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Abstract

We consider scenarios in which we wish to perform joint

scene understanding, object tracking, activity recognition,

and other tasks in environments in which multiple people

are wearing body-worn cameras while a third-person static

camera also captures the scene. To do this, we need to es-

tablish person-level correspondences across first- and third-

person videos, which is challenging because the camera

wearer is not visible from his/her own egocentric video,

preventing the use of direct feature matching. In this pa-

per, we propose a new semi-Siamese Convolutional Neu-

ral Network architecture to address this novel challenge.

We formulate the problem as learning a joint embedding

space for first- and third-person videos that considers both

spatial- and motion-domain cues. A new triplet loss func-

tion is designed to minimize the distance between correct

first- and third-person matches while maximizing the dis-

tance between incorrect ones. This end-to-end approach

performs significantly better than several baselines, in part

by learning the first- and third-person features optimized for

matching jointly with the distance measure itself.

1. Introduction

Wearable cameras are becoming mainstream: GoPro

and other first-person cameras are used by consumers to

record extreme sports and other activities, for example,

while body-worn cameras are now standard equipment for

many police and military personnel [8]. These cameras cap-

ture unique perspectives that complement video data from

traditional third-person cameras. For instance, in a com-

plex and highly dynamic environment like a busy city street

or a battlefield, third-person cameras give a global view of

the high-level appearance and events in a scene, while first-

person cameras capture ground-level evidence about objects

and people at a much finer level of granularity. The com-

bination of video from these highly complementary views

could be used to perform a variety of vision tasks – scene
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Figure 1. One or more people wear first-person cameras in a scene

that is also recorded by a third-person camera. We wish to identify

which person in the third-person view (left) was wearing the cam-

era that captured a first-person video (right). This is challenging

because the camera fields of view are very different and the camera

wearer almost never appears in their own first-person view.

understanding, object tracking, activity recognition, etc. –

with greater fidelity and detail than either could alone.

In these scenarios, multiple people may be in a scene

at any given time, with people regularly entering and exit-

ing the view of the third-person camera. Some subset of

these people may be wearing first-person cameras, each of

which is also capturing part of the scene but from a highly

dynamic point of view that changes as the wearer moves.

Thus at any moment in time, some (possibly empty) sub-

set of people appear in any given camera’s view, and each

person appears in some (possibly empty) subset of the first-

and third-person cameras (and that person themselves may

be wearing one of the first-person cameras). Compared to

static cameras, first-person video data is significantly more

challenging because of camera motion, poor scene compo-

sition, challenging illumination, etc.

Jointly solving computer vision problems across multi-

ple first- and third-person cameras requires the crucial first

step of establishing correspondences between the people

and the cameras, including (1) identifying the same person
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appearing in different views, as well as (2) matching a cam-

era wearer in one view with their corresponding first-person

video. The former problem is similar to person identifi-

cation and re-identification problems that have been stud-

ied for third-person cameras [10]. These approaches typi-

cally rely on matching visual and motion features of a per-

son across different views; the first-person camera version

is similar in principle but significantly more difficult due

to the difference in perspectives and characteristics of first-

and third-person video.

The second problem is even more challenging, since a

person’s appearance in one video may share few (if any)

visual features with his or her first-person visual field of

the same scene. For instance, a surveillance camera might

capture a camera wearer walking down the street, includ-

ing her physical appearance, the cars parked on the street

beside her, and the friends walking next to her, while her

front-facing first-person camera may capture none of these

because its field of view is down the street. Finding cor-

respondences thus cannot rely on direct appearance fea-

ture matching. Instead, we must rely on indirect sources

of evidence for finding correspondences: (i) matching first-

person videos against an estimate of what a person’s field

of view would look like based on the third-person view

of the scene; (ii) matching estimates of a person’s body

movements based on the camera motion of their first-person

video to the movements observed by the third-person static

camera; and (iii) matching the (rare) moments when part of

a camera wearer’s body or actions are directly visible in the

scene (e.g. when reaching for an object and both first- and

third-person cameras see the hand). See Figure 1.

Despite its importance, we are aware of very little work

that tries to address this problem. Several recent papers

propose using multiple cameras for joint first-person recog-

nition [3, 5, 26, 29], but make simplistic assumptions like

that only one person appears in the scene. Using visual

SLAM to infer first-person camera trajectory and map to

third-person cameras (e.g., [17, 19]) works well in some

settings, but can fail for crowded environments when long-

term precise localizations are needed and when first-person

video has significant motion blur. Ardeshir and Borji [2]

match a set of egocentric videos to people appearing in a

top-view video using graph matching, but assume that there

are multiple first-person cameras sharing the same field of

view at any given time, and only consider purely overhead

third-person cameras (not oblique or ground-level views).

We require a more general approach that matches each in-

dividual first-person video with the corresponding person

appearing in an arbitrarily-positioned third-person camera.

In this paper, we present a new semi-Siamese Convolu-

tional Neural Network (CNN) framework to learn the dis-

tance metric between first- and third-person videos. The

idea is to learn a joint embedding space between first-

and third-person perspectives, enabling us to compute the

similarity between any given first-person video and an in-

dividual human appearing in a third-person video. Our

new semi-Siamese design allows for learning low-level fea-

tures specialized for first-person videos and for third-person

videos separately, while sharing higher-level representa-

tions and an embedding space to permit a distance mea-

sure. Evidence from both scene appearance and motion in-

formation is jointly considered in a novel two-stream semi-

Siamese CNN. Finally, we introduce a new “triplet” loss

function for our semi-Siamese network, and confirm its ad-

vantages in our experiments on a realistic dataset.

2. Related work

While many of the core problems and challenges of

recognition in first-person (egocentric) videos are shared

with traditional third-person tasks, first-person video tends

to be much more challenging, with highly dynamic cam-

era motion and difficult imaging conditions. Research has

focused on extracting features customized for first-person

video, including hand [14], gaze [16], and ego-motion

cues [20]. Other work has studied object-based under-

standing for activity recognition [18], video summariza-

tion [15, 30], and recognition of ego-actions [13] and in-

teractions [22], but in single first-person videos.

Several recent papers have shown the potential for com-

bining first-person video analysis with evidence from other

types of synchronized video, including from other first-

person cameras [3, 29], multiple third-person cameras [26],

or even hand-mounted cameras [5]. However, these papers

assume that a single person appears in each video, avoid-

ing the person-level correspondence problem. Our work is

complementary, and could help generalize these approaches

to scenarios in which multiple people appear in a scene.

A conventional approach to our person correspondence

problem might use visual odometry and other camera local-

ization techniques [7, 23] to estimate the 3-d trajectory of

the wearable camera, which could then be projected onto

the static camera’s coordinate system to identify the cam-

era wearer [17]. However, this is problematic in crowded or

indoor environments where accurate localization is difficult

and people are standing close together. Precise online visual

localization in indoor environments with few landmarks is

itself challenging, and not applicable when cameras are not

calibrated or move too quickly and cause motion blur.

Perhaps the work most related to ours is that of Ardeshir

and Borji [2], which matches a set of egocentric videos to

a set of individuals in a top-view video using graph-based

analysis. This technique works well but makes two sig-

nificant assumptions that limit its real-world applicability.

First, it requires the static camera to have a strictly top-down

(directly overhead) view, which is relatively uncommon in

the real world (e.g. wall-mounted surveillance cameras cap-
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ture oblique views). Second, it assumes that multiple ego-

centric videos sharing the same field-of-view are available.

This assumption is strong even if there are multiple people

wearing cameras: the cameras may not share any field of

view due to relative pose or occlusions, and even if multi-

ple first-person videos with overlapping fields of view are

recorded, some users may choose not to share them due

to privacy concerns, for example. In contrast, we consider

the more challenging problem of matching each of multiple

first-person cameras having arbitrary fields of view with a

static, arbitrarily-mounted third-person camera.

We believe this is the first paper to formulate first- and

third-person video correspondence as an embedding space

learning problem and to present an end-to-end learning ap-

proach. Unlike previous work [19, 28] which uses hand-

coded trajectory features to match videos without any em-

bedding learning, our method is applicable in more complex

environments (e.g. with arbitrarily placed first- and third-

person cameras and arbitrary numbers of people).

3. Our approach

Given one or more first-person videos, our goal is to

decide if each of the people appearing in a third-person

video is the wearer of one of the first-person cameras. The

key idea is that despite having very different characteris-

tics, synchronized first- and third-person videos are differ-

ent perspectives on the same general environment, and thus

capture some of the same people, objects, and background

(albeit from two very different perspectives). This overlap

may allow us to find similarities in spatial-domain (visual)

features, while hopefully ignoring differences due to per-

spective. Meanwhile, corresponding first- and third-person

videos are also two reflections of the same person perform-

ing the same activity, which may allow us to find motion-

domain feature correspondences between video types.

We formulate this problem in terms of learning embed-

ding spaces shared by first- and third-person videos. Ide-

ally, these embeddings minimize the distance between the

first-person video features observed by a camera wearer

and the visual features of the same person observed by a

static third-person camera at the same moment, while max-

imizing the distances between incorrect matches. We pro-

pose a new semi-Siamese network architecture, detailed in

the next section, to learn this embedding space. To han-

dle the two modalities (motion and spatial-domain), we de-

sign a new two-stream Siamese CNN architecture where

one stream captures temporal information using optical flow

(i.e., motion) and the other captures spatial information (i.e.,

surrounding scene appearance), which we detail in Sec-

tion 3.1.3. We also consider two loss functions: a traditional

contrastive loss that considers pairs of samples, and a new

triplet loss that takes advantage of the fact that both positive

and negative first-to-third-person pairings exist in the same

scene. We describe these losses in Section 3.2.

3.1. Semisiamese networks

Our approach is based on Siamese networks with con-

trastive loss functions, which enable end-to-end learning

of both low-level visual features and an embedding space

(jointly optimizing them based on training data). The orig-

inal Siamese formulation [11] interprets the network as

a function f(I; θ) that maps each input video I into an

embedded point using parameters θ, which are typically

trained based on contrastive loss between embedding of the

positive and negative examples [4, 24]. If we applied this

approach to our problem, I would be either the first-person

or third-person video, such that the network (i.e., function f

and parameters θ) would be shared by both types of videos.

However, first- and third-person videos are very differ-

ent, even when recording the same event by the same per-

son in the same location. We hypothesize that although the

higher-level representations that capture object- and action-

level information in first- and third-person videos might be

shared, the optimal low-level features (i.e., early convolu-

tional filters) may not be identical.

We thus propose a semi-Siamese architecture to learn the

first- to third-person distance metric. We find separate pa-

rameters for first- and third-person videos, which we call θ1
and θ2, respectively, while forcing them to share a subset

of parameters θ. Given a set E of egocentric cameras and

a set P of detected people in a third-person camera view,

we can easily estimate the person corresponding to a given

egocentric camera e ∈ E using this embedding space,

p∗e = argmin
p∈P

||f(Ie; θ1, θ)− f(Ip; θ2, θ)||. (1)

We now propose specific network architectures, first

considering the two feature modalities (spatial-domain and

motion-domain) independently, and then showing how to

combine them into integrated two-stream networks.

3.1.1 Spatial-domain network

To learn the spatial-domain correspondences between first-

and third-person cameras, our network receives a single

frame of first-person video and the corresponding frame of

third-person video (Figure 2(a)). For the third-person video,

we force the network to consider one specific person by

masking him or her out from the rest of the frame, replac-

ing their bounding box with black pixels. This is impor-

tant because a camera wearer does not appear in their own

first-person video (with the occasional exception of arms or

hands). We thus encourage the network to learn a relation-

ship between a first- and third-person video frame, with that

person removed from the third-person scene.

As shown in Figure 2(a), each of the first- and third-

person branches maintains its own four early convolution
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Figure 2. Overview of our networks. All networks receive features from time-synchronized first- and third-person video frames, which

during training consist of correct correspondences as positive examples and incorrect correspondences as negative examples. (a) Spatial-

domain network is a semi-Siamese network with separate early convolutional layers (gray) and shared later layers (green). Corresponding

input pairs consist of a first-person video frame and third-person frame with the corresponding person (camera wearer) masked out, since

he or she is not visible in his or her own first-person camera. (b) Motion-domain network is also semi-Siamese with a similar structure,

except that it inputs stacked optical flow fields instead of images frames, and the third-person flow field consists of a crop of a single person.

(c) Two-stream semi-Siamese network combines both networks with a fully-connected layer that produces the final feature vector. (d)

Two-stream semi-Siamese network trained with triplet loss receives three inputs during training: a first-person frame, the corresponding

third-person frame with the correct person masked out, and the same third-person frame with a random incorrect person masked out.

layers while sharing the last two convolution layers and

fully connected layers. The intuition here is that while we

need to capture the same high-level semantic information

from each video, the low-level features corresponding to

those semantics may differ significantly. The last fully-

connected layer abstracts spatial-domain information from

the two perspectives as two D-dimensional feature vectors.

To train the network, we present known true and false cor-

respondences, and use a contrastive loss function that mini-

mizes sum-of-squares between feature vectors of true pairs

and a hinge loss that examines if the distance is greater than

a margin for negative pairs (detailed below).

3.1.2 Motion-domain network

Figure 2(b) shows the motion-domain network, which

learns correspondences between motion in a first-person

video induced by the camera wearer’s movements and their

directly visible movements in a third-person video. The

idea is that (1) body movements of the camera wearer (e.g.,

walking) will be reflected in both first- and third-person

videos and that (2) hand motion may also be captured in

both cameras during gestures or actions (e.g., drinking cof-

fee). We first compute optical flow for each video, and then

stack the flow fields for sets of five consecutive frames as

input to the network. The first-person input is the entire op-
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tical flow field, whereas the third-person input is the flow

field cropped around a single person. This differs from

the input to the spatial-domain network: here we encourage

correspondences between the motion of a camera wearer

and their motion as seen by a third-person camera, whereas

with the spatial network we encouraged correspondences

between the first-person scene and the third-person scene

except for the camera wearer.

3.1.3 Two-stream networks

To combine evidence from both spatial- and motion-domain

features, we use a two-stream network, as shown in Fig-

ure 2(c). Like the spatial-domain network described above,

the spatial stream receives pairs of corresponding first-

person and masked third-person frames, while the tem-

poral stream receives pairs of corresponding first-person

and cropped third-person stacked flow fields. Within each

stream, the final two convolution layers and fully-connected

layers are shared, and then two final fully-connected lay-

ers and a contrastive loss combine the two streams. This

design was inspired by Simonyan and Zisserman [25], al-

though that network was proposed for a completely differ-

ent problem (activity recognition with a single static cam-

era) and so was significantly simpler, taking a single frame

and corresponding stack of optical flow fields. In contrast,

our network features two semi-Siamese streams, two shared

fully connected layers, and a final contrastive loss.

3.2. Loss functions

We propose two loss functions for learning the distance

metric: a standard contrastive loss, and a new “triplet” loss

that considers pairs of correct and incorrect matches.

Contrastive loss: For the Siamese or semi-Siamese net-

works, we want first- and third-person frame representa-

tions generated by the CNN to be close only if they corre-

spond to the same person. For a batch of B training exem-

plars, let xi
e be the first-person visual feature corresponding

to the i-th exemplar, xi
p refer to the third-person visual fea-

ture of the i-th exemplar, and yi be an indicator that is 1 if

the exemplar is a correct correspondence and 0 otherwise.

We define the contrastive loss to be a Euclidean distance for

positive exemplars and a hinge loss for negative ones,

Lsiam(θ) =

B∑

i

yi||x
i
e − xi

p||
2+

(1− yi)max(m− ||xi
e − xi

p||, 0)
2

(2)

where m is a predefined constant margin.

Triplet loss: At training time, given a third-person video

with multiple people and a first-person video, we know

which pairing is correct and which pairings are not. As an

alternative to treating pairs independently as with the con-

trastive loss, we propose to form triplet exemplars consist-

ing of both a positive and negative match. The triplet loss

encourages a metric such that the distance from the first-

person frame to the correct third-person frame is low, but to

the incorrect third-person frame is high. More precisely, for

a batch of B training examples, the i-th exemplar is a triple

(xi
e, x

i
1
, xi

0
) corresponding to the features of the first-person

frame, the correct third-person frame, and the incorrectly-

masked third-person frame, respectively. Each exemplar

thus has a positive pair (xi
e, x

i
1
) and a negative pair (xi

e, x
i
0
),

and we want to minimize the distance between the true pair

while ensuring the distance between the false pair is larger.

We use a hinge loss to penalize if this condition is violated,

Ltrip =

B∑

i

||xi
e − xi

1
||2+

max(0,m2 − (||xi
e − xi

0
||2 − ||xi

e − xi
1
||2))

(3)

where m is a constant. This loss is similar to the Siamese

contrastive loss function, but explicitly enforces the dis-

tance difference to be larger than a margin. Our loss can be

viewed as a hybrid between Schroff et al. [24] and Bell and

Bala [4]: like [4], we explicitly minimize the distance be-

tween the positive pair, and like [24], we maximize the dif-

ference in distance between the negative and positive pairs.

Figure 2(d) shows the two-stream semi-Siamese network

with a triplet loss function. During training, the spatial

stream of the network expects a first-person frame, a cor-

responding masked third-person frame, and an incorrect

masked third-person frame, while the temporal stream ex-

pects a first- and two third-person cropped optical flow

stacks, with the third-person inputs sharing all layers and

the first- and third-person layers separate.

4. Experiments

We evaluated our proposed technique to identify peo-

ple appearing in third-person video and their corresponding

first-person videos, comparing our various network archi-

tectures, feature types, and loss functions against baselines.

4.1. Data

Groups of three to four participants were asked to per-

form everyday activities in six indoor environments while

two wore first-person video cameras. Each environment

was also equipped with a static camera that captured third-

person video of the room, typically from a perspective a

bit above the participants’ heads. We did not give specific
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instructions but simply asked participants to perform every-

day, unstructured activities and interactions, such as shaking

hands, writing on a whiteboard, drinking, chatting, eating,

etc. The first-person videos thus captured not only objects,

participants, and background, but also motion of other peo-

ple in the scene and ego-motion from hand and body move-

ments. Participants were free to walk around the room and

so regularly entered and exited the cameras’ fields-of-view.

We collected seven sets of three synchronized videos

(two first- and one third-person) ranging between 5-10 min-

utes. Three sets had three participants and four included

four. All videos were recorded at HD resolution at 30fps,

using Xiaoyi Yi Action Cameras [1] for the first-person

video and a Macbook Pro webcam for the third-person

video. After collecting the videos, we subsampled to 5fps

to yield 11,225 frames in total. We created ground truth by

manually drawing bounding boxes around each person in

each frame and giving each box a unique person ID, gener-

ating a total of 14,394 bounding boxes across 4,680 frames.

Because contiguous frames are typically highly corre-

lated, we split training and test sets at the video level, with

five videos for training (3,622 frames) and two for testing

(1,058 frames). Since there are usually multiple people per

third-person frame, most frames generate multiple exam-

ples of correct and incorrect person pairs (totaling 3,489

positive and 7,399 negative pairs for training, and 1,051

positive and 2,455 negative pairs for testing). Training and

test sets have videos of different scenes and actors.

4.2. Evaluation and training setting

We use two different metrics for measuring accuracy on

the person correspondence task. In the first measure, we for-

mulate the problem in terms of binary classification, asking

whether a given person in a third-person frame corresponds

with a given first-person frame or not, and then applying

this classifier on all possible pairs in each frame. In this

setting, a given first-person video may not correspond to

any of the people in the third-person frame (if the person is

out of the camera’s field of view), in which case the system

should reject all candidate pairs. In the second measure, we

formulate the task as the multi-class classification problem

of assigning a given first-person video to a corresponding

person in the third-person scene. For instance, if there are

four people appearing in the third-person camera, the goal

is to choose the one corresponding to the first-person video,

making this a four-way classification task.

We implemented our networks in Caffe [12] with

stochastic gradient descent with fixed learning rate 10−5,

momentum 0.9 and weight decay 0.0005 for 50,000 iter-

ations, using three NVidia Titan X GPUs. This required

about six hours for the spatial network and one day for the

temporal and two-stream networks. We have released data

and code online.1 As described above, during training we

feed our networks with first-person frames and flow fields,

and corresponding positive and negative cropped flow fields

(for the motion networks) and masked images (for the spa-

tial networks). During testing, we use our ground-truth

bounding boxes to “highlight” a person of interest in the

third-person view by masking them out for the spatial net-

work and cropping them out for the motion networks.

4.3. Baselines

We implemented multiple baselines to confirm the ef-

fectiveness of our approach. These included mapping of

optical flow features from first-person to third-person view,

direct matching of pre-trained CNN features, and learning

an embedding space with traditional HOOF features.

Flow magnitude to magnitude calculates the mean mag-

nitude of the optical flow vectors on each corresponding

first- and third-person frame, and then learns a linear regres-

sor relating the two. Intuitively, at any moment in time there

should be a correlation between the “quantity” of motion in

a person’s first-person view and that of their corresponding

appearance in a third-person view. HOOF to HOOF divides

the flow field of an image into a 3 × 3 grid, and then com-

putes 5-bin Histogram of Optical Flow (HOOF) features [6]

for each cell. We stack these 9 histograms to give a 45-d

histogram per frame, and then average the histograms over

a 10-frame temporal window to give a final 45-d feature

vector. We then learn a linear regressor relating the cor-

responding first-person and third-person HOOFs. Odom-

etry to HOOF estimates camera trajectories through visual

odometry for each first-person video. We use LibVISO2 [9]

to estimate a 13-d pose and velocity vector encoding 3-d

position, 4-d orientation as a quaternion, and angular and

linear velocity in each axis for each first-person frame, and

then learn a regressor to predict the HOOF features in the

third-person video. Velocity to flow magnitude learns a re-

gressor between just the 3-d XYZ velocity vector computed

by LibVISO2 for the third-person frame and the mean flow

magnitude in the first-person frame.

In addition to the above basic baselines, we tested two

types of stronger baselines: (1) directly comparing stan-

dard video CNN features (two-stream [25] and C3D [27])

from first- and third-person videos, and (2) learning an em-

bedding space with traditional HOOF (or motion magni-

tude). In particular, the latter baselines have exactly the

same loss function as ours by using fully connected lay-

ers. Finally, we implemented Poleg et al.’s head motion

signatures [19], which track bounding boxes of people in

third-person frames and correlates them with average XY

optical flows in first-person frames.

1http://vision.soic.indiana.edu/identifying-1st-3rd
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Figure 3. Precision-recall curves for baselines and variants of our proposed approach.

4.4. Results

Figure 3 presents precision-recall curves for variants of

our technique and the baselines, and Table 1 summarizes

in terms of Average Precision (AP). The figure views our

task in terms of retrieval, which is our first measure: for

each frame, we generate the set of all possible candidate

pairings consisting of a person in the third-person view and

one of the first-person views, and ask the system to return

the correct matches (potentially none). The figure shows

that for all feature types, our proposed semi-Siamese archi-

tecture outperforms Siamese networks, suggesting that first-

and third-person perspectives are different enough that early

layers of the CNNs should be allowed to create specialized

low-level features. Switching to the triplet loss yields a

further performance boost compared to the traditional con-

trastive loss; for the two-stream network, for example, it

increases from an average precision of 0.585 to 0.621.

Across the different feature types, we find that the

spatial-domain networks perform significantly better than

the temporal (motion)-domain network (e.g., average preci-

sions of 0.549 vs 0.456 for triplet semi-Siamese). The tem-

poral networks still significantly outperform a random base-

line (about 0.452 vs 0.354), indicating that motion features

contain useful information for matching between views.

The two-stream network that incorporates both types of fea-

tures yields a further significant improvement (0.621).

Table 1 clearly indicates that our approach of learn-

ing the shared embedding space for first- and third-person

videos significantly outperforms the baselines. Unlike pre-

vious work relying on classic hand-crafted features like

head trajectories (e.g., [19]), our method learns the opti-

mal embedding representation from training data in an end-

to-end fashion, yielding a major increase in accuracy. We

also compared our Siamese and semi-Siamese architectures

against the model of not sharing any layers between first-

person and third-person branches (Not-Siamese in Table 1),

showing that semi-Siamese yields better accuracy.

Multi-class classification: Table 1 also presents accura-

cies under our second evaluation metric, which views the

problem as multi-way classification (with the goal to as-

sign a given first-person video to the correct person in the

third-person scene; e.g., if there are four people in the third-

person video, the goal is to choose the one corresponding to

the first-person video). We see the same pattern as with av-

erage precision: semi-Siamese works better than Siamese,

triplet loss outperforms contrastive, the two-stream net-

works outperform the single-feature networks, and all of the

baselines underperform. Our proposed two-stream semi-

Siamese network trained with a triplet loss yields the best

accuracy, at about 69.3% correct classification.

Multiple wearable cameras: Although we have focused

on static third-person cameras, our approach is applicable to

any setting where there are at least two cameras, one from

an actor’s viewpoint and another observing the actor (in-

cluding multiple wearable cameras). To test this, we also

tested a scenario in which video from one wearable camera

is treated as first-person while video from the other (wear-

able) camera is treated as third-person. These videos sel-

dom have any spatial overlap in their views, and we made

our approaches and the baselines to rely only on temporal

information for the matching. Table 2 illustrates the results,

showing that our approach outperforms baselines.
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Network setting Evaluation

Type Method Binary AP Multi Accuracy

Baselines

Flow magnitude to magnitude 0.285 0.250

HOOF to HOOF 0.316 0.336

Odometry to HOOF 0.302 0.493

Velocity to flow magnitude 0.279 0.216

HOOF embedding 0.354 0.388

Magnitude embedding 0.276 0.216

Head Motion Signature [19] 0.300 0.290

Original Two-stream [25] 0.350 0.460

C3D [27] 0.334 0.505

Spatial

Siamese 0.481 0.536

Semi-Siamese 0.528 0.585

Triplet 0.549 0.588

Temporal

Siamese 0.337 0.372

Semi-Siamese 0.389 0.445

Triplet 0.452 0.490

Two-Stream

Siamese 0.453 0.491

Not-Siamese 0.476 0.554

Semi-Siamese 0.585 0.639

Triplet 0.621 0.693

Table 1. Evaluation in terms of average precision and multi-way

classification for baselines and variants of our approach.

Network setting Evaluation

Type Method Binary AP Multi Accuracy

Baselines

Flow magnitude to magnitude 0.389 0.442
HOOF to HOOF 0.382 0.365
Odometry to HOOF 0.181 0.077
Velocity to flow magnitude 0.310 0.327
HOOF embedding 0.405 0.365
Magnitude embedding 0.406 0.442
Head Motion Signature [19] 0.359 0.462
C3D [27] 0.380 0.327
Two-stream [25] (temporal part) 0.336 0.365

Ours
Temporal Semi-Siamese 0.412 0.500

Temporal Triplet 0.386 0.500

Table 2. Results for multiple wearable camera experiments.

4.5. Discussion

Generality: Our approach is designed not to rely on

long-term tracking and is thus suitable for crowded scenes.

Our matching is applicable as long as we have a short track-

let of the corresponding person detected in the third-person

video (e.g., only 1 frame in our spatial network), to check

whether the match score is above the threshold.

Failure cases: We observed two typical failure cases.

The first arises when the actual first-person camera wearer

happens to have very similar motion to another person in

the third-person video. Figure 4(a) shows such a situation.

Our analysis of optical flows of the people suggests that the

person in blue was in the process of sitting down, while

the camera wearer in orange was nodding his head, creating

confusingly similar flow fields (strong magnitudes in the

vertical direction). Another common failure occurs when

the camera wearer is heavily occluded by another person in

the third-person video, such as in Figure 4(b).

1st person 
 frame

3rd person 
 frame

3rd person 
 frame

1st person 
 frame

(a) Motion failure case (b) Spatial failure case

Figure 4. Sample failures, with the person whose camera took the

bottom frame in orange and our incorrect estimate in blue.

Gaze: In addition to our approach of presenting the

spatial-domain network with person regions masked out, we

also tried explicitly estimating gaze of people appearing in

third-person videos. The idea was to encourage the spatial

network to focus on the region a person is looking at, and

then match it with first-person videos. We tried Recasens

et al. [21] for gaze estimation, but this provided noisy esti-

mates which harmed the matching ability of our network.

5. Conclusion

We presented a new Convolutional Neural Network

framework to learn distance metrics between first- and

third-person videos. We found that a combination of three

innovations achieved the best results: (1) a semi-Siamese

structure, which takes into account different features of

first- and third-person videos (as opposed to full Siamese),

(2) a two-stream CNN structure which combines spatial

and motion cues (as opposed to a single stream), and (3)

a triplet loss which explicitly enlarges the margin between

first- and third-person videos (as opposed to Siamese con-

trastive loss). We hope this paper inspires more work in

this important problem of finding correspondences between

multiple first- and third-person cameras.
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