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(a) Content (b) Spatial Control (c) Colour Control (d) Scale Control

Figure 1: Overview of our control methods. (a) Content image, with spatial mask inset. (b) Spatial Control. The sky is stylised using the

sky of Style II from Fig. 2(c). The ground is stylised using Style I from Fig. 4(b). (c) Colour Control. The colour of the content image

is preserved using luminance-only style transfer described in Section 5.1. (d) Scale Control. The fine scale is stylised using using Style I

from Fig. 4(b) and the coarse scale is stylised using Style III from Fig. 4(b). Colour is preserved using the colour matching described in

section 5.2.

Abstract

Neural Style Transfer has shown very exciting results en-

abling new forms of image manipulation. Here we extend

the existing method to introduce control over spatial lo-

cation, colour information and across spatial scale12. We

demonstrate how this enhances the method by allowing

high-resolution controlled stylisation and helps to alleviate

common failure cases such as applying ground textures to

sky regions. Furthermore, by decomposing style into these

perceptual factors we enable the combination of style infor-

mation from multiple sources to generate new, perceptually

appealing styles from existing ones. We also describe how

these methods can be used to more efficiently produce large

size, high-quality stylisation. Finally we show how the in-

troduced control measures can be applied in recent methods

for Fast Neural Style Transfer.

1. Introduction

Example-based style transfer is a major way to create

new, perceptually appealing images from existing ones. It

takes two images xS and xC as input, and produces a new

image x̂ applying the style of xS to the content of xC . The

concepts of “style” and “content” are both expressed in

terms of image statistics; for example, two images are said

1Code: github.com/leongatys/NeuralImageSynthesis
2Supplement: bethgelab.org/media/uploads/stylecontrol/supplement/

to have the same style if they embody the same correlations

of specific image features. To provide intuitive control over

this process, one must identify ways to access perceptual

factors in these statistics.

In order to identify these factors, we observe some of the

different ways that one might describe an artwork such as

Vincent van Gogh’s A Wheatfield with Cypresses (Fig. 2(c)).

First, one might separately describe different styles in dif-

ferent regions, such as in the sky as compared to the ground.

Second, one might describe the colour palette, and how

it relates to the underlying scene, separately from factors

like image composition or brush stroke texture. Third, one

might describe fine-scale spatial structures, such as brush

stroke shape and texture, separately from coarse-scale struc-

tures like the arrangements of strokes and the swirly struc-

ture in the sky of the painting. These observation motivates

our hypothesis: image style can be perceptually factorised

into style in different spatial regions, colour and luminance

information, and across spatial scales, making them mean-

ingful control dimensions for image stylisation.

Here we build on this hypothesis to introduce meaning-

ful control to a recent image stylisation method known as

Neural Style Transfer [8] in which the image statistics that

capture content and style are defined on feature responses in

a Convolutional Neural Network (CNN) [22]. Namely, we

introduce methods for controlling image stylisation inde-

pendently in different spatial regions (Fig. 1(b)), for colour

and luminance information (Fig. 1(c)) as well as on different

spatial scales (Fig. 1(d)). We show how they can be applied
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to improve Neural Style Transfer and to alleviate some of its

common failure cases. Moreover, we demonstrate how the

factorisation of style into these aspects can gracefully com-

bine style information from multiple images and thus en-

able the creation of new, perceptually interesting styles. We

also show a method for efficiently rendering high-resolution

stylisations using a coarse-to-fine approach that reduced op-

timisation time by an approximate factor of 2.5. Finally,

we show that in addition to the original optimisation-based

style transfer, these control methods can also be applied to

recent fast approximations of Neural Style Transfer [13, 23]

2. Related Work

There is a large body of work on image stylisation

techniques. The first example-based technique was Image

Analogies [12], which built on patch-based texture synthe-

sis techniques [4, 26]. This method introduced stylisation

based on an example painting, as well as ways to preserve

colour, and to control stylisation of different regions sep-

arately. The method used a coarse-to-fine texture synthe-

sis procedure for speed [26]. Since then, improvements

to the optimisation method and new applications [20, 6]

have been proposed. Patch-based methods have also been

used with CNN features [16, 2], leading to improved tex-

ture representations and stylisation results. Scale control

has been developed for patch-based texture synthesis [9]

and many other techniques have been developed for trans-

ferring colour style [5]. There are also many procedural

stylisation techniques that provide extensive user control in

the non-photorealistic rendering literature, e.g., [1, 15, 18].

These procedural methods provide separate controls for ad-

justing spatial variation in styles, colour transformation, and

brush stroke style, but cannot work from training data.

More recently, Neural Style Transfer [8] has demon-

strated impressive results in example-based image stylisa-

tion. The method is based on a parametric texture model

[14, 10, 19] defined by summary statistics on CNN re-

sponses [7] and appears to have several advantages over

patch-based synthesis. Most prominently, during the styli-

sation it displays a greater flexibility to create new image

structures that are not already present in the source images

[16].

However, the representation of image style within the

parametric neural texture model [7] allows far less intuitive

control over the stylisation outcome than patch-based meth-

ods. The texture parameters can be used to influence the

stylisation but their interplay is extremely complex due to

the complexity of the deep representations they are defined

on. Therefore it is difficult to predict their perceptual effect

on the stylisation result. Our main goal in this work is to

introduce intuitive ways to control Neural Style Transfer to

combine the advantages of that method with the more fine-

grained user control of earlier stylisation methods. Note

that concurrent work [27] independently developed a simi-

lar approach for spatial control as presented here.

3. Neural Style Transfer

The Neural Style Transfer method [8] works as follows.

We define a content image xC and a style image xS with

corresponding feature representations Fℓ(xC) and Fℓ(xS) in

layer ℓ of a CNN. Each column of Fℓ(x) is a vectorised fea-

ture map and thus Fℓ ∈ RMℓ(x)×Nℓ where Nℓ is the number

of feature maps in layer ℓ and Mℓ(x) = Hℓ(x) ×Wℓ(x) is

the product of height and width of each feature map. Note

that while Nℓ is independent of the input image, Mℓ(x) de-

pends on the size of the input image.

Neural Style Transfer generates a new image x̂ that de-

picts the content of image xC in the style of image xS by

minimising following loss function with respect to x̂

Ltotal = αLcontent + βLstyle (1)

where the content term compares feature maps at a single

layer ℓC :

Lcontent =
1

NℓcMℓc(xC)

∑

ij

(Fℓc(x̂)− Fℓc(xC))
2
ij (2)

and the style term compares a set of summary statistics:

Lstyle =
∑

ℓ

wℓEℓ (3)

Eℓ =
1

4N2
ℓ

∑

ij

(Gℓ(x̂)− Gℓ(xS))
2
ij (4)

where Gℓ(x) = 1
Mℓ(x)Fℓ(x)

T Fℓ(x) is the Gram Ma-

trix of the feature maps in layer ℓ in response to im-

age x. As in the original work [8], we use the

VGG-19 Network and include “conv4 2” as the layer

ℓC for the image content and Gram Matrices from lay-

ers “conv1 1”,“conv2 1”,“conv3 1”,“conv4 1”,“conv5 1”

as the image statistics that model style.

4. Spatial Control

We first introduce ways to spatially control Neural Style

Transfer. Our goal is to control which region of the style

image is used to stylise each region in the content image.

For example, we would like to apply one style to the sky re-

gion and another to the ground region of an image to either

avoid artefacts (Fig. 2(d),(e)) or to generate new combina-

tions of styles from multiple sources (Fig. 2(f)). We take

as input R spatial guidance channels Tr for both the con-

tent and style image (small insets in (Fig. 2(a)-(c)). Each of

these is an image map of values in [0, 1] specifying which

styles should be applied where: regions where the rth con-

tent guidance channel is equal to 1 should get the style from
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regions where the rth style guidance channel is 1. When

there are multiple style images, the regions index over all

the example images. The guidance channels are propagated

to the CNN to produce guidance channels Tr
ℓ for each layer.

This can be done by simple re-sampling or more involved

methods as we explain later in this section. We first discuss

algorithms for synthesis given the guidance maps.

4.1. Guided Gram Matrices

In the first method we propose, we multiply the feature

maps of each layer included in the style features with R
guidance channels Tr

ℓ and compute one spatially guided

Gram Matrix for each of the R regions in the style image.

Formally we define a spatially guided feature map as

Fr
ℓ(x)[:,i] = Tr

ℓ ◦ Fℓ(x)[:,i] (5)

Here Fr
ℓ(x)[:,i] is the ith column vector of Fr

ℓ(x), r ∈ R and ◦

denotes element-wise multiplication. The guidance channel

Tr
ℓ is vectorised and can be either a binary mask for hard

guidance or real-valued for soft guidance. We normalise Tr
ℓ

such that
∑

i(T
r
ℓ)

2
i = 1. The guided Gram Matrix is then

Gr
ℓ(x) = Fr

ℓ(x)
T Fr

ℓ(x) (6)

Each guided Gram Matrix is used as the optimisation tar-

get for the corresponding region of the content image. The

contribution of layer ℓ to the style loss is then:

Eℓ =
1

4N2
ℓ

R
∑

r=1

∑

ij

λr (G
r
ℓ(x̂)− Gr

ℓ(xS))
2
ij (7)

where λr is a weighting factor that controls the stylisation

strength in the corresponding region r.

An important use for guidance channels is to ensure that

style is transferred between regions of similar scene con-

tent in the content and style image. For example, Figure 2

shows an example in which the sky in the content image has

bright clouds, whereas the sky in the style image has grey-

ish clouds; as a result, the original style transfer stylises the

sky with a bright part of the ground that does not match the

appearance of the sky. We address this by dividing both

images into a sky and a ground region (Fig. 2(a),(b) small

insets) and require that the sky and ground regions from the

painting are used to stylise the respective regions in the pho-

tograph (Fig. 2(e)).

Given the input guidance channel Tr, we need to first

propagate this channel to produce guidance channels Tr
ℓ for

each layer. The most obvious approach would be to down-

sample Tr to the dimensions of each layer’s feature map.

However, we often find that doing so fails to keep the de-

sired separation of styles by region, e.g., ground texture still

appears in the sky. This is because neurons near the bound-

aries of a guidance region can have large receptive fields

(a) Content (b) Style I

(d) Output using [8]

(e) Output with spatial control

(c) Style II

(f) Output spatially combining styles I and II

Figure 2: Spatial guidance in Neural Style Transfer. (a) Content

image. (b) Style image I. (c) Style image II. Spatial mask separat-

ing the image in sky and ground is shown in the top right corner.

(d) Output from Neural Style Transfer without spatial control [8].

The clouds are stylised with image structures from the ground. (e)

Output with spatial guidance. (f) Output from spatially combining

the the ground-style from (b) and the sky-style from (c).
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that overlap into the other region. Instead we use an eroded

version of the spatial guiding channels. We enforce spa-

tial guidance only on the neurons whose receptive field is

entirely inside the guidance region and add another global

guidance channel that is constant over the entire image. We

found that this soft spatial guidance usually yields better re-

sults. For further details on the creation of guidance chan-

nels, see the Supplementary Material, section 1.1.

Another application of this method is to generate a new

style by combining the styles from multiple example im-

ages. Figure 2(f) shows an example in which the region

guidance is used to use the sky style from one image and

the ground style from another. This example demonstrates

the potential of spatial guidance to combine many example

styles together to produce new stylisations.

4.2. Guided Sums

Alternatively, instead of computing a Gram Matrix for

each guidance channel, we can also just stack the guid-

ance channels with the feature maps as it is done in

[2] to spatially guide neural patches [16]. The feature

representation of image x in layer ℓ is then F′

ℓ(x) =
[

Fℓ(x),T1
ℓ ,T2

ℓ , ...,TR
ℓ

]

and F′

ℓ(x) ∈ R(Nℓ+R)×Mℓ(x). Now

the Gram Matrix G′

ℓ(x) =
1

Mℓ(x)F′

ℓ(x)
T F′

ℓ(x) includes cor-

relations of the image features with the non-zero entries of

the guidance channels and therefore encourages that the fea-

tures in region r of the style image are used to stylise region

r in the content image. The contribution of layer ℓ to the

style loss is simply

Eℓ =
1

4N2
ℓ

∑

ij

(

G′

ℓ(x̂)− G′

ℓ(xS)
)2

ij
(8)

This is clearly more efficient than the method presented in

Section 4.1. Instead of computing and matching R Gram

Matrices one only has to compute one Gram Matrix with R
additional channels. Nevertheless, this gain in efficiency

comes at the expense of texture quality. The additional

channels in the new Gram Matrix are the sums over each

feature map spatially weighted by the guidance channel.

G′

ℓ(xS)i,Nℓ+r =
∑

j

(

Tr
ℓ ◦ Fℓ(xS)[:,i]

)

j
(9)

Hence this method actually interpolates between matching

the original global Gram Matrix stylisation and the spatially

weighted sums over the feature maps. While the feature

map sums also give a non-trivial texture model, their ca-

pacity to model complex textures is limited [7]. In practice

we find that this method can often give decent results but

also does not quite capture the texture of the style image –

as would be expected from the inferior texture model. Re-

sults and comparisons can be found in the Supplementary

Material, section 1.2.

5. Colour Control

The colour information of an image is an important per-

ceptual aspect of its style. At the same time it is largely

independent of other style aspects such as the type of brush

strokes used or dominating geometric shapes. Therefore it

is desirable to independently control the colour information

in Neural Style Transfer. A prominent use case for such

control is colour preservation during style transfer. When

stylising an image using Neural Style Transfer, the output

also copies the colour distribution of the style image, which

might be undesirable in many cases (Fig. 3(c)). For exam-

ple, the stylised farmhouse has the colours of the original

van Gogh painting (Fig. 3(c)), whereas one might prefer

the output painting to preserve the colours of the farmhouse

photograph. In particular, one might imagine that the artist

would have used the colours of the scene if they were to

paint the farmhouse. Here we present two simple methods

to preserve the colours of the source image during Neural

Style Transfer — in other words, to transfer the style with-

out transferring the colours. We compare two different ap-

proaches to colour preservation: colour histogram matching

and luminance-only transfer (Fig. 3(d,e)).

5.1. Luminance­only transfer

In the first method we perform style transfer only in the

luminance channel, as done in Image Analogies [12]. This

is motivated by the observation that visual perception is far

more sensitive to changes in luminance than in colour [25].

The modification is simple. The luminance channels LS

and LC are first extracted from the style and content im-

ages. Then the Neural Style Transfer algorithm is applied

to these images to produce an output luminance image L̂.

Using a colour space that separates luminance and colour

information, the colour information of the content image is

combined with L̂ to produce the final colour output image

(Fig. 3(d)).

If there is a substantial mismatch between the luminance

histogram of the style and the content image, it can be help-

ful to match the histogram of the style luminance channel

LS to that of the content image LC before transferring the

style. For that we simply match mean and variance of the

content luminance. Let µS and µC be the mean luminances

of the two images, and σS and σC be their standard de-

viations. Then each luminance pixel in the style image is

updated as:

Ls′ =
σC

σS

(LS − µS) + µC (10)

5.2. Colour histogram matching

The second method we present works as follows. Given

the style image xS , and the content image xC , the style im-

age’s colours are transformed to match the colours of the
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(a) Content

(b) Style (c) Output using [8]

(e) Output with colour histogram matching

(d) Output with luminance-only style transfer

Figure 3: Colour preservation in Neural Style Transfer. (a) Con-

tent image. (b) Style image. (c) Output from Neural Style Trans-

fer [8]. The colour scheme is copied from the painting. (d) Output

using style transfer in luminance domain to preserve colours. (e)

Output using colour transfer to preserve colours.

content image. This produces a new style image x′S that re-

places xS as input to the Neural Style Transfer algorithm.

The algorithm is otherwise unchanged.

The one choice to be made is the colour transfer proce-

dure. There are many colour transformation algorithms to

choose from; see [5] for a survey. Here we use linear meth-

ods, which are simple and effective for colour style transfer.

Given the style image, each RGB pixel pS is transformed

as:

p′

S = ApS + b (11)

where A is a 3 × 3 matrix and b is a 3-vector. This trans-

formation is chosen so that the mean and covariance of

the RGB values in the new style image p′

S match those of

p′

C [11] (Appendix B). In general, we find that the colour

matching method works reasonably well with Neural Style

Transfer (Fig. 3(e)), whereas gave poor synthesis results for

Image Analogies [11]. Furthermore, the colour histogram

matching method can also be used to better preserve the

colours of the style image. This can substantially improve

results for cases in which there is a strong mismatch in

colour but one rather wants to keep the colour distribution

of the style image (for example with pencil drawings or line

art styles). Examples of this application can be found in the

Supplementary Material, section 2.2.

5.3. Comparison

In conclusion, both methods give perceptually-

interesting results but have different advantages and

disadvantages. The colour-matching method is naturally

limited by how well the colour transfer from the content

image onto the style image works. The colour distribution

often cannot be matched perfectly, leading to a mismatch

between the colours of the output image and that of the

content image.

In contrast, the luminance-only transfer method pre-

serves the colours of the content image perfectly. However,

dependencies between the luminance and the colour chan-

nels are lost in the output image. While we found that this is

usually very difficult to spot, it can be a problem for styles

with prominent brushstrokes since a single brushstroke can

change colour in an unnatural way. In comparison, when

using full style transfer and colour matching, the output im-

age really consists of strokes which are blotches of paint,

not just variations of light and dark. For a more detailed

discussion of colour preservation in Neural Style Transfer

we refer the reader to the Supplementary Material, section

2.1.

6. Scale Control

In this section, we describe methods for mixing differ-

ent styles at different scales and efficiently generating high-

resolution output with style at desired scales.

6.1. Scale control for style mixing

First we introduce a method to control the stylisation

independently on different spatial scales. Our goal is to

pick separate styles for different scales. For example, we

want to combine the fine-scale brushstrokes of one painting

(Fig. 4(b), Style I) with the coarse-scale angular geometric

shapes of another image (Fig. 4(b), Style II).
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(a) Content (b) Style I/II/III

(c) Style IV/V (new) (d) Output with style II

(e) Output with style IV

(f) Output with style V

Figure 4: Scale control in Neural Style Transfer. (a) Content im-

age. (b) Collection of styles used. Style I has dominant brush

strokes on the fine scale. Style II has dominant angular shapes

on the coarse scale. Style III has dominant round shapes on the

coarse scale. (c) New styles obtained from combining coarse and

fine scales of existing styles. Style IV combines fine scale of Style

I with coarse scale of Style II. Style V combines fine scale of Style

II with coarse scale of Style III. (d) Output using original Style II.

(e) Output using the new Style IV. (f) Output using the new Style

V. All stylisations preserve the colour of the photograph using the

colour matching method described in section 5.2

We define the style of an image at a certain scale as the

distribution of image structures in image neighbourhoods of

a certain size f . In that sense, the colour separation intro-

duced in the previous section can be thought of a special

case of scale separation, since image colours are “struc-

tures” on one-pixel neighbourhoods. To model image style

on larger scales, we use the Gram Matrices from different

layers in the CNN. In particular, a Gram Matrix at layer ℓ
represents the second-order statistics of image neighbour-

hoods of size corresponding to the receptive field size fℓ.

Unfortunately, this representation is not factorised over

scale. In general, a Gram Matrix Gℓ(x) at a given spa-

tial scale also captures much of the image information on

smaller spatial scales and thus shares a lot of information

with the Gram Matrix Gℓ−k(x) at a lower layer in the CNN

(see Supplementary Material, section 3.1 for more details).

Therefore, simply combining Gram Matrices from different

scales of different images does not give independent control

over the different scales.

Here we show a way to combine scales that avoids this

problem. We first create a new style image that combines

fine-scale information from one image with coarse scale in-

formation from another (Fig. 4(c)). We then use the new

style image in the original Neural Style Transfer. We do

this by applying Neural Style Transfer from the fine-scale

style image to the coarse-scale style image, using only the

Gram Matrices from lower layers in the CNN (e.g., only

layer “conv1 1” and “conv2 1” in Fig. 4). We initialise

the optimisation procedure with the coarse-style image and

omit the content loss entirely, so that the fine-scale texture

from the coarse-style image will be fully replaced. This is

based on the observation that the optimisation leaves im-

ages structures intact when they are of larger scale than the

style features. While this is not guaranteed, as it depends

on the optimiser, we empirically find it to be effective for

the L-BFGS method typically used in Neural Style Trans-

fer. The resulting images (Fig. 4(c)) are used as the input to

the original Neural Style Transfer to generate a new styli-

sations of the cityscape photograph. For example, we com-

bine the fine scale of Style I with the coarse scale of Style

II to re-paint the angular cubistic shapes in Fig. 4(d) with

pronounced brushstrokes (Fig. 4(e)). Or we combine the

fine scale of Style II with the coarse scale of Style III to

replace the angular shapes by round structures, giving the

image a completely different “feel” (compare Fig. 4(d) with

Fig. 4(f)).

This method enables the creation of a large set of percep-

tually appealing, new styles by recombining existing ones

in a principled way. It also allows for interesting new ways

to interpolate between styles by interpolating across spatial

scales. For more examples of new styles and results of in-

terpolating between styles, we refer the reader to the Sup-

plementary Material, sections 3.2 and 3.3.
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(a) 

Content/

Style

(b) Low-res (c) High-res (ctf) (d) High-res

Figure 5: Neural Style Transfer in high resolution. (a) Content

and style images. (b) Output in low-resolution with total number

of pixels equal to 450
2 (c) Output in high-resolution generated in

a coarse-to-fine fashion from (b). (d) Output in high-resolution

without coarse-to-fine procedure. For both high-resolution images

the total number of pixels is 3000
2 and they can be found in the

Supplemental Material.

6.2. Scale control for efficient high resolution

The existing Neural Style Transfer method does not work

well for high-resolution outputs. Since the receptive fields

in a CNN have a fixed size, the stylisation outcome depends

on the resolution of the input images: stylisation happens

only up to the scale of the receptive fields in the output. In

practice, we find that for the VGG-19 network, there is a

sweet spot around 5002 pixels for the size of the input im-

ages, such that the stylisation is appealing but the content

is well-preserved (Fig. 5(b)). For a high-resolution image,

however, the receptive fields are typically very small com-

pared to the image, and so only very small-scale structures

are stylised (Fig. 5 (d)).

Here we show that the same scale separation principle

from the previous section can be used in order to produce

high-resolution outputs with large-scale stylisation. We are

given high-resolution content and style images xC and xS ,

both having the same size with N2 pixels in total. We down-

sample each image by a factor k such that N/k corresponds

to the desired stylisation resolution, e.g., 5002 for VGG, and

then perform stylisation. The output is now low-resolution

of size N/k. We can then produce high-resolution output

from this image by up-sampling the low-resolution output

to N2 pixels, and use this as initialisation for Neural Style

Transfer with the original input images xC and xS . The

style features now capture and can fill-in the high-resolution

information from the style image while leaving the coarse-

scale stylisation intact (Fig. 5(c)).

This coarse-to-fine procedure has the additional advan-

tage of requiring fewer iterations in the high-resolution opti-

misation and thus increasing efficiency. In our experiments

we used 2.5 times fewer iterations for the high-resolution

optimisation. We also noticed that this technique effectively

removes low-level noise that is typical for neural image syn-

thesis. In fact, all figures shown in this paper, except for

Fig. 6, were enhanced to high-resolution in that way. The

low/high-resolution pairs can be found in the Supplement.

Applying this technique iteratively also enables the genera-

tion of very high-resolution images that is only limited by

the size of the input images and available memory.

7. Controlling Fast Neural Style Transfer

A major drawback of Neural Style Transfer is that im-

age generation is relatively slow. Recently, a number of

works have shown that one can train a feed-forward CNN

to perform stylisation [13, 23, 17]. We now show how to ap-

ply the spatial and colour control described above to these

Fast Neural Style Transfer methods. Applying scale con-

trol to Fast Neural Style Transfer is trivial, as it entails sim-

ply training on the new style image that combines multi-

ple scales. We use Johnson’s excellent publicly-available

implementation of Fast Neural Style Transfer [13]3. The

networks we train all use the well-tuned default parame-

ters in that implementation including Instance Normaliza-

tion [24] (for details see Supplementary Material, section

4). For comparability and to stay in the domain of styles

that give good results with Fast Neural Style Transfer, we

use the styles published with that implementation.

7.1. Colour control

The simplest way to preserve the colour of the input im-

age is to just use an existing feed-forward stylisation net-

work [13], and then combine the luminance channel of the

stylisation with the colour channels of the content image

(Fig. 6(c)). An alternative is to train the feed-forward net-

work exclusively with the luminance channel of the style

and content images. This network then produces a lumi-

nance image that can be combined with the colour channels

from the input content image (Fig. 6(d)). For both methods

we match the mean luminance of the output image to that of

the content image. In general, we find that colour preserva-

tion with the luminance network better combines stylisation

with structures in the content image (Fig. 6(c),(d)).

7.2. Spatial control

We now describe training a feed-forward network to ap-

ply different styles to different regions. We show that this

can be done with a surprisingly small modification to John-

son’s training procedure [13], which we illustrate with the

following example. We create the style image by verti-

cally concatenating the Candy and Feathers images shown

in Fig. 6(b). Two additional binary guidance channels are

added to the style image, i.e., one for the top of the image

3github.com/jcjohnson/fast-neural-style
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(b) Style I/II(a) Content (c) Output with style I/II

(d) Original network (e) Luminance network

(f) Vertical mask (g) Horizontal mask

(h) Person/Background mask from [21]

Figure 6: Colour and spatial control in Fast Neural Style Trans-

fer. (a) Content image. (b) Styles Candy and Feathers. (c)

Outputs from [13], trained with styles shown in (b). (d) Simple

colour preservation. Luminance channel from (c) is combined

with colour channels from (a). (e) Colour preservation with lu-

minance network. Output from luminance network is combined

with colour channels from (a). (f) Vertical separation of styles.

(g) Horizontal separation of styles. (h) Separation of styles into

person and background using [21].

and one for the bottom. The style loss function is based

on the guided Gram Matrices (Eq. 7). During training, the

feed-forward network takes as input the content image and

two guidance channels. The input guidance channels are

passed to the loss network to evaluate the spatially-guided

losses. Surprisingly, we find that the guidance channels

can be kept constant during training: during training we re-

quired the feed-forward network to always stylise the lower

half of the image with one style and the upper half with an-

other. However, the network robustly learns the correspon-

dence between guidance channels and styles, so that at test

time we can pass arbitrary masks to the feed-forward net-

work to spatially guide the stylisation (Fig. 6(f)-(h)). By

providing an automatically-generated figure-ground seg-

mentation [21] we can create an algorithm that performs fast

spatially-varying stylisation automatically. (Fig. 6(g),(h))

8. Discussion

In this work, we introduce intuitive ways to control Neu-

ral Style Transfer. We hypothesise that image style includes

factors of space, colour, and scale, and present ways to ac-

cess these factors during stylisation to substantially improve

the quality and flexibility of the existing method.

One application of the control methods we present is to

combine styles in an interpretable fashion. This contrasts

with the alternative approach of combining styles by lin-

early interpolating in the style representation as, for exam-

ple, is done in the concurrent work of Dumoulin et al. [3].

A possible concern with that approach is that if the direc-

tions in the style representation do not correspond to per-

ceptual variables, it becomes difficult to generate appealing

new styles. Still, even with our methods the selection of

which inputs to combine for aesthetically pleasing results

can be challenging. An exciting open research question is

to predict what combinations of styles will combine nicely

into new, perceptually pleasing styles.

Neural Style Transfer is particularly appealing because

it can create new image structures based on the source im-

ages. This flexibility arises from the representation of style

in terms of spatial summary statistics, in contrast to patch-

based methods [12, 20, 6]. However, because it is not clear

how the perceptual aspects of style are represented in the

summary statistics, it is hard to achieve meaningful para-

metric control over the stylisation. For that it may be nec-

essary to encourage appropriate factorisations of the CNN

representations during network training, for example, to

learn representations that factorise the image information

over spatial scales. In fact, this touches a fundamental re-

search question in machine vision: to obtain interpretable

yet powerful image representations that decompose images

into the independent factors of human visual perception.
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