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Abstract

We present a new Cascaded Shape Regression (CSR)

architecture, namely Dynamic Attention-Controlled CSR

(DAC-CSR), for robust facial landmark detection on uncon-

strained faces. Our DAC-CSR divides facial landmark de-

tection into three cascaded sub-tasks: face bounding box

refinement, general CSR and attention-controlled CSR. The

first two stages refine initial face bounding boxes and out-

put intermediate facial landmarks. Then, an online dy-

namic model selection method is used to choose appropri-

ate domain-specific CSRs for further landmark refinement.

The key innovation of our DAC-CSR is the fault-tolerant

mechanism, using fuzzy set sample weighting, for attention-

controlled domain-specific model training. Moreover, we

advocate data augmentation with a simple but effective 2D

profile face generator, and context-aware feature extraction

for better facial feature representation. Experimental re-

sults obtained on challenging datasets demonstrate the mer-

its of our DAC-CSR over the state-of-the-art methods.

1. Introduction

Facial Landmark Detection (FLD), also known as face

alignment, is a prerequisite for many automatic face anal-

ysis systems, e.g. face recognition [3, 33, 34], expression

analysis [13, 14] and 2D-3D inverse rendering [1, 20, 21,

23, 28, 48]. Facial landmarks provide accurate shape infor-

mation with semantic meaning, enabling geometric image

normalisation and feature extraction for use in the remain-

ing stages of a face processing pipeline. This is crucial for

high-fidelity face image analysis. As the technology of FLD

for constrained faces has already been well developed, the

current trend is to address FLD for unconstrained faces in

the presence of extreme variations in pose, expression, illu-

mination and partial occlusion [2, 4, 24, 25, 30].

More recently, unconstrained FLD has seen huge

progress owing to the state-of-the-art Cascaded Shape Re-
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Figure 1. The pipeline of our proposed DAC-CSR.

gression (CSR) architecture [6, 12, 15, 29, 46]. The key to

the success of CSR is to construct a strong regressor from a

set of weak regressors arranged in a cascade. This architec-

ture greatly improves the performance of FLD in terms of

generalisation capacity and accuracy. However, in the light

of very recent studies [35, 39, 42, 46, 47], the capacity of

CSR appears to be saturating, especially for unconstrained

faces with extreme appearance variations. For example, the

FLD error of state-of-the-art CSR-based methods increases

from around 3% (error in percent of the inter-ocular dis-

tance) on the Labelled Face Parts in the Wild (LFPW) [2]

dataset to 6.5% on the more challenging Caltech Occluded

Faces in the Wild (COFW) [4] dataset. This degradation

has three main reasons: 1) The modelling capacity of the

existing CSR architecture is limited. 2) CSR is sensitive to

the positioning of face bounding boxes used for landmark

initialisation. 3) The volume of available training data is

insufficient. Can these limitations be overcome, especially

for unconstrained faces exhibiting extreme appearance vari-

ations? We offer an encouraging answer by presenting a

new Dynamic Attention-Controlled CSR (DAC-CSR) ar-

chitecture with a dynamic domain selection mechanism and

a novel training strategy which benefits from training data

augmentation and fuzzy set training sample weighting.

Fig. 1 depicts a simplified overview of the proposed

DAC-CSR architecture. Its innovation is in linking three

types of regressor cascades performing in succession: 1)

face bounding box refinement for better landmark initialisa-

tion, 2) an initial landmark update using a general CSR, and
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3) a final landmark refinement by dynamically selecting an

attention-controlled domain-specific CSR that is optimised

to improve landmark location estimates. The new architec-

ture decomposes the task at hand into three cascaded sub-

tasks that are easier to handle.

In contrast to previous multi-view models, e.g. [39, 46],

the key innovation of our DAC-CSR is its in-built fault-

tolerant mechanism. The fault tolerance is achieved by

means of an innovative training strategy for attention-

controlled model training of the set of domain-specific

CSRs performing the final shape update refinement. Rather

than using samples from just a single domain, each domain-

specific regressor cascade is trained using all the train-

ing samples. However, their influence is controlled by a

domain-specific fuzzy membership function which weighs

samples from the relevant domain more heavily than all the

other training samples. An annealing schedule of domain-

specific fuzzy membership functions progressively sharp-

ens the relative weighting of in-domain and out-of-domain

training samples in favour of the in-domain set for succes-

sive stages of each domain-specific cascade.

Each test sample progresses through the system of cas-

cades. Prior to each of the domain-specific cascade stages,

the domain of attention is selected dynamically based on

the current shape estimate. The proposed training strat-

egy guarantees that each domain-specific cascaded regres-

sor can cope with out-of-domain test samples and is en-

dowed with the capacity to update the shape in the correct

direction even if the current domain has been selected sub-

ject to labelling error. This is the essence of error tolerance

of the proposed system.

An important contributing factor to the promising perfor-

mance of our DAC-CSR is training data augmentation. Our

innovation here is to use a 2D face model for synthesising

extreme profile face poses (out of plane rotation) with real-

istic background. Furthermore, we propose a novel context-

aware feature extraction method to extract rich local facial

features in the context of global face description.

The proposed framework has been evaluated on bench-

marking databases using standard protocols. The results

achieved on the database containing images with extreme

poses (AFLW [24]) are significantly better than the state-

of-the-art performance reported in the literature.

The paper is organised as follows. In the next section

we present a brief review of related literature. The prelim-

inaries of CSR are presented in Section 3. The proposed

DAC-CSR is introduced in Section 4.1. The discussion of

its training is confined to Section 4.2, which defines the

domain-specific fuzzy membership functions and their an-

nealing schedule. On-line dynamic domain selection is the

subject of Section 4.3 and the proposed feature extraction

scheme can be found in Section 4.4. Section 5 addresses

the problem of training set augmentation. The experimental

evaluation carried out and the results achieved are described

in Section 6. The paper is drawn to conclusion in Section 7.

2. Related Work

Facial landmark detection can trace its history to the

nineteen nineties. The representative FLD methods mak-

ing the early milestones include Active Shape Model

(ASM) [8], Active Appearance Model (AAM) [7] and

Constrained Local Model (CLM) [10]. These algorithms

and their extensions have achieved excellent FLD results

in constrained scenarios [17]. As a result, the current

trend is to develop a more robust FLD for unconstrained

faces that are rich in appearance variations. The lead-

ing algorithms for unconstrained FLD are CSR-based ap-

proaches [6, 12, 15, 29, 46]. In contrast to the classical

methods such as ASM, AAM and CLM that rely on a gen-

erative PCA-based shape model, CSR directly positions fa-

cial landmarks on their optimal locations based on image

features. The shape update is achieved in a discriminative

way by constructing a mapping function from robust shape-

related local features to shape updates. The secret of the

success of CSR is the architecture that cascades a set of

weak regressors in series to form a strong regressor.

There have been a number of improvements to the per-

formance of CSR-based FLD. One category of these im-

provements is to enhance some components of the exist-

ing CSR architecture. For example, the use of more ro-

bust shape-related local features, e.g. Scale-Invariant Fea-

ture Transform (SIFT) [38, 42, 43], Histogram of Ori-

ented Gradients (HOG) [11, 15, 21, 40], Sparse Auto-

Encoder (SAE) [16], Local Binary Features (LBF) [6, 29]

and Convolutional Neural Networks (CNN-) based fea-

tures [35, 37], has been suggested. Another example is

to use more powerful regression methods as weak regres-

sors in CSR, such as random forests [6, 29] and deep neural

networks [32, 35, 37, 42, 43, 44]. Lately, 3D face models

have been shown to positively impact FLD in challenging

benchmarking datasets, especially in relation to faces with

extreme poses [15, 26, 47].

Multi-view models: Another important approach is to

adopt advanced CSR architectures, such as the use of mul-

tiple CSR models or constructing multi-view models. Feng

et al. [16] constructed multiple CSR models by randomly

selecting subsets from the original training set and fusing

multiple outputs to produce the final FLD result. A similar

idea has also been used in [41]. As an alternative, a multi-

view FLD system employs a set of view-specific models

that are able to achieve more accurate landmark detection

for faces exhibiting specific views [9, 36, 46].

However, the use of multiple models or multi-view mod-

els is not without difficulties. One has to either estimate the

view of a test image to select an appropriate model, or apply

all view-specific models to a test image and then choose the
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best result as the final output. For the former, implement-

ing a model selection stage for unconstrained faces is hard

in practice. An erroneously selected view-specific model

may result in FLD failure. For the latter strategy, it is time-

consuming to apply all the trained models to a test image.

Also, the ranking of the outputs of different view-based

models is non-trivial. In contrast to previous studies, our

DAC-CSR addresses these issues by improving the fault-

tolerance properties of a trained domain-specific model and

by using an online dynamic model selection strategy.

Data augmentation: For a learning-based approach

such as CSR, the availability of a large volume of train-

ing samples is essential. However, it is a tedious task to

manually annotate facial landmarks for a large quantity of

training data. To address this problem, data augmentation

is widely used in CSR-based FLD. Traditional methods in-

clude random perturbation of initial landmarks, image flip-

ping, image rotation, image blurring and adding noise to the

original face images. However, none of these methods are

able to inject new out-of-plane rotated faces to an existing

training dataset. Recently, to augment a training set by sam-

ples with rich pose variations, the use of 3D face models has

been suggested. For instance, Feng et al. [15, 23, 31] used

a 3D morphable face model to synthesise a large number

of 2D faces. However, the synthesised virtual faces lack

realistic appearance variations especially in terms of back-

ground and expression changes. To mitigate this problem,

they advocated a cascaded collaborative regression strategy

to train a CSR from a mixture of real and synthesised faces.

To generate realistic face images with pose variations, Zhu

et al. fit a 3D shape model to 2D face images and generate

profile face views from the reconstructed 3D shape infor-

mation [47]. However, these 3D-based methods [15, 23, 47]

require 3D face scans for model construction, which are ex-

pensive to capture. Also, it is difficult in practice to fit a 3D

face model to 2D images. In this paper, we propose a sim-

ple but efficient 2D-based method to generate virtual faces

with out-of-plane pose variations.

3. Cascaded Shape Regression (CSR)

Given an input face image I and the corresponding face

bounding box b = [x1, y1, x2, y2]
T (coordinates of the up-

per left and lower right corners) of a detected face in the

image, the goal of FLD is to output the face shape in the

form of a vector, s = [x1, y1, ..., xL, yL]
T , consisting of

the coordinates of L pre-defined facial landmarks with se-

mantic meaning such as eye centres and nose tip. To this

end, we first initialise the face shape, s
′, by putting the

mean shape into the bounding box. Then a trained CSR

Φ = {φ(1), φ(2), ..., φ(N)} is used to update the initial

shape estimate, where Φ is a strong regressor consisting

of N weak regressors. A weak regressor can be obtained

using any regression method, such as linear regression, ran-

dom forests and neural networks. In this paper, we use ridge

regression as a weak regressor, i.e. φ = {A, e}:

φ : δs = A · f(I, s′) + e, (1)

where A ∈ R
2L×Nf is a projection matrix, Nf is the di-

mensionality of a shape-related feature vector extracted us-

ing f(I, s′), and e ∈ R
2L is an offset. For the shape-related

feature extraction, we apply local descriptors, e.g. HOG, to

the neighbourhoods of all the facial landmarks of the cur-

rent shape estimate and concatenate the extracted features

into a long vector. The use of a weak regressor results in an

update to the current shape estimate:

s
′ ← s

′ + δs. (2)

A trained CSR applies all the weak regressors in cascade to

progressively update the shape estimate and obtain the final

FLD result from an input image.

Given a training dataset T = {Ii,bi, s
∗

i }
I
i=1 with I sam-

ples including face images, face bounding boxes and manu-

ally annotated facial landmarks, we first obtain the initial

shape estimates, {s′i}
I
i=1, of all the training samples us-

ing the face bounding boxes provided. Then the shape up-

date between the current shape estimate and ground-truth

shape of the ith training sample can be calculated using

δs∗i = s
∗

i − s
′

i. The first weak regressor is obtained using

ridge regression by minimising the loss:

argmin
A,e

I
∑

i=1

||A · f(Ii, s
′

i) + e− δs∗i ||
2
2 + λ||A||2F , (3)

where λ is the weight of the regularisation term. This is a

typical least-square estimation problem with a closed-form

solution [16, 38]. Last, this trained weak regressor is used

to update the current shape estimates of all the training sam-

ples, which forms the training data for the second weak re-

gressor. This procedure is repeated until all the N weak

regressors are obtained.

4. Dynamic Attention-controlled CSR

4.1. Architecture

The architecture of the proposed DAC-CSR method has

three cascaded stages: face bounding box refinement, gen-

eral CSR and domain-specific CSR, as shown in Fig. 2. In

fact, our DAC-CSR can be portrayed as a strong regres-

sor Φ = {φb,Φg,Φd}, where φb is a weak regressor for

face bounding box refinement, Φg = {φg(1), ..., φg(Ng)}
is a classical CSR with Ng weak regressors, Φd =
{Φd(1), ...,Φd(M)} is a strong regressor with M domain-

specific CSRs and each of them has Nd weak regressors

Φd(m) = {φd(m, 1), ..., φd(m,Nd)}.
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Figure 2. The proposed DAC-CSR has three stages in cascade: face bounding box refinement, general CSR and domain-specific CSR.

Face bounding box refinement: We define the weak

regressor for the first step as φb = {Ab, eb}:

φb : δb = Ab · fb(I,b) + eb, (4)

where fb(I,b) extracts dense local features from the image

region inside the original face bounding box and δb is used

to adjust the original bounding box.

The training of this weak regressor is the same as the

procedure introduced in Section 3 for classical CSR. The

only difference here is that we use face bounding box differ-

ences instead of shape differences for the regressor learning

in Eq. (3). The ground-truth face bounding box for a train-

ing sample is computed by taking the minimum enclosing

rectangle around the ground-truth face shape.

General CSR: The initial shape estimate, s′, for gen-

eral CSR is obtained by translating and scaling the mean

shape so that it exactly fits into the refined bounding box,

touching all four sides. Then the general CSR progressively

updates the initial shape estimate, s′ ← s
′ + δs , using all

the weak regressors in Φg = {φg(1), ..., φg(Ng)}, as indi-

cated in Algorithm 1. The nth weak regressor is defined as

φg(n) = {Ag(n), eg(n)}:

φg(n) : δs = Ag(n) · fc(I, s
′) + eg(n), (5)

where fc(I, s
′) is a context-aware feature extraction func-

tion that combines both dense face description and shape-

related sparse local features. The training of this stage is

the same as the classical CSR introduced in Section 3.

Domain-specific CSR: Suppose this stage has M
domain-specific CSRs corresponding to M sub-domains,

each having Nd weak regressors. The nth weak regressor

of the mth domain-specific CSR is defined as:

φd(m,n) : δs = Ad(m,n) · fc(I, s
′) + ed(m,n), (6)

where m = 1, ...,M , N = 1, ..., Nd. Given the current

shape estimate s′ output by the previous general CSR, a do-

main predictor is used to select a domain-specific CSR for

input : image I, face bounding box b and a trained

DAC-CSR model Φ = {φb,Φg,Φd}
output: facial landmarks s′

1 refine the face bounding box b using φb ;

2 estimate the current face shape, s′, using the refined

face bounding box ;

3 for n← 1 to Ng do

4 apply the nth general weak regressor φg(n) to

update the current shape estimate;

5 end

6 for n← 1 to Nd do

7 predict the label (m) of the sub-domain of the

current shape estimate using Eq. (11) ;

8 apply the nth weak regressor φd(m,n) in the mth

domain-specific CSR to update the current shape;

9 end

Algorithm 1: FLD using our DAC-CSR.

the current shape update (Section 4.3). It should be noted

that we use a dynamic domain selection strategy, which up-

dates the label for the domain-specific model selection after

each shape update, as shown in Algorithm 1. As a result

of the proposed domain-specific CSR training described in

Section 4.2, this mechanism makes our DAC-CSR tolerant

to domain prediction errors.

4.2. Offline Domain­specific CSR Training

Given a training dataset T with I samples, as introduced

in Section 3, the first two stages, i.e. face bounding box

refinement and general CSR, are trained directly using T .

To train a domain-specific CSR, we first create M subsets

{T1, ..., TM} from the original training set, where Tm ⊆ T .

To this end, we normalise all the current shape estimates,

output by the previous general CSR, to the interval [0, 1].
Then PCA is used to obtain the first K shape eigenvec-

tors. All the current shape estimates are projected to the
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Figure 3. The proposed domain split strategy (K = 2, ck = 0).

K-dimensional subspace to obtain the projected coefficients

{ci}
I
i=1, where ci = [ci,1, ..., ci,K ]T . Then the original

domain is partitioned into M = 2K + 1 overlapping sub-

domains, as demonstrated in Fig. 3 for K = 2. For the

M th sub-domain, it includes the training samples satisfy-

ing
∑K

k=1
(ci,k−ck)

2

(σ(k))2 ≤ 1, where ck and σ(k) are the mean

and standard deviation of the kth element of the coefficient

vectors. For other sub-domains, each includes the training

samples in a specific region of a K-dimensional coordinate

system. To be more specific, for each coefficient ci, a sub-

domain membership word g(ci) is generated by:

g(ci) = 1 +

K
∑

k=1

bc(ci,k)2
k−1, (7)

where bc(ci,k) is a coding function that converts the kth el-

ement in a coefficient vector to a bit:

bc(ci,k) =

{

1 if ci,k ≥ c(k)
0 otherwise

. (8)

Then the mth sub-domain, 1 < m < 2K , includes the train-

ing samples with their membership words g(ci) = m. Our

domain split strategy results in M sub-domains with over-

lapping boundaries. This is different from previous stud-

ies using multi-view models such as [39, 46], in which

the intersection of any two different subsets is empty, i.e.

Ti ∩ Tj = ⊘, ∀i 6= j.

The advantage of our domain split strategy is that it im-

proves the fault-tolerance ability of each trained domain-

attention model, because of the overlap of two different

sub-domains. For a test sample, a domain predictor may

output an inaccurate label for model selection due to the

rough shape estimate provided from the previous general

CSR. But, the inaccurately selected domain-specific model

is still able to refine the current shape estimate. To further

improve this refinement capacity, we propose a fuzzy train-

ing strategy. For each domain-specific CSR, we use all the

training samples from the original training set to train a spe-

cific regressor, but weight more heavily the training samples

of the specific domain by increasing their fuzzy set mem-

bership values in the objective function. More specifically,

to train the nth weak regressor of the mth domain-specific

CSR, the objective function is defined as:

argmin
Ad,ed

I
∑

i=1

wi||Ad · fc(Ii, s
′

i) + ed − δs∗i ||
2
2 + λ||Ad||

2
F ,

(9)

where wi is a fuzzy set membership value defined by:

wi =

{

1− h(n) if {Ii,bi, s
∗

i } ∈ Tm

h(n) otherwise
, (10)

where h(n) is a decreasing function which progressively re-

duces the weights of the training samples not belonging to

the mth sub-domain and increases the weights of the train-

ing samples of the mth sub-domain. This is a standard

weighted least-square estimation problem with a closed-

form solution. It should be noted that our fuzzy domain-

specific model learns a weak regressor that is able to refine

a face shape estimate from any sub-domain, and with bet-

ter capacity to refine face shapes from a specific domain.

This capability is exhibited even when using a domain split

strategy without overlap.

4.3. Dynamic Domain Selection in Testing

Given a new test image with a detected face bounding

box, the trained DAC-CSR model Φ = {φb,Φg,Φd} first

applies the face bounding box refiner φb and general CSR

Φg to obtain the intermediate face shape estimate s′. Then a

specific domain-attention weak regressor is selected to fur-

ther update the current shape estimate.

To select an appropriate weak regressor, the current

shape estimate s
′ is projected into the PCA space learned

at training time to obtain the coefficient vector c, and the

label of the sub-domain is obtained using:

p(c) =

{

2K + 1 if
∑K

k=1
(ci,k−ck)

2

(σ(k))2 ≤ 1

g(c) otherwise
. (11)

Note that, here, the sub-domains are not overlapped. This

is different from the domain split strategy used in the train-

ing stage. However, this domain prediction function is only

based on the current shape information and may provide

inaccurate labels for model selection. To address this is-

sue and further improve the fault-tolerance capacity of our

DAC-CSR, a dynamic domain selection strategy is used.

As discussed in the last section, a trained domain-

specific CSR is able to improve the current shape estimate

even if selected in error by the domain prediction mecha-

nism. Hence the updated shape estimate produced by the

nth weak regressor can be a basis for selecting a more ap-

propriate domain in the next step of the shape updating pro-

cess. We re-run the domain prediction before performing

the next weak regressor and choose the (n + 1)st weak re-

gressor of a newly selected domain-specific model for cur-
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(a)

(b)

(c)

Figure 4. A comparison of synthesised 2D faces using (a) a 3D

morphable model [15], (b) 3D-based face profiling [47], and (c)

our 2D-based method.

rent shape update, as summarised in Algorithm 1. This dy-

namic model selection strategy is repeated after each shape

update in our domain-specific CSR.

4.4. Context­aware Feature Extraction

Feature extraction is crucial for constructing a robust

mapping from feature space to shape updates. In classical

CSR-based approaches, shape-related local features are cre-

ated by concatenating all the extracted local features around

each landmark into a long vector. Although this sparse

shape-related feature extraction method provides a good de-

scription of the texture information of different facial parts,

it does not offer a good representation of the contextual in-

formation of faces. In our DAC-CSR, we use a context-

aware feature extraction method. To be more specific, we

use both a dense local description of the whole face region

and sparse shape-related local features for weak regressor

training (Fig. 3). Note that, for the first bounding box re-

finement step, we use only the dense local features.

5. 2D Profile Face Generation

For a learning-based approach, a large number of an-

notated face images are crucial for training. As discussed

in Section 2, traditional data augmentation methods are not

able to inject new out-of-plane pose variations, and the use

of 3D face models is very expensive. To mitigate this issue,

we propose a simple 2D-based method that can generate vir-

tual faces with out-of-plane pose variations. A comparison

between our proposed 2D-based profile face generator and

two 3D-based methods [15, 47] is shown in Fig. 4.

To warp a face image to another pose, we first build

Figure 5. The mesh generated for 2D image warpping.

a PCA-based shape model that is equivalent to the shape

model used in ASM [8] and AAM [7, 27]. Then we choose

the corresponding shape eigenvector controlling yaw rota-

tions (usually the first one) to change the pose of the current

face shape. To this end, we first calculate the coefficient of

the shape of a face image projected by the selected shape

eigenvector. A new face shape with pose variations is gen-

erated by adjusting the projected coefficient. The 2D shape

model used is constructed using a face dataset rich in pose

variations. Note, we only generate pose-varying face shapes

with the same rotation direction of the original shape, i.e.

left or right. Then we expand the face shape with more ex-

ternal facial landmarks and compute a 2D mesh of the origi-

nal and new shapes using Delaunay triangulation, as shown

in Fig. 5. Last, a piece-wise affine warp is used to map

the texture from the original face shape to a new one [27].

Moreover, the synthesised faces can be flipped about their

vertical axis to obtain more faces with pose variations in the

other direction (right or left), which is similar to [47].

6. Experimental Results

6.1. Datasets and Implementation Details

Datasets: In our experiments, we use two challenging

face datasets, including the Annotated Facial Landmarks in

the Wild (AFLW) dataset [24] and the Caltech Occluded

Faces in the Wild (COFW) dataset [4] to evaluate the per-

formance of our DAC-CSR architecture.

The AFLW dataset has 25993 unconstrained faces with

large-scale pose variations up to ±90◦. Each AFLW face

image has up to 21 landmarks of visible facial parts. AFLW

does not have a standard protocol for FLD evaluation; hence

we follow the protocol used in Cascaded Compositional

Learning (CCL) [46]. This is the first work to use the

whole AFLW dataset to benchmark an FLD algorithm. It re-

ports the currently best results on AFLW. CCL used 24386

images from AFLW and manually annotated all the miss-

ing landmarks in the original dataset. The annotation sys-

tem opted for 19 landmarks per image without the two

ear landmarks (ID-13 and ID-17). CCL has two proto-

cols: AFLW-full and AFLW-frontal, as shown in Table 1.

AFLW-full splits the 24386 images into 20000/4386 for

training/testing. The AFLW-frontal protocol selects 1165 1

1In our experiments, 1314 frontal faces were selected using the list pro-

vided by [46].
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Table 1. A summary of the evaluation protocols used in our experiments

Protocol Training Set Test Set # Landmarks Normalisation Setting

AFLW-full 20000 from AFLW 4386 from AFLW 19 face size CCL [46]

AFLW-frontal 20000 from AFLW 1165 from AFLW 19 face size CCL [46]

COFW 1345 from COFW 507 from COFW 29 eye distance standard [4]

frontal images from the 4386 test images to evaluate an FLD

algorithm on frontal faces.

The COFW dataset has 1345 training and 507 test im-

ages, which are all unconstrained faces. Each COFW face

has 29 manually annotated landmarks. COFW is a chal-

lenging benchmark containing major occlusions.

Implementation Details: In our experiments, we only

used one weak regressor for face bounding box refine-

ment. The numbers of weak regressors for general CSR

and domain-specific CSR were set to 2 and 3 respectively.

We set the number of sub-domains to M = 5 using 2 PCA

shape coefficients, i.e. K = 2. The value of the regulari-

sation term in the ridge regression training was assigned to

λ = 10000, and the decreasing schedule controlling fuzzy

membership values was set to h(n) = (0.3, 0.2, 0.1) for

n = (1, 2, 3). To extract a dense face description, we re-

sized the face region to 100 × 100 and extracted HOG fea-

tures using a cell size of 10 and block size of 2. To extract

sparse shape-related local features, we computed the HOG

descriptor in the neighbourhood of each facial landmark.

The radius was set to 1/7 of the maximum of the height and

width of the current shape estimate. Each local image patch

was resized to 30 × 30 and the cell size was set to 10. In

addition, the central 15×15 image patch was used to extract

multi-scale HOG features using a cell size of 5.

To augment training data, we applied our 2D-based

method to generate virtual face images with new poses.

Each training image in COFW was augmented using 9 new

poses. For AFLW, we only synthesised new faces for semi-

frontal training images. We also flipped all the training im-

ages about the vertical axis, added Gaussian blur with σ = 1
pixel and performed random perturbations of the initial face

bounding boxes.

6.2. Evaluation on AFLW

The Cumulative Error Distribution (CED) curve of our

DAC-CSR using the AFLW-full protocol is shown in Fig. 6.

The error was calculated using the Euclidean distance be-

tween the detected and ground-truth landmarks, normalised

by face size [46]. Our DAC-CSR achieves much better re-

sults on the AFLW-full protocol than the current best result

reported for CCL [46].

Table 2 compares our DAC-CSR with state-of-the-art

methods on AFLW using both the AFLW-full and AFLW-

frontal protocols. The results obtained with our DAC-CSR

show the best normalised average error on both the full test
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Figure 6. A CED curve comparison of our DAC-CSR with state-

of-the-art methods, including SDM [38], ERT [22], RCPR [4],

CFSS [45], LBF [29], LBF + GRF [19] and CCL [46], on the

AFLW dataset (better viewed in colour). In this experiment, 20000

images were used for training and 4386 images were used for test-

ing, following the AFLW-full protocol in [46].

Table 2. A comparison of our DAC-CSR with state-of-the-art

methods on AFLW, measured in terms of the average error, nor-

malised by face size. The protocol is the same as in [46].

Method AFLW-full AFLW-frontal

SDM [38] 4.05% 2.94%

RCPR [4] 3.73% 2.87%

ERT [22] 4.35% 2.75%

LBF [29] 4.25% 2.74%

LBF + GRF [19] 3.15% N.A.

CFSS [45] 3.92% 2.68%

CCL [46] 2.72% 2.17%

Our DAC-CSR 2.27% 1.81%

set and the frontal face subset protocols.

6.3. Evaluation on COFW

6.3.1 Comparison to State-of-the-art

The CED curves of our DAC-CSR and a set of state-of-

the-art methods on the COFW dataset are shown in Fig. 7.

In addition, a more detailed comparison is presented in Ta-

ble 3, reporting the average error, failure rate and speed.

The failure rate is defined by the percentage of test images

with more than 10% detection error.

Our DAC-CSR achieves competitive results in accuracy
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Figure 7. A comparison between our DAC-CSR and state-of-

the-art methods, including SDM [38], RCPR [4], RCRC [16],

CDRN [42] and DRDA [42], on COFW.

Table 3. Comparison on COFW. The error was measured on 29

landmarks and normalised by the inter-ocular distance.

Method Error Failure Speed (FPS)

ESR [5] 11.2% 36% 4

RCPR [4] 8.5% 20% 3

HPM [18] 7.5% 13% 0.03

RCRC [16] 7.3% 12% 22

CCR [15] 7.03% 10.9% 69

DRDA [42] 6.46% 6% N.A.

RAR [37] 6.03% 4.14% 4 (GPU)

Our DAC-CSR 6.03% 4.73% 10

compared to the two cutting-edge deep-neural-network-

based algorithms, DRDA [42] and RAR [37]. In addition,

the speed of our DAC-CSR on an Intel i7-4790 CPU is up

to 10 FPS, which is faster than RAR with GPU accelera-

tion (NVIDIA Titan Z). As the current bottleneck for un-

constrained FLD is not the speed, e.g. LBF can perform

FLD at up to 3000 FPS, the key aim of our DAC-CSR is

to provide a more robust FLD algorithm for faces with ex-

treme appearance variations, as exhibited in the AFLW-full

evaluation.

6.3.2 Self Evaluation

In this part, we investigate the contributions of the proposed

DAC-CSR architecture and our 2D-based data augmenta-

tion method to the accuracy of FLD on COFW. To this end,

we compare the classical CSR method trained on the orig-

inal training set (CSR) with the classical CSR trained on

the augmented dataset using faces synthesised by our 2D-

based face generation method (CSR+SYN), our DAC-CSR

trained on the original dataset (DAC-CSR) and our DAC-

CSR trained on the augmented dataset (DAC-CSR+SYN).

The CED curves of these settings are shown in Fig. 8.
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Figure 8. A self-evaluation of our proposed DAC-CSR on COFW.

The meaning of each term is introduced in Section 6.3.2.

In fact, the architecture of classical CSR is the same as

SDM [38]. They also have similar CED curves (compar-

ing Fig. 7 with Fig. 8). As indicated by Fig. 8, the new

DAC-CSR architecture trained on the original dataset per-

forms better than CSR with our 2D-based data augmenta-

tion method (DAC-CSR vs CSR+SYN). However, the best

result is achieved when the new DAC-CSR architecture is

used jointly with our 2D-based data augmentation method.

7. Conclusion

We have presented a new DAC-CSR architecture for ro-

bust FLD in unconstrained faces. The proposed method

achieved superior FLD results on the challenging AFLW

dataset and delivered competitive performance on the

COFW dataset. This is due to the proposed versatile fault-

tolerant mechanism using fuzzy domain-specific model

training and the online dynamic model selection strategy. In

addition, a simple but effective data augmentation method

based on 2D face synthesis was proposed. Compared with

the classical CSR method, both the new DAC-CSR archi-

tecture and the 2D-based data augmentation method proved

beneficial for the FLD performance on unconstrained faces.

We believe that our contributions can be further ex-

tended, e.g. using deep-neural-network-based approaches.

We leave for future work the exploration of methods that

combine our DAC-CSR architecture and data augmentation

method with other FLD algorithms.
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