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Abstract

We propose a new self-supervised CNN pre-training

technique based on a novel auxiliary task called odd-one-

out learning. In this task, the machine is asked to identify the

unrelated or odd element from a set of otherwise related ele-

ments. We apply this technique to self-supervised video rep-

resentation learning where we sample subsequences from

videos and ask the network to learn to predict the odd video

subsequence. The odd video subsequence is sampled such

that it has wrong temporal order of frames while the even

ones have the correct temporal order. Therefore, to generate

a odd-one-out question no manual annotation is required.

Our learning machine is implemented as multi-stream con-

volutional neural network, which is learned end-to-end. Us-

ing odd-one-out networks, we learn temporal representa-

tions for videos that generalizes to other related tasks such

as action recognition.

On action classification, our method obtains 60.3% on

the UCF101 dataset using only UCF101 data for train-

ing which is approximately 10% better than current state-

of-the-art self-supervised learning methods. Similarly, on

HMDB51 dataset we outperform self-supervised state-of-

the art methods by 12.7% on action classification task.

1. Introduction

Convolutional Neural Networks (CNNs) [27] have

emerged as the new state-of-the-art learning framework

for many machine learning problems. The success of

CNNs has been largely sustained by the manual annota-

tion of big datasets such as ImageNet [34] and Sports-

1M [23]. As manual annotations are costly and time con-

suming supervised learning becomes less appealing, espe-

cially when considering tasks involving more complex data

(e.g., videos) and concepts (e.g., for human behavior analy-

sis). In this work we focus on learning video representations

from unlabeled data.

Good video feature learning without using action cate-

gory labels from videos is crucial for action recognition for

two reasons. First, unlike static images, videos are gener-

ally open-ended media and one cannot a priori contain a

Figure 1: The proposed odd-one-out network, where it takes

several video sequences as input to the multi branched net-

work that share weights. Objective is to identify the odd

video sequence in this case it is the second video. To find

the odd video-clip, learning machine has to compare all

video clips, identify the regularities among them, and pick

the one with irregularities. This type of tasks are know as

analogical reasoning tasks.

particular action within a particular frame range. Thus, for

supervised learning one would need to manually annotate

videos frame-by-frame or crop them to a range of frames

to ensure consistency, obviously an unrealistic expectation

for both. Second, existing large video datasets, e.g., Sports-

1M [23] and the recent YouTube-8M [1], rely on noisy, un-

reliable YouTube tags. As a result, one cannot truly iden-

tify whether it is the architecture or the noisy labels that

contribute to the observed network behavior. Besides, un-

labeled videos are abundant and information rich regarding

spatio-temporal structures [5, 33, 3, 32, 45].

Although traditionally unsupervised feature learning

(e.g. [6, 20]) implies no supervisory signals, re-

cently researchers introduced the self-supervised learning

paradigm [2, 8, 10, 12, 44]. Here the structure of the data is

used as a supervisory signal so the method is unsupervised

in the sense that it does not require human annotation but

supervised machine learning techniques can still be used.

For instance, one can use relative location of the patches in

images [10] or the order of video frames [44] as a supervi-

sory signal. Different from the above works we express su-

pervision in the context of the odd-one-out problem. More
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specifically, each training example is comprised of a ques-

tion composed of N + 1 elements (such as N + 1 video

clips or images). Out of these N + 1 elements N are sim-

ilar or related (e.g., correctly ordered set of frames coming

from a video) and one is different or odd (e.g., wrongly or-

dered set of frames from a video). Both the odd element

and the N coherent elements are presented to the learning

machine. The learning machine is then trained to predict

the odd element. To avoid a trivial solution, in each of the

odd-one-out questions, the odd element is presented to the

learning machine at random. In particular, we use a CNN

as the learning machine, a multi-branch neural network as

illustrated in Figure 1. During training, our method learns

features that solves the odd-one-out problem. As the net-

work performs a reasoning task about the validity of ele-

ments (e.g. video subsequences), the learned features are

useful for many other related yet different tasks. Specifi-

cally, in this paper we demonstrate the advantages of odd-

one-out networks to learn features in a self-supervised man-

ner for video data.

Exploiting the spatio-temporal coherence in videos has

been investigated before for unsupervised learning [3, 32,

45]. However, with the exception of few works [7, 36], the

focus has been on appearance representations, perceiving

videos as a collection of frames. There has also been un-

supervised temporal feature encoding methods to capture

the structure of videos for action classification [13, 14, 15,

29, 36]. In contrast, we focus on learning the motion pat-

terns within videos. Inspired by the recently proposed fam-

ily of motion representations [5, 37, 43] that compress ar-

bitrary length video sequences into fixed-dimensional ten-

sors while maintaining their spatio-temporal structure, we

propose a new video-segment level representation learning

strategy for videos in self-supervised manner.

In this work we present an alternative methodology

for learning video segment representations in an self-

supervised manner. Our contributions are threefold: First,

we propose a novel learning task, odd-one-out learning, for

optimizing model parameters without relying on any manu-

ally collected annotations. Second, we present a neural net-

work architecture suitable for odd-one-out learning. Third,

our experimental results indicate that the trained networks

learn accurate representations, outperforming considerably

other recently proposed self-supervised learning paradigms

for video data.

2. Related work

Unsupervised feature learning is well studied in the liter-

ature. The most common techniques studied include auto-

encoders [6, 20], restricted Boltzmann machines [19], con-

volutional deep belief networks [28], LSTMs and recurrent

neural networks [36].

A recent emerging line of research for learning represen-

tations without manual annotations is self-supervised learn-

ing [8, 10, 26, 44]. Self-supervised methods do not require

manual annotations, instead they exploit the structure of the

data to infer supervisory signals, which can then be used

with robust and trustworthy supervised-like learning strate-

gies. In Doersch et al. [10] spatial consistency of images are

exploited as a context prediction task to learn image repre-

sentations. Video data are also used to learn image repre-

sentations. For example, Wang et al. [44] generate pairs-

of-patches from videos using tracking and use a Siamese

triplet network to learn image representations such that the

similarity between two matching patches should be larger

than similarity between two random patches. The matched

patches will have intraclass variability due to changes in il-

lumination, occlusion, viewpoint, pose, and clutter. How-

ever, tracking is not always reliable. As shown by Kumar et

al. [26], training of such triplet networks is not straightfor-

ward with the need to estimate stable gradients for triplet-

based losses. Agrawal et al. [2] exploit egomotion as a la-

belling process to learn representations where they show

that egomotion is a useful supervisory signal when learn-

ing features. Similar to Wang et al. [44], they also train

a Siamese network to estimate egomotion from two im-

age frames and compare it to the egomotion measured with

odometry sensors. The resulting learned features are some-

what similar.

Another variant of unsupervised feature learning relies

on exemplar CNNs [12]. Here each image is transformed

using a large number of transformations and a CNN is

trained to recognize instances of transformed images. A dis-

advantage of such an approach is that each image becomes

a class, hence for a million images one trains a one-million

class CNN. Moreover, the learned invariances depend on

the types of transformations. However, the approach gener-

ate consistent labels, which is important for self-supervised

learning based on CNNs.

The direction of time-flow (forward or backward) in

videos was studied in an inspiring work by Pickup et

al. [33]. The authors investigate various motion represen-

tations to learn the arrow of time. Unsupervised learning

of sequence encoding for video data was proposed by Sri-

vastava et al. [36], where an LSTM encoder was used to

learn unsupervised video encodings. The LSTM is trained

such that the encoding of the forward video is similar to the

LSTM encoding of the reverse video. However, this method

requires a pre-trained network (with supervision) to extract

frame level features and thus it is not a unsupervised feature

learning method.

More recently, a CNN-based unsupervised representa-

tion learning method was presented in Misra et al. [31]. In

that work, the learning task is to verify whether a sequence

of frames from a video is presented in the correct order or

not. This method has two shortcomings: i) the binary learn-
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Figure 2: The odd-one-out networks for video representa-

tion learning. Network is presented with one wrong se-

quence (out of order) and two correct sequences from the

same video. Temporal encoder encodes the temporal struc-

ture of the subsequence. Odd-one-out network learn the fea-

ture to find out of order sequences. In the left figure, we see

concatenation of FC6 activations and on the right we see the

sum of difference network architecture.

ing formulation results in a relatively easy learning prob-

lem, ii) despite having to determine the correct temporal or-

dering of frames, the method does not learn to encode tem-

poral information but only spatial. In contrast, our method

exploits the analogical reasoning over sequences and pose

the feature learning problem as a N + 1 way multi class

classification problem which is much harder than the binary

verification problem (see Fig. 1). Our method also able to

learn temporal information taking the advantage of recent

developments [5, 37, 43] which leads to a superior perfor-

mance for action recognition tasks.

Most of the prior work in action recognition is dedi-

cated to hand-crafted features [18] such as dense trajec-

tory features [15, 21, 41, 42]. Recently, supervised con-

volutional features obtain state-of-the-art performance ei-

ther using very large video collections or using 3D convo-

lutions [39] or by fine-tuning ImageNet pre-trained mod-

els [5, 16, 30, 43, 46]. Our work differs from these in that

we learn a video representation from self-supervision with-

out using external information such as optical flow data or

transfer filter weights from ImageNet pre-trained models or

use effective cross modality pre-training as done in [43].

3. Odd-one-out learning

Task. The goal of odd-one-out learning is to predict the odd

element from a set of otherwise related elements. There

are different ways to generate such odd-one-out questions

for both video or image data. For example, in the case

of video representation learning, the even objects could be

correctly ordered video clips of a particular video, and the

odd one could be a video clip obtained by wrongly per-

muting frames of the same video. This is just one exam-

ple and our framework is quite general and can be applied

to other data types, such as RGB image patches, video in-

stances, or generic feature descriptors. The set of multiple

related elements and the odd element comprise a question

q = {I1, . . . , IN+1}, where Ii are the elements (in our

case videos). We construct questions in an unsupervised

manner. For example, in the context of feature learning for

video classification, I1, . . . , IN+1 are sets of sub-sequences

sampled from a video. Out of these, N number of sub-

videos have the correct chronological order of frames which

comprises the even set. The odd video sub-sequence con-

sist of frames sampled from an invalid order from the same

video (see Figure 1). In both cases we know that one out of

(N + 1) elements is an odd object.

In order to prevent a trivial solution, we randomize the

position of the odd element by a permutation σ and obtain

a question qσ with a respective answer aσ = σ(N + 1) ∈
{1, 2, . . . , N + 1}. The odd-one-out prediction task thus

reduces to an (N + 1)-way classification problem. Note,

that given a set of unlabelled videos, we can automati-

cally construct a self-supervised question-answer training

set D = {(q
σj

j , a
σj

j )}, where the permutation σj is cho-

sen randomly for each question. Given this self-supervised

dataset, the learning problem can be solved by standard

maximum likelihood estimation, namely,

θ⋆ = arg max
θ

L(fθ;D) (1)

where L is the likelihood function and fθ is our

parametrized model.

Model. We implement the prediction model fθ as a multi-

branch Convolutional neural network, which we call an

odd-one-out network (O3N ). As illustrated in Figure 1,

O3N is composed of N + 1 input branches, each contains

five Convolutional layers and weights are shared across the

input layers. Configuration of each input branch is iden-

tical to AlexNet architecture [24] up to the first fully con-

nected layer. As odd-one-out task requires a comparison

among (N+1) elements of the given question and cannot

be solved by only looking at individual elements, we in-

troduce a fusion layer which merges the information from

(N+1) branches after the first fully connected layer. These

fusion layers help the network to perform reasoning about

elements in the question to find the odd one. Ideally, the fu-

sion layer should support the network to compare elements

and find regularities and pick the element with irregularities.

We experiment with two fusion models, the Concatenation

model and sum of difference model leading to two different

network architectures as shown in Fig. 2.

Concatenation model: The first fully connected layers

from each branch are concatenated to give a (N + 1) × d

dimensional vector, where d is the dimensionality of the

first fully connected layer.

Sum of difference model: The first fully connected layers

from each branch are summed after taking the pair-wise ac-

tivation difference leading to a d dimensional vector, where

d is the dimensionality of the first fully connected layer. The

advantage is that this strategy still encodes the structure of
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Figure 3: Three different types of sampling strategies are

investigated for odd-one-out learning. The red box shows

the odd video sub-sequence from each of the sampling type.

The constrained consecutive sampling sample from a con-

strained part of the original video which is denoted by the

green box. The constrained sampling window is 1.5 × W

where W is the length of the sampled sub-sequences (must

be viewed in colour).

the odd-one-out feature activations yet can be represented

with lower dimensional activation vector. Mathematically,

let vi be the activation vector of the i-th branch of the net-

work. The output of the sum of difference layer is given

by

o =
∑

∀j>i

vj − vi. (2)

We feed this fused activation vector through two fully

connected layers followed by a softmax classifier with N +
1 outputs. Given a new training question qσ , each input

branch receives one of the N + 1 elements and the network

must learn to predict the location of the right answer, aσ .

We illustrate in Figure 1 our proposed O3N together with

an example question.

4. Learning video representations with O3N

In this section we present a method to learn video rep-

resentations in self-supervised manner using odd-one-out

learning. In odd-one-out learning, we have to decide how

to generate questions. Mainly, our objective is not only to

solve the odd-one-out problem, but also to learn good fea-

tures. If the odd-one-out task is generalizable and the gen-

erated questions are related to solving other related tasks,

one can expect to obtain good representations for the input

video data.

Our aim is to learn features that are useful for video clas-

sification. Specifically, we are interested in action recogni-

tion from video data. It is important to learn good temporal

representations to solve the action recognition problem. As

videos are essentially composed of sequences of frames, by

nature most of the videos have a strong temporal structure.

Hence, a good video representation should be able to cap-

ture this temporal structure within a sequence of frames. We

propose to employ the odd-one-out self-supervised learning

to exploit the structure within video sequences. Therefore,

we generate odd-one-out questions by exploiting the struc-

ture of the videos.

Specifically, let us assume we are given a video se-

quence X = 〈X1, X2, · · ·Xn〉 which consist of n number

of RGB frames. The t-th RGB frame is denoted by Xt.

Because videos are sequences, there are order constraints

over frames such that X1 ≻ X2 ≻ · · · ≻ Xn. The general

idea for generating odd-one-out questions is to sub-sample

W frames from X where W < n. Then we generate el-

ements of the odd-one-out questions by different sampling

strategies. Each of these sampling strategy has implications

on the learned features. Next we discuss three sampling

strategies, the consecutive sampling, random sampling, and

constrained consecutive sampling.

Consecutive sampling: We sample W number of consecu-

tive frames N times from video X to generate N number of

even (related) elements. Each sampled even element of the

odd-one-out question is a valid video sub-clip consisting of

W consecutive frames from the original video. However,

the odd video sequence of length W is constructed by ran-

dom ordering of frames and therefore does not satisfy the

order constraints. These random frames could come from

any location of the original video (see figure 3 right). Then

the objective of the odd-one-out video network is to learn to

recognize the odd (wrong video sequence) out of other N

correct sequences.

Random sampling: We randomly sample W frames N

times from the video X to generate N number of even (re-

lated) elements. Each of these N elements are sequences

that has the correct temporal order and satisfy the original

order constraints of X . However, the frames are not consec-

utive as in the case of consecutive sampling. The odd video

sequence of length W is also constructed by randomly sam-

pling frames. An illustration is shown in Figure 3 middle.

Similar to consecutive sampling strategy, the odd sequence

does not satisfy the order constraints. Specifically, we ran-

domly shuffled the frames of the odd element (sequence).

Constrained consecutive sampling: In the constrained

consecutive sampling strategy, first we sub select a video

clip of size 1.5 ×W from the original video which we de-

note by X̂ . We randomly sample W consecutive frames N

times from X̂ to generate N number of even (related) el-

ements. Each of these N elements are subsequences that

have the correct temporal order and satisfy the original or-

der constraints of X . At the same time each of the sampled

even video clips of size W overlaps more than 50% with

each other. The odd video sequence of length W is also

constructed by randomly sampling frames from X̂ . Similar

to other sampling strategies, the odd sequence does not sat-
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(a) (b)

(c) (d) (e) (f) (g)

Figure 4: Several video-clip encoder outputs for action

drumming. (a) Dynamic image (b) sum of difference of

frames (c-g) stack of difference of frames. All method use

sequence size of 6 frames.

isfy the order constraints. Specifically, we randomly shuf-

fled the frames of the odd element (sequence).

5. Video frame encoding

In this section we describe the video-clip encoding step

of our odd-one-out network architecture. As shown in

Fig. 1, each element (video-clip or subsequence) in an odd-

one-out question is encoded to extract temporal information

before presenting to the first convolutional filters of the net-

work. As mentioned in section 4, odd-one-out networks are

presented with sub-sequences of videos. These sub-videos

can be valid or invalid (wrong) video clips. We want to use

odd-one-out networks to learn video representations by ex-

ploiting the structure of the sequences. There are several

ways to capture the temporal structure of a video sequence.

For example, one can use 3D-convolutions [22], recurrent

encoders [38], rank-pooling encoders [15] or simply con-

catenate frames. Odd-one-out networks can use any of the

above methods [22, 38, 15] to learn video representations in

self-supervised manner using video data.

A single RGB image usually contains only static appear-

ance at a specific time point and lacks the contextual in-

formation about previous and next frames. In contrast, the

RGB difference between two consecutive frames describe

the appearance change, which may correspond to the mo-

tion salient region. This information is also related to the

velocity of the RGB data. Next, we discuss three technique

that is used in our experiments to encode video-frame-clips

using the differences of RGB frames into a single tensor Xd.

Sum of differences of frames video-clip encoder: In this

method we take the difference of frames and then sum the

differences to obtain a single image Xd. This single image

captures the structure of the sequence. Precisely, this is ex-

actly same as the equation 2 but now applied over frames

instead of vectors. It is interesting to note that this equa-

tion boils down to a weighted average of frames such that

Xd =
∑

wtXt where the weight of frame at index t is given

by

wt = W + 1− 2t. (3)

If the input sequence has spatial resolution of h × w and

temporal extent of W , then, the output image has the same

spatial resolution but the temporal information is summa-

rized into a single image of size h×w× 3 for R,G,B chan-

nels (see Fig. 4 (b)).

Dynamic image [5, 4] encoder: This method is similar to

the sum of differences of frames method, however the only

difference is that now the input sequence is pre-processed

to obtain a smoothed sequence M = 〈M1,M2, · · ·MW 〉.
Smoothing is obtain using the mean at index t. The

smoothed frame at index t denoted by Mt is given by

Mt =
1

t

t∑

j=1

Xj (4)

where Xj is the frame at index j of the sub-video. The dy-

namic image can be computed very efficiently. In-fact, dy-

namic image can be computer as a weighted linear combi-

nation of original frames where the weight at index t is com-

puted by wt = 2(W − t+1)− (W +1)(HT −Ht−1). Here

Ht =
∑t

i=1

1

t
is the t-th Harmonic number and H0 = 0.

For complete derivation of Dynamic image we refer the

reader to [5, 4]. An example of a Dynamic Image is shown

in (see Fig. 4 (a)).

Stack of differences of frames video-clip encoder: In-

spired by [37, 43], we also stack the difference of frames in-

stead of summing them. Once again the objective is to cap-

ture the motion and dynamics of short video clips. However,

now the resulting image is not any more a standard RGB

image with three channels. Instead, we obtain (N − 1)× 3
channel image ((see the stack in Fig. 4 (c-g)).

6. Experiments

In this section we explain the experimental set up and

the experimental results which validate the effectiveness of

our odd-one (O3N ) learning. We evaluate the usefulness

of our odd-one-out learned features on the action classifi-

cation task. Specifically, we use UCF101 and HMDB51

datasets for self-supervised feature learning from video data

and then use the features for action classification.

The UCF101 dataset [35] is an action recognition

dataset of realistic action videos, collected from YouTube,

consists of 101 action categories. It has 13,320 videos from

101 diverse action categories. The videos of this dataset is

challenging which contains large variations in camera mo-

tion, object appearance and pose, object scale, viewpoint,

cluttered background and illumination conditions. It consist
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of three splits, in which we report the classification perfor-

mance over all three splits as done in the literature.

The HMDB51 dataset [25] is a generic action classifi-

cation dataset consists of 6,766 video clips divided into 51

action classes. Videos and actions of this dataset are chal-

lenging due to various kinds of camera motions, viewpoints,

video quality and occlusions. Following the literature, we

use a one-vs-all multi-class classification strategy and report

the mean classification accuracy over three standard splits

provided by Kuehne et al. [25].

In rest of the sections, we perform several experiments

to demonstrate different aspects of odd-one-out learning,

network design choices, and the performance of different

video-clip encoders when used with O3N networks.

6.1. Default oddoneout training for videos.

In this section, we explain the default odd-one-out learn-

ing process. By default, we use questions that consist of six

video sequences, five sequences with frames in the correct

order and a sequence with frames in a wrong order. Each

sampled video subsequence consists of six frames sampled

according the sampling process described in section 4. Un-

less otherwise specified we use the random sampling as the

default sampling process. We rely on the AlexNet archi-

tecture, however, the number of activations in the first fully

connected layer is reduced to 128 unless otherwise spec-

ified. The sum of difference model architecture (see sec-

tion 3) is our default activation fusion method. By default,

we use the Dynamic Image [5] as the temporal video-clip

encoder. Experiments are run for 200 epochs without batch

normalization and with a learning rate varying from 0.01 to

0.0001 in logarithmic manner. The batches are composed

of 64 questions. Each question consist of six sub-videos

and each sub-video has six frames. The self-supervised net-

work is trained with stochastic gradient descent using Mat-

ConvNet [40]. We use the first split of UCF101 datasets for

training of the odd-one-out networks and also for validation.

Temporal jittering is used to avoid over-fitting.

6.2. Fine tuning for action recognition.

Once we train the odd-one-out network, with default set-

ting, we use that to initialize the supervised training. We

initialize the fine-tuning network (AlexNet architecture [11]

with standard 4096 activation at fully connected layers)

with the convolutional filter weights obtained from the odd-

one-out network. The fully connected layers are fine-tuned

with a learning rate 10 times larger than the ones used for

convolutional layers (10−2 to 10−4) and batches composed

of 128 samples. Typically, the network takes sub-sequences

of length six (six frames) as input (same size used in the the

odd-one-out network). We use temporal jittering and drop

out rate of 0.8.

During final inference, to compute the classification ac-

Method superv. acc.(%) self.sup. acc.(%)

Random initialization 47.0 n/a

O3N -consec. samp. 50.6 27.4

O3N -const. consec. samp. 52.4 29.0

O3N -random sampling 53.2 29.6

Table 1: Comparing several odd-one-out sampling strate-

gies with the random initialization for video action classifi-

cation on UCF101 dataset.

curacy, we sample all non-overlapping sub-sequences (con-

sists of six frames) and compute the maximum conditional

probabilistic estimate per sequence. Mathematically, let us

assume that given long video X we have sub-sample m sub-

sequences of size W , denoted by {X̂i} where i = 1 · · ·m.

Therefore the CNN returns the conditional probability of

action category y for subsequence X̂i which is denoted by

p(y|X̂i). During the final inference, using i.i.d. assumption,

the conditional log probability of the class y given video

X is obtained by
∑m

i=1
log(p(y|X̂i)). We use the category

that returns the maximum log conditional probability as the

predicted class for that video.

6.3. Evaluating sampling types for O3N learning.

The objective of the first experiment is to evaluate the

impact of sampling types used for odd-one-out networks.

In this experiment, we use the default setting for odd-one-

out (O3N ) training for videos and use the default fine-

tuning process explained earlier. Odd-one-out training is

performed only on the training set of the UCF101 datasets

first split. Learned features are used to fine-tune all three

splits of the UCF101 separately to evaluate the action clas-

sification accuracy. We compare the three sampling types

explained in section 4, namely a) consecutive sampling, b)

random sampling and c) constrained consecutive sampling.

We also compare our O3N initialization with the randomly

initialized fine-tuning network results. Results are reported

in Table 1.

As it can be seen from the results obtained in Table 1,

all three initialization methods that uses odd-one-out learn-

ing perform better than random initialization on the super-

vised action classification task. Random initialization ob-

tains only 47.0% over three splits where as O3N consec-

utive sampling obtains 50.6% which is 3.6% better than

random initialization. Interestingly, the constrained con-

secutive sampling process obtains better results compared

to consecutive sampling (52.4%). The random sapling pro-

cess obtains the best results for both supervised and self-

supervused tasks.

The consecutive sampling is more confusing task and

therefore the most difficult for the network to solve. Videos

typically have slow motions and in that case it may be dif-
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Method self-sup. acc. split- 1 split 2 split 3 mean

O3N -4096-SOD 25.7 51.7 51.4 50.9 51.3

O3N -128-SOD 29.6 54.1 51.9 53.6 53.2

O3N -128-CON 33.6 49.7 50.3 50.4 50.1

Table 2: Comparing the impact of capacity of O3N net-

works fully connected layers on feature learning and action

classification.

ficult to tell apart correct vs incorrect ordering using con-

secutive sampling. With such a confusing task, the net-

work might learn little. Moreover, learning from small mo-

tions means focusing on small subtelties and this may not

generalize well to large general motion understading. This

might be the reason for the poor performance of constrained

consecutive sampling compared to random sampling. Af-

ter analysing these results, we conclude that odd-one-out

learning obtains better features that potentially generalizes

for other tasks and applications such as video action classi-

fication. Secondly, more general O3N tasks based on ran-

dom question generations process such as random sampling

seems to generate more generalizable features. Therefore,

the odd-one-out learning does not need a carefully designed

sampling process to learn good video features as apposed to

methods such as [31].

6.4. Capacity of fully connected layers.

We hypothesize that analogical reasoning tasks such as

O3N learning generates useful features. However, if one

wants to capture such information in the convolutional fil-

ters, perhaps it is better to limit the capacity of the fully con-

nected layers. To attain this objective, we have introduced

two design choices. First, we have reduced the number of

activations at the fully connected layers to have only 128 in-

stead of 4096. Secondly, we use sum of difference (SOD) as

the fusion method instead of simply concatenating (CON)

the activations in our multi-branch network architecture. In

this experiment, we evaluate the impact of both these de-

sign choices. We use the default experiment protocol but

now use O3N with random sampling. First, we evaluate

the impact of using 128 dimensional activations compared

to 4096 using sum of difference model as the fusion method.

Results are reported in Table 2. Interestingly, a reduced ca-

pacity of 128 activations obtains better results than 4096

dimensional activations for both supervised learning and

self-supervised learning. When the number of activations

is reduced to 128, the self-supervised performance increase

from 25.7% to 29.6% which is also reflected in supervised

task where the supervised action classification performance

improve from 51.3% to 53.2%. It is also possible that this

is partially, due to lack of over-fitting.

Secondly, we compare the impact of multi branch fu-

sion using feature concatenation (CON) with the sum of

Nq. self.sup.acc. split 1 split 2 split 3 mean

2 73.0 49.3 49.3 49.4 49.3

4 43.6 52.1 51.5 51.3 51.6

6 29.6 54.1 51.9 53.6 53.2

8 21.3 54.5 52.5 52.3 53.1

10 16.6 52.6 52.7 53.2 52.8

Table 3: Impact of number of question (Nq.) on O3N learn-

ing on UCF101 dataset.

differences (SOD) fusion. Results are also reported in Ta-

ble 2. Now we are comparing O3N -128-SOD with O3N -

128-CON. Interestingly, the feature concatenation obtains

the good results compared to sum of difference model for

the self-supervised task. However, the supervised action

classification results for CON is not as good as the sum

of difference (SOD) method. Even if sum of difference

method (128-SOD) has relatively poor performance on the

self-supervised task (29.6 compared to 33.6), intuitively it

has the ability to push down the abstractions about analog-

ical reasoning to the convolutional filters. Therefore, the

sum of difference model learns a better feature representa-

tions in the expense of slight performance degradation on

the task that it solves when used with odd-one-out learning.

6.5. How big the O3N questions should be?

In this experiment we evaluate the impact of O3N learn-

ing using different number of elements in each O3N ques-

tion. We use the default experimental protocol with random

sampling and train network with 2, 4, 6, 8 and 10 elements

(subsequences) in each of the question and report the super-

vised and unsupervised performance on the validation set.

Note that the self-supervised task is only trained on the split

1 of UCF101 dataset. Self-supervised task evaluated on the

validation set of UCF101 split 1. Results are reported on

Table 3. Note that O3N method with two elements reduces

to what is similar to sequence verification method [31]. As

it can be seen from the results in Table 3, as we increase the

number of elements in the O3N question, the unsupervised

task becomes harder. As a result, the unsupervised classifi-

cation accuracy decreases. However, it is interesting to see

that O3N task with two elements obtains only 49.3% ac-

curacy on the supervised classification task. However, with

the increment of elements in each question, it tends to ob-

tain better results for supervised classification task. On av-

erage best supervised results are obtained for a O3N ques-

tion consist of six elements (i.e. five related correct subse-

quences and one odd wrong subsequence). Results suggests

as the task becomes very difficult (8 and 10 elements), the

supervised results saturate and starts to decrease. This is

because when tackling a very ambiguousand hard tasks the

network may learn very little because it is not able to solve

it which is also reflected in the poor performance. When the
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Method UCF101 HMDB51

Rand Init. - Sum-of-diff. 43.4 21.8

O3N - Sum-of-diff. 54.3 25.9

Rand Init. - Dynamic image. 47.0 22.3

O3N - Dynamic image 53.2 26.0

Rand Init. - Stck.-of-diff. 50.2 28.5

O3N - Stck.-of-diff. 60.0 32.4

Table 4: Impact of several video-clip encoder methods for

odd-one-out learning using UCF101 dataset and HMDB51

over three splits.

task is too easy to solve, the network might also not learn

much ( question size of 2). In Table 3, we see this effect.

6.6. Videoclip encoding methods.

In this section we compare the impact of O3N learn-

ing using three video-clip encoding methods discussed in

the section 5. We evaluate the sum of difference of frames

(Sum-of-diff.) video-clip encoding, with the Dynamic Im-

age [5] encoding, and the stacking of sum of difference of

frames (Stck.-of-diff.) video-clip encoder. We compare the

results for action recognition using UCF101 and HMDB51

datasets on Table 4.

For UCF101 (Table 4) the random initialization using the

(Sum-of-diff.) video-clip encoding method (in section 5)

obtains only 43.4% while for the same video-clip encoder,

the O3N initialization obtains 54.3% which is a significant

improvement of 10.9%. Random initialization of dynamic

images obtains better results than the sum of difference ran-

dom initialization. However, with O3N learning, the ob-

tained results for dynamic images is 1.1% worse than the

sum of difference method. Most interestingly, the stack-

ing of difference of frames obtains the best results for both

random initialization and O3N initialization. Using O3N
learning we improve the random initialization results for

all three video-clip encoder methods with improvements of

10.9%, 6.2% and 9.8% indicating the advantage of O3N
learning for video representation learning. Similar trend can

be seen for HMDB51 dataset as well (see Table 4). When

the network is intialized with ImageNet pretrained models,

we obtain 64.9 %, 67.2 %, 70.1 % for sum-of-difference

video-clip encoding, dynamic images and stack of differ-

ence methods respectively on UCF101.

6.7. Comparing with stateoftheart.

In this section, we compare our O3N -based self super-

vised results with the other state-of-the-art self-supervised

methods. Specifically, we compare with DrLim [17], Tem-

pCoh [32], Obj. Patch [44] and Seq.Ver [31]. Results are

reported in Table 5. Note that we use only the split 1 of

UCF101 and HMDB51 so that we can compare with other

published results [31]. As it can be seen from the results,

Method UCF101-split1 HMDB51-split1

DrLim [17] 45.7 16.3

TempCoh [32] 45.4 15.9

Obj. Patch [44] 40.7 15.6

Seq. Ver. [31] 50.9 19.8

Our - Stack-of-Diff. 60.3 32.5

Rand weights - Stack-of-Diff. 51.3 28.3

ImageNet weights - Stack-of-Diff. 70.1 40.8

Table 5: Comparing with other state-of-the-art self-

supervised learning methods for action classification using

UCF101 and HMDB51 datasets.

our O3N learning-based features obtains score almost 10%

higher in UCF101 than the second best method reported

in the literature [31] that relies on sequential verification.

Similarly, we obtain massive improvement of 12.7% for

HMDB51 dataset over [31].

It should be noted that when relying on deep architec-

tures pretrained on supervised datasets, like Imagenet [9],

the state-of-the art reaches about 94.2% ([43]) using op-

tical flow, improved trajectory features and RGB data on

UCF101. These accuracies from the state-of-the art action

recognition methods are always obtained with the of inclu-

sion of several other modalities, such as optical flow, as well

as on massive supervised datasets like ImageNet [9]. With

the obtained results, we show some promising directions

in self-supervised learning for video data, which contribute

towards self-supervised deep networks that could be alter-

natives to fully supervised or semi-supervised networks in

the future.

7. Conclusion

We present odd-one-out networks (O3N), a new way to

learn visual features for videos without using category level

annotations. During feature learning, our O3N learns to do

analogical reasoning about the input data leading to better

generalizable features. Learned features are fine-tuned for

action classification and obtained 60% classification accu-

racy on UCF101 dataset without resorting to external infor-

mation or models such as pre-trained networks, or optical

flow features. Similarly, we outperform previous-state-of-

the-art results on self-supervised learning for action classi-

fication on HMDB51 dataset by more than 12%. Our O3N

can be applied over different kinds of temporal encoders.

We experimented using three video-clip encoders showing

consistent improvements across all of them. In future, we

aim to use our odd-one-out network to learn features for

images and videos jointly in self-supervised manner.
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