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Abstract

We consider scenarios in which we wish to perform joint

scene understanding, object tracking, activity recognition,

and other tasks in environments in which multiple people

are wearing body-worn cameras while a third-person static

camera also captures the scene. To do this, we need to es-

tablish person-level correspondences across first- and third-

person videos, which is challenging because the camera

wearer is not visible from his/her own egocentric video,

preventing the use of direct feature matching. In this pa-

per, we propose a new semi-Siamese Convolutional Neu-

ral Network architecture to address this novel challenge.

We formulate the problem as learning a joint embedding

space for first- and third-person videos that considers both

spatial- and motion-domain cues. A new triplet loss func-

tion is designed to minimize the distance between correct

first- and third-person matches while maximizing the dis-

tance between incorrect ones. This end-to-end approach

performs significantly better than several baselines, in part

by learning the first- and third-person features optimized for

matching jointly with the distance measure itself.

1. Introduction

Wearable cameras are becoming mainstream: GoPro

and other first-person cameras are used by consumers to

record extreme sports and other activities, for example,

while body-worn cameras are now standard equipment for

many police and military personnel [8]. These cameras cap-

ture unique perspectives that complement video data from

traditional third-person cameras. For instance, in a com-

plex and highly dynamic environment like a busy city street

or a battlefield, third-person cameras give a global view of

the high-level appearance and events in a scene, while first-

person cameras capture ground-level evidence about objects

and people at a much finer level of granularity. The com-

bination of video from these highly complementary views

could be used to perform a variety of vision tasks – scene
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Figure 1. One or more people wear first-person cameras in a scene

that is also recorded by a third-person camera. We wish to identify

which person in the third-person view (left) was wearing the cam-

era that captured a first-person video (right). This is challenging

because the camera fields of view are very different and the camera

wearer almost never appears in their own first-person view.

understanding, object tracking, activity recognition, etc. –

with greater fidelity and detail than either could alone.

In these scenarios, multiple people may be in a scene

at any given time, with people regularly entering and exit-

ing the view of the third-person camera. Some subset of

these people may be wearing first-person cameras, each of

which is also capturing part of the scene but from a highly

dynamic point of view that changes as the wearer moves.

Thus at any moment in time, some (possibly empty) sub-

set of people appear in any given camera’s view, and each

person appears in some (possibly empty) subset of the first-

and third-person cameras (and that person themselves may

be wearing one of the first-person cameras). Compared to

static cameras, first-person video data is significantly more

challenging because of camera motion, poor scene compo-

sition, challenging illumination, etc.

Jointly solving computer vision problems across multi-

ple first- and third-person cameras requires the crucial first

step of establishing correspondences between the people

and the cameras, including (1) identifying the same person
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appearing in different views, as well as (2) matching a cam-

era wearer in one view with their corresponding first-person

video. The former problem is similar to person identifi-

cation and re-identification problems that have been stud-

ied for third-person cameras [10]. These approaches typi-

cally rely on matching visual and motion features of a per-

son across different views; the first-person camera version

is similar in principle but significantly more difficult due

to the difference in perspectives and characteristics of first-

and third-person video.

The second problem is even more challenging, since a

person’s appearance in one video may share few (if any)

visual features with his or her first-person visual field of

the same scene. For instance, a surveillance camera might

capture a camera wearer walking down the street, includ-

ing her physical appearance, the cars parked on the street

beside her, and the friends walking next to her, while her

front-facing first-person camera may capture none of these

because its field of view is down the street. Finding cor-

respondences thus cannot rely on direct appearance fea-

ture matching. Instead, we must rely on indirect sources

of evidence for finding correspondences: (i) matching first-

person videos against an estimate of what a person’s field

of view would look like based on the third-person view

of the scene; (ii) matching estimates of a person’s body

movements based on the camera motion of their first-person

video to the movements observed by the third-person static

camera; and (iii) matching the (rare) moments when part of

a camera wearer’s body or actions are directly visible in the

scene (e.g. when reaching for an object and both first- and

third-person cameras see the hand). See Figure 1.

Despite its importance, we are aware of very little work

that tries to address this problem. Several recent papers

propose using multiple cameras for joint first-person recog-

nition [3, 5, 26, 29], but make simplistic assumptions like

that only one person appears in the scene. Using visual

SLAM to infer first-person camera trajectory and map to

third-person cameras (e.g., [17, 19]) works well in some

settings, but can fail for crowded environments when long-

term precise localizations are needed and when first-person

video has significant motion blur. Ardeshir and Borji [2]

match a set of egocentric videos to people appearing in a

top-view video using graph matching, but assume that there

are multiple first-person cameras sharing the same field of

view at any given time, and only consider purely overhead

third-person cameras (not oblique or ground-level views).

We require a more general approach that matches each in-

dividual first-person video with the corresponding person

appearing in an arbitrarily-positioned third-person camera.

In this paper, we present a new semi-Siamese Convolu-

tional Neural Network (CNN) framework to learn the dis-

tance metric between first- and third-person videos. The

idea is to learn a joint embedding space between first-

and third-person perspectives, enabling us to compute the

similarity between any given first-person video and an in-

dividual human appearing in a third-person video. Our

new semi-Siamese design allows for learning low-level fea-

tures specialized for first-person videos and for third-person

videos separately, while sharing higher-level representa-

tions and an embedding space to permit a distance mea-

sure. Evidence from both scene appearance and motion in-

formation is jointly considered in a novel two-stream semi-

Siamese CNN. Finally, we introduce a new “triplet” loss

function for our semi-Siamese network, and confirm its ad-

vantages in our experiments on a realistic dataset.

2. Related work

While many of the core problems and challenges of

recognition in first-person (egocentric) videos are shared

with traditional third-person tasks, first-person video tends

to be much more challenging, with highly dynamic cam-

era motion and difficult imaging conditions. Research has

focused on extracting features customized for first-person

video, including hand [14], gaze [16], and ego-motion

cues [20]. Other work has studied object-based under-

standing for activity recognition [18], video summariza-

tion [15, 30], and recognition of ego-actions [13] and in-

teractions [22], but in single first-person videos.

Several recent papers have shown the potential for com-

bining first-person video analysis with evidence from other

types of synchronized video, including from other first-

person cameras [3, 29], multiple third-person cameras [26],

or even hand-mounted cameras [5]. However, these papers

assume that a single person appears in each video, avoid-

ing the person-level correspondence problem. Our work is

complementary, and could help generalize these approaches

to scenarios in which multiple people appear in a scene.

A conventional approach to our person correspondence

problem might use visual odometry and other camera local-

ization techniques [7, 23] to estimate the 3-d trajectory of

the wearable camera, which could then be projected onto

the static camera’s coordinate system to identify the cam-

era wearer [17]. However, this is problematic in crowded or

indoor environments where accurate localization is difficult

and people are standing close together. Precise online visual

localization in indoor environments with few landmarks is

itself challenging, and not applicable when cameras are not

calibrated or move too quickly and cause motion blur.

Perhaps the work most related to ours is that of Ardeshir

and Borji [2], which matches a set of egocentric videos to

a set of individuals in a top-view video using graph-based

analysis. This technique works well but makes two sig-

nificant assumptions that limit its real-world applicability.

First, it requires the static camera to have a strictly top-down

(directly overhead) view, which is relatively uncommon in

the real world (e.g. wall-mounted surveillance cameras cap-
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ture oblique views). Second, it assumes that multiple ego-

centric videos sharing the same field-of-view are available.

This assumption is strong even if there are multiple people

wearing cameras: the cameras may not share any field of

view due to relative pose or occlusions, and even if multi-

ple first-person videos with overlapping fields of view are

recorded, some users may choose not to share them due

to privacy concerns, for example. In contrast, we consider

the more challenging problem of matching each of multiple

first-person cameras having arbitrary fields of view with a

static, arbitrarily-mounted third-person camera.

We believe this is the first paper to formulate first- and

third-person video correspondence as an embedding space

learning problem and to present an end-to-end learning ap-

proach. Unlike previous work [19, 28] which uses hand-

coded trajectory features to match videos without any em-

bedding learning, our method is applicable in more complex

environments (e.g. with arbitrarily placed first- and third-

person cameras and arbitrary numbers of people).

3. Our approach

Given one or more first-person videos, our goal is to

decide if each of the people appearing in a third-person

video is the wearer of one of the first-person cameras. The

key idea is that despite having very different characteris-

tics, synchronized first- and third-person videos are differ-

ent perspectives on the same general environment, and thus

capture some of the same people, objects, and background

(albeit from two very different perspectives). This overlap

may allow us to find similarities in spatial-domain (visual)

features, while hopefully ignoring differences due to per-

spective. Meanwhile, corresponding first- and third-person

videos are also two reflections of the same person perform-

ing the same activity, which may allow us to find motion-

domain feature correspondences between video types.

We formulate this problem in terms of learning embed-

ding spaces shared by first- and third-person videos. Ide-

ally, these embeddings minimize the distance between the

first-person video features observed by a camera wearer

and the visual features of the same person observed by a

static third-person camera at the same moment, while max-

imizing the distances between incorrect matches. We pro-

pose a new semi-Siamese network architecture, detailed in

the next section, to learn this embedding space. To han-

dle the two modalities (motion and spatial-domain), we de-

sign a new two-stream Siamese CNN architecture where

one stream captures temporal information using optical flow

(i.e., motion) and the other captures spatial information (i.e.,

surrounding scene appearance), which we detail in Sec-

tion 3.1.3. We also consider two loss functions: a traditional

contrastive loss that considers pairs of samples, and a new

triplet loss that takes advantage of the fact that both positive

and negative first-to-third-person pairings exist in the same

scene. We describe these losses in Section 3.2.

3.1. Semi­siamese networks

Our approach is based on Siamese networks with con-

trastive loss functions, which enable end-to-end learning

of both low-level visual features and an embedding space

(jointly optimizing them based on training data). The orig-

inal Siamese formulation [11] interprets the network as

a function f(I; θ) that maps each input video I into an

embedded point using parameters θ, which are typically

trained based on contrastive loss between embedding of the

positive and negative examples [4, 24]. If we applied this

approach to our problem, I would be either the first-person

or third-person video, such that the network (i.e., function f

and parameters θ) would be shared by both types of videos.

However, first- and third-person videos are very differ-

ent, even when recording the same event by the same per-

son in the same location. We hypothesize that although the

higher-level representations that capture object- and action-

level information in first- and third-person videos might be

shared, the optimal low-level features (i.e., early convolu-

tional filters) may not be identical.

We thus propose a semi-Siamese architecture to learn the

first- to third-person distance metric. We find separate pa-

rameters for first- and third-person videos, which we call θ1
and θ2, respectively, while forcing them to share a subset

of parameters θ. Given a set E of egocentric cameras and

a set P of detected people in a third-person camera view,

we can easily estimate the person corresponding to a given

egocentric camera e ∈ E using this embedding space,

p∗e = argmin
p∈P

||f(Ie; θ1, θ)− f(Ip; θ2, θ)||. (1)

We now propose specific network architectures, first

considering the two feature modalities (spatial-domain and

motion-domain) independently, and then showing how to

combine them into integrated two-stream networks.

3.1.1 Spatial-domain network

To learn the spatial-domain correspondences between first-

and third-person cameras, our network receives a single

frame of first-person video and the corresponding frame of

third-person video (Figure 2(a)). For the third-person video,

we force the network to consider one specific person by

masking him or her out from the rest of the frame, replac-

ing their bounding box with black pixels. This is impor-

tant because a camera wearer does not appear in their own

first-person video (with the occasional exception of arms or

hands). We thus encourage the network to learn a relation-

ship between a first- and third-person video frame, with that

person removed from the third-person scene.

As shown in Figure 2(a), each of the first- and third-

person branches maintains its own four early convolution

5127



sh
ar

e

Contrastive loss

Siamese structure 
1st person 

 frame

3rd person 
 frame with mask

sh
ar

e

1st person 
 optical flows

3rd person cropped 
optical flows

Siamese structure 

Contrastive loss

(a) Spatial-domain semi-Siamese network (b) Motion-domain semi-Siamese network

conv5 
3x3x256 

conv6 
3x3x256 

Shared-Spatial layers

Shared-Temporal layers

Spatial layers

conv1 
7x7x96 

conv2 
5x5x256 

conv3 
3x3x512 

conv4 
3x3x512 

Temporal layers

FC layers

fc8 
500

fc9 
64

Contrastive 
loss

Siamese 
structure 

sh
ar

e
sh

ar
e

1st person 
 frame

1st person 
 optical flows

3rd person 
masked frame

3rd person 
optical flows

fc7 
1000

FC layers

fc8 
500

fc9 
64

conv1 
7x7x96 

conv2 
5x5x256 

conv3 
3x3x512 

conv4 
3x3x512 

conv5 
3x3x256 

conv6 
3x3x256 

fc7 
1000

sh
ar

e
sh

ar
e

1st person 
 frame

1st person 
 optical flows

3rd person  
masked

3rd person  

sh
ar

e
sh

ar
e Embedding Space

x3
p

d1

x1

x3
n

d2

3rd person  
masked

3rd person  
 optical flow

sh
ar

e
sh

ar
e
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Figure 2. Overview of our networks. All networks receive features from time-synchronized first- and third-person video frames, which

during training consist of correct correspondences as positive examples and incorrect correspondences as negative examples. (a) Spatial-

domain network is a semi-Siamese network with separate early convolutional layers (gray) and shared later layers (green). Corresponding

input pairs consist of a first-person video frame and third-person frame with the corresponding person (camera wearer) masked out, since

he or she is not visible in his or her own first-person camera. (b) Motion-domain network is also semi-Siamese with a similar structure,

except that it inputs stacked optical flow fields instead of images frames, and the third-person flow field consists of a crop of a single person.

(c) Two-stream semi-Siamese network combines both networks with a fully-connected layer that produces the final feature vector. (d)

Two-stream semi-Siamese network trained with triplet loss receives three inputs during training: a first-person frame, the corresponding

third-person frame with the correct person masked out, and the same third-person frame with a random incorrect person masked out.

layers while sharing the last two convolution layers and

fully connected layers. The intuition here is that while we

need to capture the same high-level semantic information

from each video, the low-level features corresponding to

those semantics may differ significantly. The last fully-

connected layer abstracts spatial-domain information from

the two perspectives as two D-dimensional feature vectors.

To train the network, we present known true and false cor-

respondences, and use a contrastive loss function that mini-

mizes sum-of-squares between feature vectors of true pairs

and a hinge loss that examines if the distance is greater than

a margin for negative pairs (detailed below).

3.1.2 Motion-domain network

Figure 2(b) shows the motion-domain network, which

learns correspondences between motion in a first-person

video induced by the camera wearer’s movements and their

directly visible movements in a third-person video. The

idea is that (1) body movements of the camera wearer (e.g.,

walking) will be reflected in both first- and third-person

videos and that (2) hand motion may also be captured in

both cameras during gestures or actions (e.g., drinking cof-

fee). We first compute optical flow for each video, and then

stack the flow fields for sets of five consecutive frames as

input to the network. The first-person input is the entire op-
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