
Removing rain from single images via a deep detail network

Xueyang Fu1 Jiabin Huang1 Delu Zeng2 Yue Huang1 Xinghao Ding1∗ John Paisley3

1Key Laboratory of Underwater Acoustic Communication and Marine Information Technology, Ministry of Education

& School of Information Science and Engineering, Xiamen University, China
2School of Mathematics, South China University of Technology, China

3Department of Electrical Engineering & Data Science Institute, Columbia University, USA

Abstract

We propose a new deep network architecture for remov-

ing rain streaks from individual images based on the deep

convolutional neural network (CNN). Inspired by the deep

residual network (ResNet) that simplifies the learning pro-

cess by changing the mapping form, we propose a deep de-

tail network to directly reduce the mapping range from input

to output, which makes the learning process easier. To fur-

ther improve the de-rained result, we use a priori image do-

main knowledge by focusing on high frequency detail dur-

ing training, which removes background interference and

focuses the model on the structure of rain in images. This

demonstrates that a deep architecture not only has benefits

for high-level vision tasks but also can be used to solve low-

level imaging problems. Though we train the network on

synthetic data, we find that the learned network generalizes

well to real-world test images. Experiments show that the

proposed method significantly outperforms state-of-the-art

methods on both synthetic and real-world images in terms

of both qualitative and quantitative measures. We discuss

applications of this structure to denoising and JPEG arti-

fact reduction at the end of the paper.

1. Introduction

Under rainy conditions, the impact of rain streaks on im-

ages and video is often undesirable. In addition to a subjec-

tive degradation, the effects of rain can also severely affect

the performance of outdoor vision systems, such as surveil-

lance systems. Effective methods for removing rain streaks

∗Corresponding author:dxh@xmu.edu.cn This work was sup-

ported in part by the National Natural Science Foundation of

China grants 61571382, 81671766, 61571005, 81671674, U1605252,

61671309 and 81301278, Guangdong Natural Science Foundation grant

2015A030313007, Fundamental Research Funds for the Central Universi-

ties grants 20720160075 and 20720150169, and the CCF-Tencent research

fund. X. Fu conducted portions of this work at Columbia University under

China Scholarship Council grant No. [2016]3100.

Figure 1: An example real-world rainy image and our result.

are needed for a wide range of practical applications. How-

ever, when an object’s structure and orientation is similar

with that of rain streaks, it is hard to simultaneously re-

move rain and preserve structure. To address this difficult

problem, we develop an end-to-end deep network architec-

ture for removing rain from individual images. Figure 1

shows an example of a real-world test image and our result.

To date, many methods have been proposed for removing

rain from images. These methods fall into two categories:

video-based methods and single-image based methods. We

briefly review these approaches and then discuss the contri-

butions of our proposed framework.

1.1. Related work

For video-based methods, rain can be more easily identi-

fied and removed using inter-frame information [3,4,10,21,

28, 35]. Many of these methods work well, but are signif-

icantly aided by the temporal content of video. In this pa-

per we instead focus on removing rain from a single image.

This task is significantly more challenging since much less

information is available for detecting and removing rain.

Single-image based methods have been proposed to deal

with this challenging problem. For example, in [20] kernel

regression and a non-local mean filtering are used to detect

and remove rain streaks. In [6], the authors propose a gen-

eralized model in which additive rain is assumed to be low

rank. In general, however, success has been less noticeable

than in video-based algorithms and there is still much room

3855

Figure 2: The proposed framework for single-image rain removal. Middle images show absolute value for better visualization.

for improvement.

Several methods using patch-based modeling have also

been proposed and represent the current state-of-the-art [5,

14, 15, 18, 24, 25, 31]. For example, in [25] the authors use

discriminative sparse coding to recover a clean image from

a rainy image. Recently, [24] proposed a method based on

Gaussian mixture models in which patch-based priors are

used for both a clean layer and a rain layer. The authors

show how multiple orientations and scales of rain streaks

can be accounted for by such pre-trained Gaussian mixture

models.

1.2. Our contributions

As mentioned, removing rain from a single image is sig-

nificantly more difficult than from video. This is because

most existing methods separate rain streaks from images

using low-level image features [14, 18, 24, 25]. When an

object’s structures and orientations are similar with that of

rain streaks, these methods have a difficult time simultane-

ously removing rain and preserving structure. Towards fix-

ing this problem, we design a rain-removal method based

on the convolutional neural network (CNN) [22, 23]. The

deep CNN has not only achieved success on high-level vi-

sion tasks [12, 13] but has also been extended to problems

such as image denoising [34, 36], super-resolution [7, 19],

reducing artifacts of compression [8], image inpainting [26]

and image dehazing [27]. CNNs are effective at increasing

the ability of a model to explore and capture a variety of

image characteristics [30].

In this paper, we design a new network architecture for

single-image rain removal. As shown by the deep residual

network (ResNet) [12], directly reducing the mapping range

from input to output can make the learning process signifi-

cantly easier. Based on this observation, we propose a “deep

detail network” for removing the naturally high frequency

rain content and evaluate it against state-of-the-art methods

on both synthetic and real-world rainy images. The contri-

butions of this work are summarized as follows:

1. We use a lossless “negative residual mapping,” which we

abbreviate as “neg-mapping”, defined to be the differ-

ence between clean and rainy images. This is motivated

by the observation that predicting the residual can sig-

nificantly reduce the mapping range, which makes the

learning process much easier for deep models.

2. We adopt the ResNet structure [12] as the parameter

layers for a deep exploration of image characteristics.

Rather than directly apply ResNet on the images, we ex-

ploit a priori knowledge and use the image detail layer

as the input. Since this removes background interfer-

ence, most pixel values in the detail layer are very close

to zero. We find that this sparsity further improves the

de-raining quality. Building on this observation, we ar-

gue that with an appropriate network design that avoids

gradient vanishing, a deeper structure actually improves

results for de-raining. This is in contrast to a common

assumption that a deeper structure is not good for low-

level image tasks.

3. To learn the network, we create and use a synthetic

dataset of 14,000 rainy/clean image pairs. To our knowl-

edge, this is significantly larger than previous de-raining

data sets, since existing dictionary learning algorithms

typically employ inefficient learning algorithms. Al-

though the network is trained on synthetic rain data, we

find that it generalizes very well to real-world rainy im-

ages for which these pairs are unavailable.

2. A Deep Detail Network

We illustrate the proposed de-raining framework in Fig-

ure 2. As discussed below, we define the detail layer and the

negative residual to be the input and output of intermediate

parameter layers. Because we lack access to the ground

truth for real-world rainy images, we synthesize a dataset of

rainy images using clean images to train the network. After

training, the network can be used to output de-rained ver-

sions of an input rainy image.

2.1. Network design

We denote the input rainy image and corresponding

clean image as X and Y, respectively. Intuitively, a goal

may be to directly train a deep CNN architecture h(X) on

multiple images to minimize the objective function

L =
∑

i ‖h(Xi)−Yi‖
2
F , (1)

where F is the Frobenius norm. However, we found that

the result obtained by directly training on the image domain

(“direct network”) is not satisfactory. In Figure 3(b), we

show an example of a synthetic rainy image which is used

3856

(a) Ground truth (b) Rainy image (c) Direct network (d) ResNet (e) Neg-mapping (f) Neg-map+ResNet (g) Final network

Figure 3: De-rained results of different network structures. SSIM of (b)–(g) are 0.774, 0.490, 0.926, 0.936, 0.938 and 0.940,

respectively. White feathers on the bird’s back are best preserved by our networks (e)–(f). All network depths are set to 26.

(a) Clean image Y (b) Rainy image X (c) Absolute residual |Y −X| (d) Detail layer Xdetail

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pixel values

0

0.5

1

1.5

2

2.5

3

3.5

N
u
m

b
e

r
o

f
p
ix

e
ls

 (
x
 1

0
4
) R channel

G channel

B channel

(e) Histogram of Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pixel values

0

2000

4000

6000

8000

10000

N
u

m
b

e
r

o
f
p

ix
e

ls

R channel

G channel

B channel

(f) Histogram of X

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

Pixel values

R channel

G channel

B channel

0

2000

4000

6000

8000

10000

N
u

m
b

e
r

o
f
p

ix
e

ls

(g) Histogram of Y −X

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Pixel values

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u

m
b

e
r

o
f
p

ix
e

ls

R channel

G channel

B channel

(h) Histogram of Xdetail

Figure 4: Range reduction and sparsity of the negative residual and detail layer. We show |Y −X| for better visualization.

in the training process. In Figure 3(c) we see that, even

though this image is used as a training sample, the de-rained

image output by a CNN has a severe color shift. In general,

we observed that the learned regression function underfits

when directly trained on the image domain. To briefly ex-

plain this phenomenon: For simplicity, assume that images

X and Y are normalized to between [0, 1] and have D pix-

els. Learning a regression function between X and Y maps

from [0, 1]D to [0, 1]D. In other words, the mapping range

covers all possible pixel values, which makes it hard to learn

the regression function well. Moreover, training a deep

network directly on images suffers from gradient vanish-

ing [12] even when using regularization methods such as

batch normalization [16]. (As shown in Figure 10 in our ex-

periments.) We will return to this analysis after presenting

our proposed development.

2.1.1 Negative residual mapping

To improve the network learning process, it is important

to reduce the solution space by compressing the mapping

range [12]. As shown in Figure 4(e) and (g), we observe

that when compared to the clean image Y, the residual of

the rainy image Y − X has a significant range reduction

in pixel values. This implies that the residual can be in-

troduced into the network to help learn the mapping. Thus

we use the residual as the output of the parameter layers, as

shown in Figure 2. This skip connection can also directly

propagate lossless information through the entire network,

which is useful for estimating the final de-rained image. Be-

cause rain tends to appear in images as white streaks, most

values of Y − X tend to be negative, as shown in Figure

4(g). Thus we refer to this as “negative residual mapping”

(neg-mapping for short). A modified objective that incorpo-

rates this idea can be written

L =
∑

i ‖h(Xi) + Xi − Yi‖
2
F . (2)

Figure 3(d) shows the de-raining result by the popular

ResNet model [12], which we have modified to be suitable

for image regression problems (as shown in Figure 5). The

original ResNet structure removes rain streaks, but it also

blurs the bird’s feathers. In contrast, as shown in Figure

3(e) both color and object details can be preserved by sim-

ply embedding the neg-mapping without using the ResNet

3857

Figure 5: The five network architectures we considered for

the rain removal problem. (Left to right) direct network,

Neg-mapping, ResNet, ResNet+Neg-mapping and the final

deep detail network that gave the best performance.

structure (also see Figure 5). This is because the lossless

information is directly propagated and used to update pa-

rameters by the skip connection. Moreover, neg-mapping

has a lower training and testing error than ResNet, as shown

in our experiments in Figure 10. Though Figure 3(e) has a

higher structure similarity index (SSIM) [33] than ResNet,

as indicated in the caption, slight rain streaks remain in the

output. This implies that rain streaks and object details are

not totally distinguished by the model. This motivates the

following developments of the neg-mapping idea.

2.1.2 Deep detail network

Since deeper architectures can increase the flexibility and

capacity for exploring and modeling image characteristics

[30], we use the ResNet [12] structure with neg-mapping

to better distinguish rain streaks from object details. This

structure guarantees that the input information can be prop-

agated through all parameter layers, which helps to train

the network [12]. However, we observe in Figure 3(f) that,

even we if combine these two, slight rain streaks still remain

in the output. Thus, in contrast to the original ResNet ap-

proach, we use the detail layer as the input to the parameter

layers. To this end, we first model the rainy image as

X = Xdetail +Xbase, (3)

where the subscript ‘detail’ denotes the detail layer, and

‘base’ denotes the base layer. The base layer can be ob-

tained using low-pass filtering of X [11, 32, 37] after which

the detail layer Xdetail = X−Xbase. After subtracting the

base layer from the image, the interference of background

is removed and only rain streaks and object structures re-

main in the detail layer. This is shown in Figure 4(d) and

(h). We see that the detail layer is more sparse than the im-

age since most regions in the detail layer are close to zero.

Sparsity of the detail layer has been exploited in existing

de-rain methods [14, 18, 25], though not in a deep learning

framework.

Moreover, as shown in Figure 4(c),(d),(g) and (h), both

the detail layer and the neg-mapping residual exhibit signif-

icant range reduction. Therefore, the effective mapping in

this example is from smaller subsets of [0, 1]D to [0, 1]D.

This indicates that the solution space has shrunk and so net-

work performance should be improved [12].

This motivates us to combine the detail layer Xdetail

with the proposed neg-mapping Y − X as the input to the

parameter layers of ResNet. Since we train the network on

the detail layer, we refer to this as a “deep detail network.”

Figure 3(g) shows the final result by combing the proposed

deep detail network with neg-mapping (see also Figure 5).

Compared with other network structures, our final result not

only achieves a good SSIM and convergence rate (Figure

10), but also has a cleaner visual de-raining effect.

2.2. Objective function and network architecture

The input of our de-rain system is a rainy image X and

the output is an approximation to the clean image Y. Based

on the previous discussion, we define the objective function

to be,

L =
∑N

i=1 ‖f(Xi,detail,W,b) +Xi −Yi‖
2
F , (4)

where N is the number of training images, f(·) is ResNet,

W and b are network parameters that need to be learned.

For Xdetail, we first use guided filtering [11] as a low-pass

filter to split X into base and detail layers. (Other ap-

proaches were also effective in our experiments.)

Removing image indexing, our basic network structure

can be expressed as,

X
0
detail = X−Xbase, (5)

X
1
detail = σ(BN(W1 ∗X0

detail + b
1)),

X
2l
detail = σ(BN(W2l ∗X2l−1

detail + b
2l)),

X
2l+1
detail = σ(BN(W2l+1 ∗X2l

detail + b
2l+1)) +X

2l−1
detail,

Yapprox = BN(WL ∗XL−1
detail + b

L) +X,

where l = 1, ..., L−2
2

with L the total number of layers, ∗ in-

dicates the convolution operation, W contains weights and

b biases, BN(·) indicates batch normalization to alleviate

internal covariate shift [16], σ(·) is a Rectified Linear Unit

(ReLU) [22] for non-linearity. In our network, all pooling

operations are removed to preserve spatial information.

For the first layer, we use filters of size c× s1 × s1 × a1
to generate a1 feature maps; s represents filter size and c

represents the number of image channels, e.g., c = 1 for

gray-scale and c = 3 for color image. For layers 2 through

3858

(a) Ground truth (b) Rainy images (c) Method [25] (d) Method [24] (e) Our results

Figure 6: Three synthetic images with different orientations and magnitudes: (top-to-bottom) “girl”, “flower”, “umbrella”.

L−1, filters are size a1×s2×s2×a2. For the last layer, we

use filters of size a2 × s3 × s3 × c to estimate the negative

residual. The de-rained image is obtained by directly adding

the estimated residual to the rainy image X.

Discussion. It is worth noting that though the structure of

our layer parameters is based on the original ResNet [12],

as shown in Figure 5, the two networks have different moti-

vations and implementations. ResNet was designed to sim-

plify the learning process by changing the mapping form,

while our deep detail network directly reduces the mapping

range a priori using neg-mapping. ResNet aims to train an

extremely deep neural network for high-level vision tasks,

such as image classification and object detection. Our deep

network uses image domain knowledge to focus on image

regression problems and improving image quality. Where

ResNet uses the image itself as the input to the network,

our network uses the detail layer for improved training, as

well as the proposed neg-mapping.

2.3. Training

We use stochastic gradient descent (SGD) to minimize

the objective function in Equation (4). Since it is hard to

obtain a large number of clean/rainy image pairs from real-

world data, we synthesize rainy images using [1]. We col-

lect 1,000 clean images from the UCID dataset [29], the

BSD dataset [2] and Google image search to synthesize

rainy images. Each clean image was used to generate 14

rainy images with different streak orientations and magni-

tudes. Thus, we train on a dataset containing 14,000 pairs

of rainy/clean images. We randomly selected 9,100 images

from which we generated three million 64× 64 rainy/clean

patch pairs. After training, the remaining 4,900 image pairs

are used to evaluate the trained network.

3. Experiments

To evaluate our deep detail network, we use both syn-

thetic and real-world data and compare with two recent

state-of-the-art de-raining methods, one based on dictionary

learning [25] the other on mixture modeling [24]. We use

the Caffe software package to train our model [17].1 It took

approximately 14 hours to train our network using the set-

tings below.

3.1. Parameter settings

We set the detail network depth to L = 26, and use

SGD with weight decay of 10−10, momentum of 0.9 and

a mini-batch size of 20. We start with a learning rate of

0.1, dividing it by 10 at 100K and 200K iterations, and ter-

minate training at 210K iterations. We set the filter sizes

s1 = s2 = s3 = 3 and filter numbers a1 = a2 = 16, both

of which are described in Section 2.2. Larger filter sizes are

able to capture more structural information and potentially

improve results at the cost of algorithm speed; during our

experiments, we found that 3× 3 filter size generate results

that are representative of our deep network structure, while

still being computationally efficient. Since the process is

applied on color images, we set c = 3, also described in

Section 2.2. The radius of the guided filter for low-pass fil-

tering is 15.

3.2. Results on synthetic test data

Figure 6 shows visual comparisons for three synthe-

sized rainy images used for testing. As can be seen in the

1We share our Matlab implementation and synthetic rainy image

dataset at: http://smartdsp.xmu.edu.cn/cvpr2017.html

3859

http://smartdsp.xmu.edu.cn/cvpr2017.html

Table 1: Quantitative measurement results using SSIM on synthesized test images.

Images Ground truth Rainy image Method [25] Method [24] Ours

girl 1 0.65 0.71 0.80 0.90

flower 1 0.69 0.77 0.81 0.92

umbrella 1 0.75 0.80 0.82 0.86

4,900 test images 1 0.78 ± 0.12 0.83 ± 0.09 0.87 ± 0.07 0.90 ± 0.05

(a) Rainy images (b) Method [25] (c) Method [24] (d) Ours

Figure 7: Results on a real-world rainy image “street” and zoomed in region.

(a) Rainy images (b) Method [25] (c) Method [24] (d) Ours

Figure 8: Two results on real-world rainy images, (top) “people” and (bottom) “car.”

third and forth columns, method [25] leaves significant rain

streaks and method [24] contains rain artifacts. This is be-

cause methods [24, 25] only use low-level image features

to remove rain. When an object’s orientation and magni-

tude are similar with that of rain streaks, methods [24, 25]

cannot efficiently distinguish objects from rain. In contrast,

our deep CNN-based method shown in the last column can

remove rain while still preserving details.

Since the ground truth is known for the synthetic prob-

lem, we use SSIM [33] for a quantitative evaluation. A

higher SSIM indicates the de-rained image is closer to the

ground truth in terms of image structure properties. (SSIM

equals 1 for the ground truth.) As is evident in Table 1, the

artifacts from methods [24, 25] result in a lower SSIM, in

agreement with the visual effect. Also shown in Table 1 is

the quantitative performance on 4,900 testing images con-

structed as discussed in Section 2.3.

3.3. Results on real-world test data

Figures 7 and 8 show three qualitative results on real-

world images in varying proximity to objects of interest.

Qualitatively, the proposed method shows the best visual

3860

(a) Rainy images (b) De-hazed (a) (c) De-rained (b)

Figure 9: An example of heavy rain removal with dehazing.

performance on removing rain. Method [25] still contains

rain streaks while method [24] generates over-smoothed re-

sults. Since no standard high-quality reference-free quanti-

tative measure exists, we only show qualitative results for

real-world data.

When dealing with heavy rain images can become hazy.

This haziness does not appear in the synthesized images

used to train our network. In this case, we found that ap-

plying a dehazing method as pre-processing is useful. We

show an example in Figure 9, where combining our deep

network with a dehazing algorithm [27] can further improve

the visual quality on real-world rainy images.

3.4. Running time on test images

Compared with other non-deep methods, our proposed

approach can process new images very efficiently. Table 2

shows the average running time of processing a test image

for three different image sizes, each averaged over 100 test-

ing images. Methods [24, 25] are implemented using CPUs

according to the provided source code, while our method

is tested on both CPUs and GPUs. Since method [25] is

based on dictionary learning and method [24] is based on

Gaussian mixture model learning, complex optimizations

are still required to de-rain test images, which accounts for

the slower computation time. Our method has significantly

faster running time for new images since it is entirely feed-

forward after network training.

Table 2: Comparison of test running time (seconds).

Image size [25] [24] Ours (CPU) Ours (GPU)

250 × 250 54.9 169.6 1.9 0.2

500 × 500 189.3 674.8 6.3 0.3

750 × 750 383.9 1468.7 12.6 0.5

3.5. Convergence of different network structures

In Figure 10, we show the average per-image training

and testing error values as a function of training iteration

for the different deep network designs described in Figure

5. We note that the results shown thus far correspond to

the last network in Figure 5, which was selected based on

the previous discussion. Among these methods, we observe

Number of iterations ×10
5()

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M
e
a
n

S
q
u
a
re

d
E

rr
o
r

(M
S

E
)

100

200

300

400

500

600

700

800

900

1000

Convergence of different learning strategies

train error - Direct network

train error - ResNet

train error - Neg-mapping

train error - ResNet+Neg-mapping

train error - Final network

test error - Direct network

test error - ResNet

test error - Neg-mapping

test error - ResNet+Neg-mapping

test error - Final network

Figure 10: Convergence of different network structures.

The drops indicated by vertical lines at 105 and 2 × 105

iterations are due to the scheduled learning rate division.

that the “direct network” and ResNet represent previous al-

gorithms, while the remaining three represent options we

considered. We recall that at 100K and 200K iterations we

modify the step size by dividing by 10, which accounts for

the jumps at these points.

We observe that our final network has among the best

convergence rates on the training data (solid lines), while

the testing performance is slightly better than the other two

options we considered, and significantly better than the

existing “off-the-shelf” deep learning approaches (dotted

lines). We believe this improved performance is because

we reduce the mapping range using neg-mapping in com-

bination with the detail layer, which benefits the regression

problem as discussed in Section 2. Moreover, our final net-

work has a slightly cleaner visual de-raining effect than the

other network structures, as previously shown in Figure 3.

3.6. Network depth versus breadth

It is commonly believed that deeper structures are not

good for low-level image tasks [7, 27]. However, we ar-

gued above that, with an appropriate network design that

incorporates domain knowledge, deeper structures can help

to increase the network’s modeling capacity and improve

the de-raining result. This increased capacity can come in

two forms: one is to increase the depth of the network by

stacking more hidden layers, and the other is to increase

the breadth of network by using more filters in each hidden

layer. In this section, we test the impact of network depth

and breadth on 100 synthetic rainy images.

Specifically, we test for depth L =∈ {14, 26, 50} and fil-

ter numbers a1 = a2 ∈ {16, 32, 64}; we show these results

Table 3: Average SSIM using different network sizes.

a1 = a2 = 16 a1 = a2 = 32 a1 = a2 = 64

L = 14 0.906 0.912 0.915

L = 26 0.916 0.920 0.920

L = 50 0.921 0.926 0.928

3861

Table 4: Average SSIM on 100 synthetic testing images.

(Max std = 0.032, min std = 0.026)

depth 8 14 20 26 50

ResNet 0.896 0.904 0.909 0.907 0.917

Ours 0.896 0.906 0.915 0.916 0.921

(a) Ours 26|0.940 (b) ResNet 50|0.942 (c) ResNet 26|0.926

Figure 11: Deraining performance (#layers|SSIM)

in Table 3. As is clear, adding more hidden layers achieves

better results over increasing the number of filters per layer.

From this, we believe that with appropriate network design

to avoid gradient vanishing, deeper structures can improve

the modeling result. To balance the trade-off between per-

formance and speed, we chose depth L = 26 and filter

numbers a1 = a2 = 16 for our experiments above. We

also compared performance of our network with ResNet as

a function of depth. As shown in Table 4 and Figure 11,

for deeper models, our network generates results that are

comparable to ResNet using half the number of layers.

3.7. Comparison with deep learning based method

We also experimented with the deep learning approach

designed for window dirt/drop removal [9], the only other

related deep learning approach we are aware of for a related

problem. As shown in Figure 12, the model in [9] does not

compare well with our method. This is because the method

developed in [9] corresponds to the direct network of Figure

5 using three layers. As motivated in Section 2, training di-

rectly on the image domain has drawbacks and doesn’t per-

form well with deeper structures, hence the worse perfor-

mance of [9]. By using negative mapping and pre-filtering

the image, we showed how deeper structures can actually

aid de-raining and improve performance.

3.8. Extension: Noise and JPEG artifacts reduction

Finally, we mention that our deep detail network can be

directly applied to other kinds of degraded images. Fig-

ure 13 shows the experimental results of image denois-

ing and JPEG compression artifact reduction. This test

demonstrates that the proposed network is actually a gen-

eral framework for image processing tasks.

(a) Rainy images (b) [9] (SSIM=0.78) (c) Ours (SSIM=0.86)

Figure 12: Comparison with deep learning method [9].

(a) Noise (top) and JPEG (bottom) (b) Our results

Figure 13: Denoising and reducing JPEG artifacts.

4. Conclusion

We have presented an end-to-end deep learning frame-

work for removing rain from individual images. We showed

that combining the high frequency detail layer content of

an image and regressing on the negative residual informa-

tion has benefits for de-raining performance, since it makes

the training process easier by reducing the mapping range.

Since we do not possess the ground truth clean images

corresponding to real-world rainy images, we synthesized

clean/rainy image pairs for network learning, and showed

how the learned network still transfers well to real-world

images. We showed that our method noticeably outper-

forms other state-of-the-art methods, based on dictionary

learning and mixture modeling frameworks, with respect to

image quality and computational efficiency.

As indicated in Section 3.8, the motivations for our “deep

detail network” approach applies equally well to other prob-

lems, such as image denoising and JPEG artifact reduc-

tion. When the corruptions between the desired image

and observed image are of high-frequency, training a net-

work to map from the high-frequency input details to the

high-frequency output differences significantly simplifies

the deep learning problem. As we observed, this trans-

lates to significant improvement of the performance of the

learned network on new images.

3862

References

[1] http://www.photoshopessentials.com/photo-effects/rain/.

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour detection and hierarchical image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

3(5):898–916, 2011.

[3] P. C. Barnum, S. Narasimhan, and T. Kanade. Analysis of

rain and snow in frequency space. International Journal of

Computer Vision, 86(2-3):256–274, 2010.

[4] J. Bossu, N. Hautiere, and J. Tarel. Rain or snow detection

in image sequences through use of a histogram of orienta-

tion of streaks. International Journal of Computer Vision,

93(3):348–367, 2011.

[5] D. Y. Chen, C. C. Chen, and L. W. Kang. Visual depth guided

color image rain streaks removal using sparse coding. IEEE

Transactions on Circuits and Systems for Video Technology,

24(8):1430–1455, 2014.

[6] Y. L. Chen and C. T. Hsu. A generalized low-rank appear-

ance model for spatio-temporally correlated rain streaks. In

ICCV, 2013.

[7] C. Dong, C. L. Chen, K. He, and X. Tang. Image

super-resolution using deep convolutional networks. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

38(2):295–307, 2016.

[8] C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression ar-

tifacts reduction by a deep convolutional network. In ICCV,

2015.

[9] D. Eigen, D. Krishnan, and R. Fergus. Restoring an image

taken through a window covered with dirt or rain. In ICCV,

2013.

[10] K. Garg and S. K. Nayar. Detection and removal of rain from

videos. In CVPR, 2004.

[11] K. He, J. Sun, and X. Tang. Guided image filtering. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

35(6):1397–1409, 2013.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In ECCV, 2016.

[14] D. A. Huang, L. W. Kang, Y. C. F. Wang, and C. W. Lin.

Self-learning based image decomposition with applications

to single image denoising. IEEE Transactions on Multime-

dia, 16(1):83–93, 2014.

[15] D. A. Huang, L. W. Kang, M. C. Yang, C. W. Lin, and Y. C. F.

Wang. Context-aware single image rain removal. In IEEE

ICME, 2012.

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In ACM Interna-

tional Conference on Multimedia, 2014.

[18] L. W. Kang, C. W. Lin, and Y. H. Fu. Automatic single

image-based rain streaks removal via image decomposition.

IEEE Transactions on Image Processing, 21(4):1742–1755,

2012.

[19] J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-

resolution using very deep convolutional networks. In CVPR,

2016.

[20] J. H. Kim, C. Lee, J. Y. Sim, and C. S. Kim. Single-image

deraining using an adaptive nonlocal means filter. In IEEE

ICIP, 2013.

[21] J. H. Kim, J. Y. Sim, and C. S. Kim. Video deraining

and desnowing using temporal correlation and low-rank ma-

trix completion. IEEE Transactions on Image Processing,

24(9):2658–2670, 2015.

[22] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet clas-

sification with deep convolutional neural networks. In NIPS,

2012.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[24] Y. Li, R. T. Tan, X. Guo, J. Lu, and M. S. Brown. Rain streak

removal using layer priors. In CVPR, 2016.

[25] Y. Luo, Y. Xu, and H. Ji. Removing rain from a single image

via discriminative sparse coding. In ICCV, 2015.

[26] J. S. Ren, L. Xu, Q. Yan, and W. Sun. Shepard convolutional

neural networks. In NIPS, 2015.

[27] W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M. H. Yang.

Single image dehazing via multi-scale convolutional neural

networks. In ECCV, 2016.

[28] V. Santhaseelan and V. K. Asari. Utilizing local phase infor-

mation to remove rain from video. International Journal of

Computer Vision, 112(1):71–89, 2015.

[29] G. Schaefer and M. Stich. UCID: An uncompressed color

image database. In Storage and Retrieval Methods and Ap-

plications for Multimedia, 2003.

[30] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

[31] C.-H. Son and X.-P. Zhang. Rain removal via shrinkage of

sparse codes and learned rain dictionary. In IEEE ICME,

2016.

[32] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In ICCV, 1998.

[33] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: From error visibility to struc-

tural similarity. IEEE Transactions on Image Processing,

13(4):600–612, 2004.

[34] J. Xie, L. Xu, E. Chen, J. Xie, and L. Xu. Image denoising

and inpainting with deep neural networks. In NIPS, 2012.

[35] S. You, R. T. Tan, R. Kawakami, Y. Mukaigawa, and

K. Ikeuchi. Adherent raindrop modeling, detection and re-

moval in video. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 38(9):1721–1733, 2016.

[36] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Be-

yond a gaussian denoiser: Residual learning of deep CNN

for image denoising. IEEE Transactions on Image Process-

ing, 2017. doi: 10.1109/TIP.2017.2662206.

[37] Q. Zhang, X. Shen, L. Xu, and J. Jia. Rolling guidance filter.

In ECCV, 2014.

3863

