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Abstract

A human action can be seen as transitions between one’s

body poses over time, where the transition depicts a tempo-

ral relation between two poses. Recognizing actions thus

involves learning a classifier sensitive to these pose transi-

tions as well as to static poses. In this paper, we introduce a

novel method called transitions forests, an ensemble of de-

cision trees that both learn to discriminate static poses and

transitions between pairs of two independent frames. Dur-

ing training, node splitting is driven by alternating two cri-

teria: the standard classification objective that maximizes

the discrimination power in individual frames, and the pro-

posed one in pairwise frame transitions. Growing the trees

tends to group frames that have similar associated transi-

tions and share same action label incorporating temporal

information that was not available otherwise. Unlike con-

ventional decision trees where the best split in a node is de-

termined independently of other nodes, the transition forests

try to find the best split of nodes jointly (within a layer) for

incorporating distant node transitions. When inferring the

class label of a new frame, it is passed down the trees and

the prediction is made based on previous frame predictions

and the current one in an efficient and online manner. We

apply our method on varied skeleton action recognition and

online detection datasets showing its suitability over several

baselines and state-of-the-art approaches.

1. Introduction

Recognizing and localizing human actions is an impor-

tant and classic problem in computer vision [1, 7] with a

wide range of applications including pervasive health-care,

robotics, game control, etc. With recently introduced cost-

effective depth sensors and reliable real-time body pose

estimation [22], skeleton-based action recognition has be-

come popular because of the advantage of pose features

over raw RGB video approaches in both accuracy and ef-

ficiency [33].

Popular approaches for action recognition and localiza-

tion include using generative models such as state-space

models [14, 31]; or tackling it as a classification problem

of either the whole sequence [26, 40], a small chunk of

frames [10, 36] or deep recurrent models [9, 16]. The best

performing methods focus either on modelling the tempo-

ral dynamics using time-series models [37] or recognizing

key-poses [38], showing that both static and dynamic infor-

mation are important cues for actions. Motivated by this,

we consider decision forests [3], which have been widely

adopted in computer vision [22, 24, 33], owing to many de-

sired properties: clusters obtained in leaf nodes, scalability,

robustness to overfitting, multiclass learning and efficiency.

The main challenge of using decision forests for tem-

poral problems lies in dealing with temporal dependencies.

Previous approaches encode the temporal variable in the

feature space by stacking multiple frames [10], handcraft-

ing temporal features [34, 40] or creating codebooks [34].

However, these methods require the temporal cues to be ex-

plicitly given instead of automatically learning them. At-

tempting to relieve this, [11, 33] add a temporal regres-

sion term and frames individually vote for an action cen-

ter, breaking the temporal continuity and thus not fully cap-

turing the temporal dynamics. [14] proposed a generative

state-space without exploiting the benefit of having rich la-

belled data. [6] groups pairs of distant frames and grows

trees using handcrafted split functions to cover different

label transitions, with the difficulty of designing domain-

specific functions and making the model complexity to in-

crease with the number of labels.

In this work, we propose ‘transition forests’, an ensem-

ble of randomized tree classifiers that learns both static

pose information and temporal transitions in a discrimina-

tive way. Temporal dynamics are learned while training

the forest (besides any temporal dependencies in the feature

space) and predictions are made by taking into account pre-

vious predictions. Introducing previous predictions makes

the learning problem more challenging as a consequence

of the “chicken and egg” problem: making a decision in a

node that depends on the decision in other nodes and vice
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versa. To tackle this problem, we propose a training proce-

dure that iteratively groups pairs of frames that have similar

associated frame transitions and class label in a given level

of the tree. We combine both static and transition informa-

tion by randomly assigning nodes to be optimized by clas-

sification or transition criteria. In the end of tree growth,

training frames arriving at leaf nodes represent effectively a

class label and associated transitions. We found that adding

such temporal relation in training helped to obtain more ro-

bust single frame predictions. Using single frames helped

us in keeping the complexity low and being able to make

online predictions, two crucial conditions to make our ap-

proach applicable to real life scenarios.

2. Related work

Skeleton-based action recognition. Generative mod-

els [14, 31, 32] such as Hidden Markov Models (HMM)

have been proposed with the disadvantages of being difficult

to estimate model parameters and time consuming learn-

ing and inference stages. Discriminative approaches have

been widely adopted due to their superior performance and

efficiency. For instance, [29] extracts local features from

body joints captures temporal dynamics using Fourier Tem-

poral Pyramids (FTP), further classifying the sequence us-

ing Support Vector Machines (SVM). Similarly, [26, 27]

represents the whole skeletons as points in a Lie group be-

fore temporally aligning sequences using Dynamic Time

Warping (DTW) and applying FTP. [36] proposes a Moving

Pose descriptor (MP) using both pose and atomic motion

information and then temporally mining key frames using

a k-NN aproach in contrast to [12] that uses DTW. Using

key frames or key motion units has been also studied by

[8, 28, 38] showing good performance revealing that static

information is important to recognize actions. Recently,

deep models using Recurrent Neural Networks (RNN) [9]

and Long-Short Term Memory (LSTM) [25, 39] have been

proposed to model temporal dependencies, but showed in-

ferior performance than recent (offline) models that explic-

itly exploit static information [28, 30] or well-suited time-

series mining [37]. Our forest learns bost static per-frame

and temporal information in a discriminative way.

Skeleton-based online action detection. Detecting ac-

tions on streaming data [7] has been less explored than rec-

ognizing segmented sequences, while being more interest-

ing in real scenarios. Early approaches [10] include using

short sequences of frames or short motion information [36]

to vote if an action is being performed. A similar approach

but adding multi-scale information was proposed by [20],

while [17] proposed a dynamic bag of features. Recently,

[16] introduced a more realistic dataset, baseline methods

and shown state-of-the-art performance with a classifica-

tion/regression RNN, later improved by [2] with the use of

RGB-D spatio-temporal contexts and decision forests.

Forests and temporal data. Standard forest approaches

for action recognition such as [10] directly stack frames and

grows forests to classify them. [19, 40] create bags of poses

and classified the whole sequences. Using the clustering

properties of trees, [34] construct codebooks with the help

of different heuristic rules capturing structural information.

These approaches require the temporal cues to be directly

encoded in the feature space. To relieve this, [4, 33, 35] add

a temporal regression term and maps appearance and pose

features to vote in an action Hough space. [11] proposes

Trajectory Hough Forest (THF) that computes histograms

of tree paths over consecutive color and flow trajectory

patches and uses them as weights for prediction. However,

in Hough frameworks, temporal information is captured as

temporal offsets with respect to a temporal center of inde-

pendent samples, breaking the temporal continuity and re-

quiring the whole sequence to be observed. On the contrary,

we explicitly capture the rich temporal dynamics and are

able to perform online predictions. [6] proposes Pairwise

Conditional Random Forests (PCRF) for facial expression

recognition consisting of trees of which handcrafted split

functions operate on pairs of frames. These pairs are formed

to cover different facial dynamics and fed into multiple sub-

sets of decision trees that are conditionally drawn based on

different label transitions, making the ensemble size propor-

tional to the number of labels. By contrast, our layer-wise

optimization tries to automatically learn the best node splits

based on single frames maximizing both static and transi-

tion information within the same tree and thus not needing

handcrafted split functions or to create different trees based

on different labels. Generative methods based on forests

include Dynamic Forest Models (DFM) [14], which are en-

sembles of autoregressive trees that store multivariate dis-

tributions at their leaf nodes. These distributions model

observation probabilities given short history of previous k
frames. Similar to HMM, a decision forest is trained for

each action label and inference is performed maximizing

likelihood of the observed sequence. Recently, [5] proposed

to learn smooth temporal regressors for real time camera

planning. We share with [5] the recurrent nature of making

online predictions conditioned on our own previous predic-

tions, however our approach differs in how the recurrency is

defined in both learning and inference stages. We compare

some relevant methods in Section 4.

Tree-based methods for structured prediction. A re-

lated line of work [13, 18, 21, 23] proposes decision forests

methods for image segmentation. The objective of these

approaches is to obtain coherent pixel labels and, in or-

der to connect multiple pixel predictions, decision forests

are linked with probabilistic graphical models. While these

methods focus on the spatial coherence of predictions in

an image space, our method tries to capture discriminative

changes of data/prediction in a temporal domain.
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3. Transition forests

Suppose we are given a training set S composed of tem-

poral sequences of input-output pairs f (x1, y1), ..., (xt , yt )g
where xt is a frame feature vector encoding pose informa-

tion and yt is its corresponding action label (or background

in detection setting). Our objective is to infer yt for every

given xt using decision trees. On a decision tree, an input

instance xt starts at the root and traverses different internal

nodes until it reaches a leaf node. Each internal node i 2 N
contains a binary split function f with parameters θi decid-

ing whether the instance should be directed to the left or to

the right child nodes.

Consider the set of nodes N l � N at a level l of a deci-

sion tree. Let Si denote the set of labeled training instances

(xt , yt ) that reached node i (see Fig. 1). For each pair of

nodes i, j 2 N l , we can compute the set of pairs of frames

T j
i that travel from node i to node j in d time steps as:

T j
i = ff (xt � d, yt � d), (xt , yt )g j

(xt � d, yt � d) 2 Si ^ (xt , yt ) 2 Sj g , (1)

where we term the set of pairs of frames T j
i as transitions

from node i to j. Note that T j
i depends on frames that

reached nodes i and j and time distance d. In order to cap-

ture different temporal patterns, we vary the distance d from

one to a k-distant frame. In the following, we will refer to

parameter k as the temporal order of the transition forest.

In the example shown in Fig. 1 we observe that the de-

cision f (θ0, S0) is quite good as it separates S0 in two sets,

S1 and S2, in which one action label predominates. If we

examine the transitions associated to this split, we see that

we obtain two pure sets, T 1
1 and T 2

2 , one mixed set T 1
2 and

one empty set T 2
1 . Imagine now that we observe the ‘kick’

frame in S1 and we would have to make a decision based on

this split, we would certainly assign the wrong label ‘duck’

with an uncertainty of 2/3. Alternatively, if we check the

previous observed frame (in S2) and inspect its associated

transition T 1
2 , the uncertainty is now 1/2 and thus we would

be less inclined to make a wrong decision.

From the above example, we deduce that if we had ob-

tained a better split and both child nodes were pure, we

would certainly make a good decision by only looking at

child nodes. However, good splits are difficult to learn if

the temporal dynamics are not well captured on the fea-

ture space. On the other hand, if we had obtained a split

that made transitions pure, we could also make a good deci-

sion. These observations motivate us to study how learning

transitions between frames can help us to improve our pre-

dictions by introducing temporal information that was not

available otherwise.

T 1
1

S0

1 2

0

T 1
2

T 2
2

θ0

S1 S2

Figure 1: Consecutive frames representing two different ac-

tions (in purple ‘duck’, in orange ‘kick’) arrive at node 0.

These frames are split in two different subsets S1 and S2

corresponding to child nodes 1 and 2. We compute the tran-

sitions as pairs of d-distant frames (d = 1 in this example)

and we group them according to the route of each individual

frame. T 1
1 and T 2

2 present only one transition, while T 1
2 two

(one per class) and T 2
1 is empty. T j

i are determined by θ0.

3.1. Learning transition forests

Our method for training a transition tree works by grow-

ing a tree one level at a time similar to [23]. At each level,

we randomly assign one splitting criterion to each node,

choosing between classification and transition. The clas-

sification criterion maximizes the class separation of static

poses while the transition criterion groups frames that share

similar transitions. As mentioned above, in order to max-

imize the span of temporal information learned, we learn

transitions between d-distant pairs of frames (Eq. 1) from

previous frame up to the temporal order of the forest, k.

For each tree, we randomly assign a value of d in the men-

tioned range and we keep it constant during the growth of

this particular tree. For a total ensemble of M trees we

will have subsets of trees trained with different d value:

M = M 1 [ ... [ M k .

Consider a node i 2 N l and a decision θi . According to

θi , the instances in Si are directed to its left or right child

nodes, 2i+1 and 2i+2 respectively, as S2i +1 = f (xt , yt ) 2
Si j f (θi , xt ) � 0g and S2i +2 = Si n S2i +1 . Note that

the split function f operates on a single frame, which will

be shown important in the inference stage. After splitting,

we can compute the sets of transitions between their child

nodes f 2i+ 1 , 2i+ 2g � N l +1 as f T 2i + n
2i + m gm;n 2f 1;2g. Note

that T i
i is split in four disjoints sets, each one related to

the combination of transitions associated to its child nodes.

The decision θi is chosen based on the minimization of an

objective function.

Objective function. The objective function has two as-

sociated terms: one for single frame classification Ec and

one for transitions between child nodes denoted as Et . The
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