary, ZSLNS has a relatively

good accuracy AU→T , but its lower AS→T compared with

other methods indicates that the success of unseen classes’

classification may come from the overweighted regularizers.

Our method remarkably outperforms other methods in term

of both the classification of unseen classes, and also achieves

a relative high accuracy in recognition of seen classes. The

curves in Fig. 3 demonstrate our method’s capability of bal-

ancing the classification of unseen classes and seen classes

(0.304 AUSUC for Ours-DET compared to 0.239 for the

best performing baseline). We also demonstrated the effec-

tiveness of our performance on NABirds dataset in Fig. 4

(0.126 AUSUC for Ours-DET compared to 0.093 for the

best performing baseline). In addition to these GZSL results

on SCS-splits, we also report the Seen/Unseen curves on the

SCE-splits in the supplementary due to space.

Model Analysis and Qualitative Examples. We also an-

alyzed the the connections between the terms and parts in

the learnt parameters, which is Wp
x

T
w

i
t

for the connection

between term i and part p on CUBirds dataset (SCS-split).

Fig. 6 shows the l2 norm of W
p
x

T
w

i
t

for each part sepa-

rately and only on the top 30 terms for each part sorted by

‖Wp
x

T
w

i
t
‖2. Fig. 8 shows the percentage of overlap be-

tween these terms for every pair of parts, which shows that

every part focus on its relevant concepts yet there is still a

shared portion that includes shared concepts like color and

texture. In Fig. 6, we show the the summation of these con-

nections for every part and compare between “Ours-DET”

and “Ours-ATN” to analyze the effect of detecting the parts

versus using part annotations. We observe that more con-

cepts/terms are discovered and connected to head for “Ours-

ATN”, while more concepts are learnt for “breast” for “Ours-

DET”. This is also consistent with the Top-1 accuracy if each

part is individually used for recognition; see the Top-1 Acc

for each part separately in Fig. 6 (right). This observation

shows if we have a perfect detector, head will be one of

the most important part to be connected to terms which is

intuitive. We also observed the same conclusion on both

SCS and SCE splits on NABirds and SCE on CUBirds; see

additional analysis figures for these splits in the supplemen-

tary. We further demonstrate these part-to-term connectivity
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Figure 6. Connection to Text Terms (CU Birds dataset–SCS Split with with 37.2% Top1-Acc). On the right, Top1-Acc is shown per part

Head: billed    (0.0075)   
Back: declined(0.0092)  
Belly: marsh (0.0029) 
Breast: white (0.0108)  
Leg: marshes (0.0008)
Wing: marsh (0.0088)
Tail: brown (0.0265)  

Head: birds     (3.655e-08)
Back: boring    (0.0089)   
Belly: backed    (0.0084)
Breast: recently (0.0054) 
Leg:  toed         (0.0026)  
Wing: black (2.957e-07) 
Tail: peninsula (0.0038) 

Head: shore (0.0037)
Back: prey     (0.0080)
Belly: gray     (0.0038)
Breast: black (0.0052)
Leg: yellow    (0.0072)
Wing: chicks (0.0056)
Tail: white      (0.0189)

Figure 7. Part-to-Term connectivity (From left to right: “Least Tern”, “Marsh Wren”, “Three-toed Woodpecker”

from CUBirds-SCS split)
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Overlap between every

two parts(CUBirds-SCS)

by some qualitative examples in Fig. 7. For each bird, the

top related term for each part is printed based on ranking

the terms by x
(p)

W
p
x

T
w

i
z
tik, where tik is the ith dimension

of the text representation of the predicted class k (i.e., only

the text terms that exist in the text description of class k are

considered). The figure shows the capability of our method

to ground concepts to its location in the image. In the right

example, like “toes” is strongly connected to leg– the con-

nection strength is shown between parenthesis. In the middle

example, “billed” concept is connected to head, “white” is

connected to the breast, and “brown” is connected to the tail.

In the left example, “yellow” is connected to leg.

5. Conclusion

We developed a novel method for zeros-shot fine-grained

recognition with a capability to connect terms to bird parts

without requiring part-term annotations. Our learning frame-

work is composed of Visual Part Detector/ Encoder (VPDE-

net) that detects bird parts and learnt its representation, and

part-based Zeros-Shot Classifier Predictor network (PZSC-

net), that predict visual classifier function for every part.

These part classifier prediction functions are jointly learnt

to encourage text terms to be connected to the sparse set of

parts, which help suppress the noise in the text and enable

connecting terms to relevant parts. Our method significantly

outperforms existing methods on two existing benchmarks:

CUB2011 dataset and large-scale benchmarks that we cre-

ated on NABirds dataset. We also performed an analysis on

the part-to-text connection weights that our model learns and

we discussed interesting findings.
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