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Abstract

Fast-AT is an automatic thumbnail generation system

based on deep neural networks. It is a fully-convolutional

deep neural network, which learns specific filters for thumb-

nails of different sizes and aspect ratios. During inference,

the appropriate filter is selected depending on the dimen-

sions of the target thumbnail. Unlike most previous work,

Fast-AT does not utilize saliency but addresses the problem

directly. In addition, it eliminates the need to conduct re-

gion search on the saliency map. The model generalizes to

thumbnails of different sizes including those with extreme

aspect ratios and can generate thumbnails in real time. A

data set of more than 70,000 thumbnail annotations was

collected to train Fast-AT. We show competitive results in

comparison to existing techniques.

1. Introduction

Thumbnails are used to facilitate browsing of a collec-

tion of images, make economic use of display space, and re-

duce the transmission time. A thumbnail image is a smaller

version of an original images that is meant to effectively

portray the original image (Figure 1). Social media web-

sites such as Facebook, Twitter, Pinterest, etc have content

from multiple user accounts which needs to be displayed on

a fixed resolution display. A normal web page on Facebook

contains hundreds of images, which are essentially thumb-

nails of larger images. Therefore, it is important to ensure

that each thumbnail displays the most useful information

present in the original image. Since images displayed on a

web page vary significantly in size and aspect ratio, any

thumbnail generation algorithm must be able to generate

thumbnails over a range of scales and aspect ratios.

The standard operations used for creating thumbnails

are cropping and scaling. Since thumbnails are ubiquitous

and the manual generation of thumbnails is time consum-

ing, significant research has been devoted for automatic

thumbnail generation. Most methods [20, 3, 2] utilize a

saliency map to identify regions in the image that could

serve as good crops to create thumbnails. This leads to a

Figure 1. Illustration of the thumbnail problem. The original im-

age is shown on the left with thumbnails of different aspect ratios

on the right.

two step solution where saliency is first computed and then

an optimization problem is solved to find the optimum crop.

Whereas a recent method addresses [9] the problem directly,

it involves hand crafted features and uses SVMs to score

candidate crops. Moreover, the implementation requires 60

seconds to produce a single thumbnail.

We propose Fast-AT, a deep learning based approach for

thumbnail generation that addresses the problem directly, in

an end-to-end learning framework. Our work involves the

following contributions:

• Fast-AT is based on an object detection framework,

which takes dimensions of the target thumbnail into

account for generating crops. Since it produces thumb-

nails using a feed-forward network, it can process 9

images per second on a GPU.

• By vector quantizing aspect ratios, Fast-AT learns dif-

ferent filters for different aspect ratios during training.

During inference, the appropriate filter is selected de-

pending on dimensions of the target thumbnail.

• 70,048 thumbnail annotations were created on 28,064

images through Amazon Mechanical Turk. The an-

notated thumbnail data set will be released with this

paper.

2. Related Work

Since thumbnail creation involves reducing the image

size, retargetting methods [17] such as seam carving and
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non-homogeneous warping can be used. However these

methods produce artifacts which are often pronounced since

most thumbnails are significantly smaller than the origi-

nal images. Therefore, most thumbnail generation methods

use a combination of cropping and scaling. Typically, au-

tomatic thumbnail generators utilize a saliency map as an

indicator of important regions in the image to be cropped

[20, 3, 21, 2]. Region search is then performed to find the

smallest region of the image that has a total saliency above a

certain threshold. A brute force approach to region search is

computationally expensive, therefore approximations have

been investigated such as greedy search [20], restriction of

the search space to a set of fixed size rectangles [19], and

binarization of the saliency map [3]. Recently, an algorithm

that conducts region search in linear time has been reported

[2].

However, saliency can ignore the semantics of the scene

and does not take the target thumbnail size into account.

Many methods address this shortcoming through a heuris-

tic approach such as selecting a crop that contains all de-

tected faces [20] or using an algorithm that depends on both

the saliency and image class. Sun et al. [21] improve the

saliency map by taking the thumbnail scale into account and

preserving object completeness. A scale and object aware

saliency map is computed by using a contrast sensitivity

function [14] and an objectiveness measure [1]; then greedy

search is conducted to find the optimum region, similar to

[20]. However, the method does not impose aspect ratio

restrictions on the selected region and the final thumbnail

images can contain objects that look significantly deformed.

In addition, whereas [2] introduced an algorithm which pro-

duces regions with restricted aspect ratios, it mentions that

the problem could be infeasible for a given overall saliency

threshold value. Some other approaches attempt to crop the

most aesthetic part of the image [23, 15].

Huang et al. were the first to directly address the prob-

lem [9]. A data set of images and their manually gener-

ated thumbnails was collected. However, only one thumb-

nail size of 160×120 was considered. The solution also

involved scoring a large set of candidate crops and then se-

lecting the crop with the largest score. The implementation

- albeit an unoptimized CPU code - required 60 seconds to

generate a thumbnail for a single image. In addition, the

solution [9] is based on hand crafted features and SVM,

which generally have inferior performance compared to re-

cent deep learning based methods.

Deep convolutional neural networks have achieved im-

pressive results on high level visual tasks such as image

classification [11, 18, 8], object detection [7, 16, 4], and

semantic segmentation[12]. These architectures have not

only led to significantly better results but also systems that

can be deployed in real time [16]. We present a solution,

based on a fully convolutional deep neural network that is

learned end-to-end. We take into account varying thumb-

nail sizes from 32×32 to 200×200 pixels. At test time the

network can produce thumbnails at 105ms per image and

shows significant improvements over the existing baselines.

3. Data Collection

We started the annotation of images from the photo qual-

ity data set of [13] using Amazon Mechanical Turk (AMT).

The set includes both high and low quality images and

spans a number of categories such as humans, animals, and

landscape. Target thumbnail sizes were divided into three

groups - thumbnails between 32 to 64, 64 to 128, and 100 to

200, in both height and width. This leads to an aspect ratio

range from 0.5 to 2. Each image was annotated three times,

with different target thumbnail sizes from each group.

The annotation was done through an interface that draws

a bounding box on the original image with an aspect ratio

equal to that of the thumbnail; users can only scale the box

up or down and change its location. This bounding box rep-

resents the selected crop. It is scaled down to the thumbnail

size and shown to the user at the same time. Restricting

the bounding box (crop) to have an aspect ratio equal to the

thumbnail’s aspect ratio leads to more flexible annotation

and avoids any possible deformation affects.

To make the interface more practical, the images were

scaled down such that the height does not exceed 650 and

the width does not exceed 800. The Mechanical Turk work-

ers were shown examples of good and bad thumbnails. The

examples were intended to illustrate that good thumbnails

capture a significant amount of content while at the same

time are easy to recognize. After the data set was collected,

the thumbnail images were manually swept through and bad

annotations were excluded; this led to a total of 70,048 an-

notations over 28,064 images with each image having at

most 3 annotations.

4. Does target thumbnail size matter?

An automatic thumbnail generating system receives two

inputs: the image and the target thumbnail. Therefore, we

study the dependence between the target thumbnail and the

generated crop. It is clear that the generated crop should

have an aspect ratio equal to the target thumbnail’s aspect

ratio. Selecting a crop of a different aspect ratio could cause

pronounced deformations when scaling the crop down to the

thumbnail size as shown in Figure 2. It is worth noting that

although deformations can be caused when selecting crops

with aspect ratios different from that of the thumbnail, it has

been ignored in some work [20, 21].

Intuitively, it is expected that smaller input thumbnail

sizes would typically require smaller crops. Larger crops

would be less recognizable when they are scaled down. To

investigate this, we compare the average area of the anno-
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Figure 2. The above thumbnails were generated using the code

from [21] which is agnostic to the thumbnail aspect ratio. The

objects look clearly deformed in the thumbnails, where variation

in aspect ratio is significant.

tated crop vs the thumbnail size in the annotated dataset.

However, we did not observe any correlation between the

two as shown in Figure 3. Thus, we concluded that to pro-

duce the optimal crop, the thumbnail size does not need to

be taken into account, but the aspect ratio matters for this

dataset. We still consider a model that takes both the as-

pect ratio and the size of the thumbnail into account in our

experiments.

5. Approach

Thumbnails are created by selecting a region in the im-

age to be cropped (a bounding box) followed by scaling the

bounding box down to the thumbnail size. We present a so-

lution to this problem employing a deep convolutional neu-

ral network that learns the best bounding boxes to produce

thumbnails. Since we formulate the problem as a bounding

box prediction problem, it is closely connected to object

detection. However, unlike object detection, the final pre-

dictions will not consist of bounding boxes with a discrete

probability distribution across different classes, but involve

two classes: one that is representative of the image and an-

other which is not.

Early deep learning methods for object detection utilized

proposal methods such as [22] that were time-consuming.

Computation time was significantly reduced using region

proposal networks (RPNs) [16] that learn to generate pro-

posals. R-FCN [4], which was recently proposed, re-

duces the computational expense of forward propagating

the pooled proposal features through two fully connected

layers by introducing a new convolutional layer consisting

of class-specific position-sensitive filters. Specifically, if

there are C classes to be detected, then this new convolu-

tional layer will generate k2(C + 1) feature maps. The k2

position-sensitive score maps correspond to k × k evenly

partitioned cells. Those k2 feature maps are associated with

Figure 3. The plot above shows the average crop area for a given

thumbnail size. The crop area is normalized by the maximum

value. The average crop area is not generally smaller for smaller

thumbnail sizes and it does not vary significantly.

different relative positions in the spatial gird, such as (top-

left,...,bottom-left) for every class. k = 3, corresponds to a

3 × 3 spatial grid and 9 position-sensitive filters per class.

Every class (including the background), will have k2 fea-

ture maps associated with it. Instead of forward propagating

through two fully connected layers, position-sensitive pool-

ing followed by score averaging is performed. This gen-

erates a (C + 1)-d vector on which a softmax function is

applied to obtain responses across categories.

An architecture for thumbnail generation should be fully

convolutional because, including a fully connected layer re-

quires a fixed input size. If there were a mismatch between

the aspect ratio of an image and the fixed input size, the im-

age would have to be cropped in addition to being scaled.

Because the thumbnail crops (bounding boxes) could touch

the boundaries of the image or even extend to the whole im-

age, the pre-processing step of cropping a region of the im-

age could lead to sub-optimal predictions, since part of the

image has been removed. Therefore, an architecture similar

to [18] that was used for the ImageNet localization chal-

lenge [5], which simply replaces the class scores by 4-D

bounding predictions, cannot be employed because of the

fully connected layer at the end.

Another observation is that unlike object detection, the

thumbnail generation network receives two inputs: the im-

age and the thumbnail aspect ratio. Both RPN and R-FCN

introduce task-specific filters. In the case of RPN, filter

banks that specialize in predicting proposals of a specific

scale are achieved by modifying the training policy. In the

case of R-FCN, position-sensitive filters specialize through

the position-sensitive pooling mechanism. In a similar man-

ner, we modify R-FCN for thumbnail creation by introduc-

ing a set of aspect ratio-specific filter banks. A set of A
points are introduced in the aspect ratio range of [0.5, 2],
which represent aspect ratios that grow by a constant fac-
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tor (a geometric sequence), i.e. it is of the form S =
{ 1
2c,

1
2c

2, . . . , 1
2c

A}. Note that 1
2c

0 = 1
2 and 1

2c
(A+1) = 2,

leading to c = A+1
√
4. The filter banks in the last convolu-

tional layer in R-FCN are modified into A pairs, with each

pair having a total of k2 filters. Each pair is associated with

a single element in the set S. Similar to R-FCN, position-

sensitive pooling followed by averaging is performed over

that pair and those two values are used to yield a softmax

prediction of representativeness.

At training time, when an image-thumbnail size pair is

received, the image is forward propagated through convolu-

tional layers up to the last convolutional layer. The thumb-

nail aspect ratio is calculated and the element with the clos-

est value is selected from S - the pair associated with that

element factors in the training while others are ignored. For

this pair, the proposals are received, and similar to object

detection, positive and negative labels are assigned to the

proposals based on their intersection over union (IoU) with

the ground truth. Specifically, a positive label is assigned if

the IoU ≥ 0.5 and negative otherwise. Similarly, A aspect

ratio-specific regressors are trained, one for each element in

S; these are similar to class-specific regressors. For a given

proposal, we employ the following loss:

L(si, ti) =
A
∑

i=1

liLcls(si, s
∗) + λ[s∗ = 1 ∧ li]Lreg(ti, t

∗)

, where li is either ignore=0 or factor-in=1, namely

li =







1 if i = argmin
i

| 12ci − thumbnail aspect ratio|

0 otherwise

si is the representativeness score predicted by the ith pair,

s∗ is the ground truth label, and Lcls is cross entropy loss.

λ is a weight for the regression loss which we set to 1. The

regression loss is 0 for all but the nearest aspect ratio. For

the filter corresponding to the nearest aspect ratio, Lreg is

the smooth L1 loss as defined in [6], ti is the bounding box

predictions made by the ith regressor and t∗ is the ground

truth bounding box. Both predictions are parametrized as in

[6]. Figure 4 illustrates the architecture.

Since each regressor is responsible for a range of input

thumbnail sizes, the predictions made by any regressor at

test time could have an aspect ratio that differs from the tar-

get thumbnail aspect ratio. Therefore the output bounding

box has to be rectified to have an aspect ratio equal to the

thumbnail’s aspect ratio, to eliminate any possible defor-

mations when scaling down. We employ a simple method

where a new bounding box with an aspect ratio equal to that

of the target thumbnail is placed at the center of the pre-

dicted box and is expanded until it touches the boundaries.

Since the predicted box already has an aspect ratio close to

that of the thumbnail, the difference between the rectified

Figure 4. Illustration of the Fast-AT architecture and training pol-

icy. The appropriate filter is decided based on the thumbnail aspect

ratio.

box and the predicted box is not significant, as shown in

Figure 5(b).

Our implementation of Fast-AT is based on Resnet-101

[8], a learning rate of 0.001, momentum of 0.9, weight de-

cay of 0.0005 with approximate joint training is used [16].

5.1. Does R­FCN alone work?

Among the baselines we consider is R-FCN- without any

modifications. In effect, it is performing object detection

between two classes. We find that R-FCN alone generates

bounding boxes that have good representations of the origi-

nal image. But since the architecture is agnostic to the input

thumbnail dimensions, the generated thumbnails are of low

quality as shown in Figure 5(a). If we apply the same rec-

tification to the generated boxes, to cancel the deformation

affects, important parts of the images are not preserved, in

contrast to our model’s results which are shown in Figure.

5(b). This is because of the significant mismatch between

the target thumbnail aspect ratio and the predicted box as-

pect ratio. Eliminating the rectification step would lead to

deformed results, similar to what is shown in Figure 2.

6. Experiments

In comparing models we use the following metrics:

• offset: the distance between the center of the ground

truth bounding box and the predicted bounding box.

• rescaling factor (rescaling): defined as

max(sg/sp, sp/sg) where sg and sp are the rescal-

ing factors for the ground truth and predicted box,

respectively. [9].
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Figure 5. R-FCN and Fast-AT predictions on test set images. (a):The original image is displayed with the R-FCN prediction in blue, the

rectified box is in red and the resulting thumbnail is below. Note how the resulting thumbnail is missing important parts of the original

image.(b):The original image is displayed with the Fast-AT prediction in blue, the rectified box is in red and the resulting thumbnail is

below. The rectification does not introduce a significant change in the box predicted by Fast-AT.

Model offset rescaling IoU mismatch

R-FCN 56.2 1.192 0.64 0.102

Fast-AT (AR) 55.0 1.149 0.68 0.010

Fast-AT (AR+TS) 55.4 1.154 0.68 0.012

Fast-AT (AR, scale up of 350) 53.1 1.156 0.69 0.024

Table 1. Metrics computed using different models. R-FCN, Fast-AT with aspect ratio mapping (AR), Fast-AT with aspect ratio and

thumbnail size mapping (AR+TS), and Fast-AT with aspect ratio mapping scaled up to 350.

• IoU: intersection over union between the predicted box

and the ground truth.

• aspect ratio mismatch (mismatch): the square of the

difference between the aspect ratio of the predicted box

and the aspect ratio of the thumbnail.

The total dataset consisting of 70,048 annotations over

28,064 images was split into 24,154 images for training

with 63043 annotations (90% of the total annotations) and

3,910 images for testing with 7,005 annotations (10% of the

total annotations). The training and test sets do not share

any images. Comparative results between different models

is shown in Table 1. The first model we use is R-FCN with-

out modification. This architecture is agnostic to thumb-

nail dimension, the number of classes are reduced to two

and the architecture is modified accordingly. We see that

R-FCN alone has good performance in terms of all met-

rics except for aspect ratio mismatch. High values in these

metrics show that rectifying the bounding box will cause

significant change in the predicted box. We next consider

our proposed model, where we map based on aspect ratio,

with 5 divisions (A = 5). We see significant improvements

in the metrics - the mean IoU has increased by 4% and the

offset and rescaling factor have been reduced. The aspect

ratio mismatch has also been significantly reduced. We ex-

tend the divisions to thumbnail sizes as well. In this case we

divide the input thumbnail space into three branches: small

thumbnails (32-64), medium (64-100), and large (100-200).

Each branch is further divided based on aspect ratio as in the

first model. This leads to a total of 5×3 = 15 regressors and

15 pairs of 2k2 filters. This did not lead to an improvement

over the model with only aspect ratio divisions.

Unlike object detection bounding boxes, the predicted

bounding boxes for thumbnails can enclose multiple objects

and may extend to the whole image. So while, a network

with a small receptive field may predict accurate bound-

ing boxes for object detection, its predictions for thumb-

nail crops may be inaccurate. For object detection, Faster

RCNN [16] effectively reduces the receptive field of the net-

work by scaling up the image so that the smallest dimension

is 600. This step is implemented in R-FCN as well. We re-

duce the image dimension (minimum of height/width) from

600 to 350 in Fast-AT to investigate the affect of the recep-

tive field. We observe a slight improvement in the offset
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and IoU as shown in Table 1. The improvement is not large

because we use Resnet-101 [8], which already has a large

receptive field. Fast-AT’s architecture is generic and hence

other models such as VGGNet [18] or ZFNet [24] can also

be used. Such shallower models are likely to benefit signif-

icantly in thumbnail generation if their receptive fields are

extended.

We further compare Fast-AT with aspect ratio divisions

and Fast-AT with aspect ratio and thumbnail divisions over

thumbnails with a small size; below 64× 64. We do not see

any significant improvement (Table 2). This further con-

firms our initial conclusion that it is the thumbnail aspect

ratio, not the thumbnail size, that matters.

Model offset rescaling IoU mismatch

Fast-AT (AR) 55.9 1.149 0.67 0.011

Fast-AT (AR+TS) 55.0 1.153 0.68 0.012

Table 2. Performance Comparison between Fast-AT with aspect

ratio mapping (AR) and Fast-AT with aspect ratio and thumbnail

size mapping (AR+TS) at small thumbnail sizes below 64× 64.

We also measure the metrics at extreme aspect ratios,

i.e. aspect ratios below 0.7 and above 1.8; the results are

shown in Table 3. We observe a significant drop in R-FCN’s

performance- IoU falls by about 6% and the mismatch al-

most doubles. At the same time Fast-AT still performs well.

This shows that Fast-AT can handle thumbnails of widely

varying aspect ratios.

Model offset rescaling IoU mismatch

R-FCN 57.5 1.348 0.58 0.200

Fast-AT (AR) 49.8 1.18 0.68 0.013

Fast-AT (AR+TS) 50.7 1.183 0.68 0.014

Table 3. Performance Comparison between R-FCN, Fast-AT with

aspect ratio mapping (AR) and Fast-AT with aspect ratio and

thumbnail mapping (AR+TS) at extreme values of aspect ratio

(above 1.8 and below 0.7).

7. Evaluation

We compare our method to the other methods, by metric

evaluations, by visual results, and through a user study. We

compare against 4 methods:

• Scale and Object-Aware Saliency (SOAT): In this

method scale and object-aware saliency is computed

and a greedy algorithm is used to conduct region

search over the generated saliency map [21].

• Efficient Cropping: This method generates a saliency

map and conducts region search in linear time. Un-

like previous methods, the search can be restricted to

regions with a specific aspect ratio. However, when

the aspect ratio mismatch between the image and the

thumbnail is significant, a solution may not exist. In

such cases, we apply the method without aspect ratio

restriction. We run this method at a saliency threshold

of 0.7. [2].

• Aesthetic Cropping: This method attempts to generate

a crop with an optimum aesthetic quality [23].

• Visual Representativeness and Foreground Recogniz-

ability (VRFR): This method is very similar to ours,

in objective. However, it can only generate thumbnails

for a fixed size of 160 × 120 [9].

Since the code was not released for the aesthetic method

and VRFR, our comparison is limited to a user study on

their publicly available data set of 200 images with their

generated thumbnails [9].

7.1. Metrics

For comparing different methods, we use the same met-

rics that were used in the experiments section. In addition,

we use the hit ratio hr and the background ratio br [9],

which are defined as:

hr =
|g ∩ p|
|g| and br =

|p| − |g ∩ p|
|g|

where g is the ground truth box and p is the predicted box.

The metrics are computed over an annotated test set con-

sisting of 7,005 annotations over 3,910 images and aver-

aged. Table 4 shows the performance of different methods.

Note that offset is higher than that reported in [9]. Unlike

the MIRFLICKR-25000 dataset [10] that was used in [9],

the data set we use has images with larger variation in size,

some with low quality, and it includes many images with

multiple objects. In addition, our thumbnails have an as-

pect ratio that varies from 0.5 to 2. This makes the data set

significantly more challenging and would explain the large

increase in the offset values compared to the reported results

in [9]. We find that our method performs the best in terms

of offset, rescaling factor, and IoU. We note that efficient

cropping has a non-zero aspect ratio mismatch, indicating

that there were examples where the problem was infeasi-

ble when the aspect ratio restriction is imposed. This is ex-

pected given the wide variation of thumbnail aspect ratios in

our data set. Unsurprisingly, SOAT, which is agnostic to the

target aspect ratio, has the highest aspect ratio mismatch.

The hit ratio represents the percentage of ground truth

that was captured by the bounding box and the background

ratio represents the percentage of bounding box area that

lies outside the ground truth. The optimal method should

be close to the ground truth and therefore should have a

large hit ratio and a small background ratio. We find that

the performance of different methods in terms of hit and
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Figure 6. Images and their generated thumbnails: The original image is on the left, to its right we display the thumbnails: top is SOAT,

middle is efficient cropping, and bottom is Fast-AT.

Method offset rescaling factor IoU aspect ratio mismatch hr br
SOAT [21] 80.5 1.378 0.52 0.204 68.7% 41.6%

Efficient Cropping [2] 88.3 1.329 0.52 0.176 64.4% 34.3%

Fast-AT (aspect ratio) 55.0 1.148 0.68 0.010 83.7% 37.1%

Table 4. Metrics evaluated on different thumbnail generation methods.

background ratios is similar to the results reported in [9].

Namely, the saliency based methods focus on a relatively

small region having large saliency. This leads to small crops

which explain the low values for the hit and background

ratios. Our method, in comparison is distinguished by a

large hit ratio and a low background ratio. This shows that

it closely matches the predicted ground truth boxes.

7.2. Visual Results

We show qualitative results in comparison to other base-

lines in Figure 6. Saliency based methods succeed in pre-

serving important content; in some examples however, their

final thumbnails can have pronounced deformations. This

can be seen in many examples for SOAT and in some ex-

amples for efficient cropping. In addition, these methods

ignore the semantics of the scene and may ignore important

parts of the image. This can be seen in the third and fourth

examples for SOAT and in the first and second examples for

efficient cropping. At the same time, it can be seen from the

examples that Fast-AT succeeds in each case. It preservers

the content of the scene and predicts thumbnails that tightly

enclose the most representative part of the image.

7.3. User Study

We performed a user study where users were shown the

original image and the generated thumbnails. They were

asked to select the best thumbnail among SOAT, Efficient

Cropping and Fast-AT. A total of 372 images were ran-

domly picked from the test set. 30 mechanical turk users

participated and no user was allowed to vote on more than

30 images. We have included the results of this study in Ta-

ble 5. Fast-AT clearly outperforms the other two methods.

SOAT [21] Efficient Cropping [2] Fast-AT

88 (23.7%) 86 (23.1%) 198 (53.2%)
Table 5. Number of votes for each method.

We performed another study over the released 200 im-

ages from [9] using the results of [21, 9, 23]. The re-

sults are shown in Table 6. Although VRFR[9] takes 60

seconds for an image and works for only one thumbnail

size (160x120), Fast-AT performs slightly better in the user

study performed.

SOAT [21] Aesthetic [23] VRFR [9] FastAT

34(8.5%) 92(23%) 135(33.7%) 139(34.7%)
Table 6. Number of votes for each method.
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8. Failure Cases and Multiple Predictions

We also investigate failure cases of Fast-AT. We look for

examples in the test set where the prediction has an IoU with

the ground truth below 0.1. Figure 7(a) shows some exam-

ples. The ground truth box is in green and the prediction

is in blue. We see that although the prediction is very dif-

ferent from the ground truth, in some cases it still predicts

crops that capture representative regions in the original im-

ages. Furthermore, for some of these failure cases we take

the prediction with the second or third highest confidence.

Figure 7(b) shows examples where the second or third pre-

dictions are close to the ground truth. This suggests that if

the system is to be deployed, users could benefit if the sys-

tem outputs a small set of top predictions instead of one.

These predictions can be treated as a set of candidates from

which the user picks the best solution. We also see a sig-

nificant improvement in the performance of some metrics if

the second prediction is also used. The third prediction did

not lead to a significant improvement, as shown in Table 7.

Figure 7. Failure cases of Fast-AT:(a): the prediction could have

low IoU with the ground truth but still capture a representative

region. (b): we show that the second or third most confident pre-

diction is close to the ground truth.

Model offset rescaling IoU mismatch

Top 1 55.0 1.149 0.677 0.010

Top 2 50.4 1.152 0.693 0.011

Top 3 50.3 1.152 0.693 0.011

Table 7. Performance of Fast-AT using the top 1, 2, and 3 predic-

tions. The offset and IoU are significantly improved by using the

top 2 predictions, the other metrics do not change significantly.

Using the third prediction does not lead to significant improve-

ment.

Another interesting case is when there is a significant as-

pect ratio mismatch between the representative part of the

image and the thumbnail’s aspect ratio. Because of the sig-

nificant aspect ratio mismatch, the crop cannot capture all

of the representative part of the image. We show that our

algorithm is capable of producing multiple crops that cover

different representative parts of the image. Figure 8 shows

some examples. In the first three images (from the left),

the region of interest is spread horizontally, but the thumb-

nail’s aspect ratio is very small (tall thumbnail). The reverse

is true for the rightmost image. The first row shows the

bounding box prediction with the highest confidence and

the second row shows the bounding box prediction with the

second highest confidence. We see that these predictions

cover different representative parts of the image.

Figure 8. In the above images there is a significant aspect ratio mis-

match between the region of interest in the image and the thumb-

nail’s aspect ratio. The prediction with the highest confidence is

shown in the first row and the prediction with the second highest

confidence is shown in the second row. The predictions are suc-

cessful in covering different representative regions in the image.

9. Conclusion

We presented a solution to the automatic thumbnail gen-

eration problem that does not depend on saliency or heuris-

tic considerations but rather attacks the problem directly. A

large data set consisting of 70,048 annotations over 28,064

images was collected. A CNN designed to generate thumb-

nails in real time was trained using this set. Metric and qual-

itative evaluations have shown superior performance over

existing methods. In addition, a user study has shown that

our method is preferred over other baselines.
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