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Abstract

Subspace clustering is a common modeling paradigm

used to identify constituent modes of variation in data with

locally linear structure. These structures are common to

many problems in computer vision, including modeling time

series of complex human motion. However classical sub-

space clustering algorithms learn the relationships within

a set of data without considering the temporal dependency

and then use a separate clustering step (e.g., spectral clus-

tering) for final segmentation. Moreover, these, frequently

optimization-based, algorithms assume that all observations

have complete features. In contrast in real-world appli-

cations, some features are often missing, which results in

incomplete data and substantial performance degeneration

of these approaches. In this paper, we propose a unified

non-parametric generative framework for temporal subspace

clustering to segment data drawn from a sequentially ordered

union of subspaces that deals with the missing features in a

principled way. The non-parametric nature of our generative

model makes it possible to infer the number of subspaces

and their dimension automatically from data. Experimental

results on human action datasets demonstrate that the pro-

posed model consistently outperforms other state-of-the-art

subspace clustering approaches.

1. Introduction

High dimensional data are ubiquitous in many machine

learning applications. Modeling such data using low dimen-

sional representations can potentially reduce the computation

time and memory requirements of the algorithms used to

extract information from the data. A standard assumption

in many applications is that high dimensional data lie on

the union of a small number of much lower dimensional

subspaces. The goal of subspace clustering is to simultane-

ously cluster data points into multiple subspaces and find the

corresponding subspace for each cluster.

Mathematically, subspace clustering (SC) [7, 27, 45, 60]

is defined as follows: Let X ∈ R
d×N be the data matrix

consisting of N data points {xn ∈ R
d}Nn=1 assumed be

drawn from a union of S linear subspaces Φs of unknown

dimension Ks = dim(Φs), with 0 < Ks < d. The sub-

space clustering attempts to infer the number of subspaces

S, the subspaces {Φs}
S
s=1, their dimensions {Ks}

S
s=1, and

the clustering of the data points xn into these subspaces.

Subspace clustering has achieved outstanding perfor-

mance in many machine learning applications, such as face

clustering [61], motion segmentation [8, 23], document clus-

tering [34], etc, and many SC algorithms have been devel-

oped, including Sparse and Low Rank Methods [7,24,29,54],

algebraic methods [42], and statistical methods [2,13,21,49].

Recent work on low rank representation (LRR) [24–26,

30], sparse representation (SSC) [6, 7], least square regres-

sion (LSR) [29], and their extensions [1, 3–5, 9, 11, 12, 14–

16,18,20,22,28,31–33,35,37,38,47,48,50,53,55–59,59,62]

have attracted much attention in subspace clustering. Low-

rank/sparse methods attempt to find a new representation

Z ∈ R
K×N of the data and then apply a spectral cluster-

ing method on the learned representation Z. Sparse sub-

space clustering (SSC) algorithms [6, 7] enforce a sparsity

constraint on the representation Z to recover the multi-

subspace structure. Low-rank representation (LRR) algo-

rithms [24, 26] impose low rank constraint on Z and least-

square regression (LSR) [29] uses l2 norm regularizer for

Z.

Statistical methods [2, 13, 21, 49] usually model the data

points using a mixture of probabilistic PCAs. Due to the

probabilistic nature of the statistical methods, they are more

robust to noise and outliers, in contrast to the low-rank/sparse

methods.

One of the shortcomings of all of the above methods is

that they generally assume all data points are drawn indepen-

dently from multiple subspaces. Hence, they fail to exploit

the information explicitly encoded into the time series. For

example, in a video sequence, where the goal is to cluster

the frames that belong to the same scene, it is reasonable to

assume that the consecutive frames belong to one and the

same scene, until a scene change occurs forming temporally

consistent clusters.

13066



Very recently, some subspace clustering methods have

been proposed [23, 40, 52] that can take advantage of order

information embedded in the data points to improve the clus-

tering performance. Wu et al. [52] proposed a SC algorithm

for sequential data by imposing a quadratic normalizer on

the sparse coefficients to model the temporal correlation

among the data points. Additionally, a block-diagonal prior

for the spectral clustering affinity matrix is incorporated into

the model to improve the clustering accuracy. Tierney et

al. [40] proposed an Ordered Subspace Clustering (OSC)

method by introducing a l1,2 norm as a regularizer for the

sparse representations that not only maintains the sparsity

of the learned representation, but also forces the consecu-

tive frames to have similar representation. Motivated by the

well-known Laplacian regularization technique, Li et al. [23]

proposed a temporal subspace clustering (TSC) method that

uses a temporal Laplacian regularization function to encode

the sequential relationships in time-dependent data. They

also learn a non-negative dictionary from the data rather

than using the data itself as the dictionary to obtain more

expressive coding.

There are two major problems with the above temporal

subspace clustering methods. First, these methods are not

designed to deal with missing features in a principled way.

More precisely, when some entries of the data points are cor-

rupted or missing (e.g., commonly some marker sets of mul-

tiple body parts are missing during motion capture in motion

segmentation applications), these methods cannot explicitly

and efficiently deal with the corrupted data. Second, the

performance of these optimization-based (non-probabilistic)

methods depends on a set of free parameters that need to

be carefully tuned using cross-validation or other parameter

tuning techniques, which increases both the computational

complexity and the sensitivity of these methods.

To address the above-mentioned problems, we propose

a unified probabilistic framework for temporal subspace

clustering where temporal dependencies are modeled using

Gaussian Process (GP) [51] priors (whose covariance func-

tion controls the desired dependence) on to the data point’s

clustering indices that can effectively deal with missing data.

By employing Griffiths-Engen-McCloskey (GEM) distribu-

tion [17] defined via the stick breaking construction as the

prior distribution on the clustering indices, our model is ca-

pable of inferring the number of the subspaces (clusters)

automatically from the data. Moreover, by incorporating

the Bernoulli process [39] into our model, we are able to

concurrently learn the dimensionality of the subspaces from

the data. Given a set of ordered data points, we also develop

an EM algorithm to learn the complete set of parameters

from the data itself.

The rest of this paper is organized as follows. We present

the proposed temporal subspace clustering framework in

Section 2. In Section 3, we develop an EM algorithm to

learn the parameters of the proposed model. Experimental

results are presented in Section 4. Finally, we conclude our

work in Section 5.

2. Proposed Method

2.1. Problem Formulation

Let X = [x1, x2, ..., xN ]d×N be a sequence of d-

dimensional time-series data, where the n-th data point

xn(n = 1, ..., N) is sampled at time tn. We assume that

the data points are generated via a mixture of S subspaces.

Mathematically, each data point xn can be represented as

M = (cn, {Φs, µs, ws,n, αs}
S
s=1), where Φs ∈ R

d×Ks

and µs ∈ R
d specify the set of bases and the center of the

s-subspace respectively, ws,n is the latent representation

(projection) of xn in subspace s, αs indicates the noise preci-

sion parameter and cn ∈ {1, 2, ..., S} is the cluster index for

the data point xn. By defining Φ = {Φs} and µ = {µs},

the likelihood of xn given M becomes

p(xn|M) =
S
∑

s=1

p(cn = s)p(xn|cn = s, ws,n,Φ,µ, αs),

where p(cn = s) encodes a mixture probability distri-

bution over the S clusters (subspaces), and p(xn|cn =
s, ws,n,Φ,µ) is defined as

p(xn|cn = s, ws,n,Φ,µ) = N (xn;Φsws,n + µs, α
−1
s I),

(1)

where I denotes the identity matrix of size d.

In the proposed model, we assume the number of sub-

spaces S and their dimensionality {Ks}
S
s=1 are unknown

apriori. To address the problem of inferring S and {Ks}
S
s=1,

we employ the GEM distribution [17] and the Bernoulli

process [39], respectively.

GEM distribution with parameter η, GEM(η), can be

defined as a distribution over a countably infinite number of

objects (for simplicity, natural numbers N = {1, 2, ...}) as

p(c = s) = βs, βs = vs

s−1
∏

l=1

(1−vl), vs ∼ Beta(1, η), s ∈ N

where βs is the mixing proportion defined by recursively

breaking a unit-length stick into an infinite number of pieces.

We use GEM(η) as a prior distribution over the cluster in-

dices, p(cn = s) = βs, as it apriori endows the model with a

countably infinite number of subspaces. Since βs’s decrease

exponentially quickly, only a small number of subspaces

will be used to fit the finite available data, with the appropri-

ate number of subspaces automatically revealed by the data

itself.

In order to infer the dimensionality Ks of each subspace

from the observed data, we introduce an auxiliary, latent
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binary vector zs ∈ {0, 1}Ks for each subspace Φs, where

the non-zero entries of zs specify the bases of that subspace

i.e., Ks =
∑

k zs,k = dim(Φs). Consequently, the model

in Eq. 1 is reformulated as

p(xn|cn = s, zs, ws,n,Φ,µ, αs) =

N
(

xn;Φs(zs ⊙ ws,n) + µs, α
−1
s I

)

where ⊙ denotes the element-wise multiplication operator.

Consequently, all data points {xn} drawn from a given clus-

ter (subspace) s share the same set of important bases of

the subspace Φs defined by zs, but each draw from a given

cluster has unique weights ws,n.

Using a probabilistic hierarchical framework, we place a

non-parametric prior distribution on each binary vector zs
by introducing auxiliary variables {Πs = {πks}

K
k=1}

∞
s=1

drawn from the Beta distribution as

πks ∼ Beta(a/K, b(K − 1)/K)

where a, b are the hyper-parameters and the integer K the

largest possible dimension for zs (by letting K → ∞, the

length of the binary code zs can be learned from the observed

data points [39], hence, we can learn the number of the bases

for each subspace using data itself). Then, we model the

binary vector zs as a random sample from the Bernoulli

process parameterized by Πs

zs ∼
K
∏

k=1

Ber(zks;πks), k = 1, ...,K, s = 1, 2, ...,

where zks denotes the k-th element of the binary vector zs
and Ber denotes the Bernoulli distribution. To complete

our probabilistic generative model, we model the weights

{ws,n}, by a zero-mean Gaussian distribution with precision

value γs,n.

2.2. Temporally consistent clustering prior

An important problem with considering the GEM distribu-

tion as the prior distribution over the clustering indices {cn}
is that the Beta-distributed random weights (stick weights)

{βs} are shared among all data points, which is generally

inappropriate for the time-dependent data. For example, one

may wish to explicitly impose the belief that the nearby data

points in the time domain are more likely to belong to the

same subspace. We incorporate such prior belief into (2.1)
by means of a GP on a 1-D temporal space by proposing the

following temporal dependent stick weights for the GEM

distribution. We call our prior model the Gaussian Process

GEM (GP-GEM).

p(cn = s) = βn
s , βn

s = σ(fs(tn))

s−1
∏

l=1

(1− σ(f l(tn))),

n = 1, ..., N, s = 1, 2, ... (2)

Figure 1. The graphical representation of the proposed temporal

subspace clustering model (shaded circles indicate observations).

where fs(t) ∼ GP (m(t),K(t, t′)), fs(tn) is the value

of the function fs(.) evaluated at time frame tn of the

n-th data point, and σ(.) denotes the sigmoid function

(σ(x) = 1/(1 + exp(−x)). The functions {fs(.)}∞s=1 are

drawn from a GP with the mean function m(.), which we

take equal to 0 for simplicity, and the covariance function

K(., .). It is easy to show that the proposed prior distribution

on each cluster index cn is still a valid GEM distribution. By

selecting an appropriate form of the kernel function K(ti, tj),
which diminishes by increasing the distance between ti and

tj , the proposed GEM distribution in Eq. 2 allows for ob-

taining prior probabilities for the clusters that depend on

the values of the temporal locations {tn}
N
n=1. Indeed, the

closer the locations ti and tj are, the more correlated the

corresponding fs(ti) and fs(tj) values should be, hence,

the more similar the corresponding stick weights βi
s and βn

s

are. Thus, the GP-GEM prior promotes, by construction,

clustering of temporally adjacent data points.

The graphical representation of the proposed model is

shown in Fig. 1. For computational simplicity, we trun-

cate the GEM distribution in Eq. 2 to S term with βn
S =

1−
∑S−1

s=1 βn
s , with properties of this truncation discussed

in [17].

2.3. Choice of Kernel

Since the proposed GP-GEM model is constructed using

Gaussian processes there is great flexibility in the choice of

covariance function (kernel). For instance, one could sim-

ply use the squared exponential (SE) function of the form

K(ti, tj) = exp{−η(ti − tj)
2}, where η denotes the length

scale parameter [51]. Unfortunately, using unstructured arbi-

trary covariance functions is costly, scaling as O(N3) time

because of the N × N matrix inversion (see Section 3).

Since {tn} ∈ R and t1 < t2 < · · · < tN , we propose the

covariance function K(ti, tj) = exp{−η|ti − tj |}, whose

inverse evaluated at the data points {tn}
N
n=1

1 is a tridiago-

nal matrix, hence, K−1 can be computed in O(N) time [36].

Intuitively, this Ornstein-Uhlenbeck kernel induces the so-

called Markovian dependence property on f . More precisely,

1we use the notation K to denote the N × N Gram matrix of the

Gaussian process f obtained by evaluating K(·, ·) at {tn}Nn=1
.
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the value of the function f(ti) at ti will not depend on any

other point except for its immediate neighbors (according

to ti) f(ti−1) and f(ti+1), a reasonable assumption for a

time-dependent data.

3. Non-parametric EM Estimation Algorithm

In this section, we develope a novel non-parametric EM

algorithm for our proposed model. The approach resembles

the standard EM algorithm yet still possesses the nonpara-

metric nature in order to address the complexity of the model

selection (infer both the number of subspaces and their di-

mensionality directly from the data). For this purpose, we

consider {ws,n}, and {πs} as latent (hidden) variables. By

denoting T = {tn}
N
n=1, the goal of the EM algorithm is to

maximize the following joint likelihood

p
(

X, T , {Φs, µs, zs, αs, γs,n, cn, f
s}S ,N

s=1,n=1,, η
)

,

by integrating out {ws,n, πs}. By denoting Θ as the set of

parameters and Ω as the set of latent variables, this can be

accomplished by maximizing the following lower bound on

the log likelihood:

log p(X, T ,Θ) ≥ logEq(Ω)[log p(X, T ,Θ,Ω)]

− Eq(Ω)[log q(Ω)],

where q(Ω) is the approximate posterior distribution over the

set of latent variables Ω and Eq[.] denotes the expectation

over the distribution q. For our framework to yield a com-

putationally effective inference method, we use a factorized

variational distribution

q(Ω) =

S
∏

s=1

N
∏

n=1

q(ws,n)

K
∏

k=1

q(πks),

where we iteratively update the posterior distribution q(Ω) in

the E step and update the parameters Θ in the M step using

the coordinate ascent algorithm. For simplicity, we also fix a

single K for all the subspaces. If S and K are large enough

(see Section 4), the analyzed data will reveal less than S
subspaces and K bases for each subspace, respectively.

The difficulty of applying the EM algorithm for this

model lies with the logistic function in (2) which makes

the update equations for {fs}Ss=1 to have non-analytic form.

To address this issue, one can place an exponential lower

bound on the logistic functions based on the convex dual-

ity theorem [19]. Using this theorem, a variational lower

bound for the logistic sigmoid function is obtained in the

form of [19]

1

1 + exp(−x)
≥ σ(ξ)exp

(

(x− ξ)/2− λ(ξ)(x2 − ξ2)

)

,

where

λ(ξ) =
−1

2ξ

( 1

1 + exp(−ξ)
−

1

2

)

.

and ξ is the variational parameter that should be optimized

to get the tightest bound. In the proposed EM algorithm,

we optimize the factorized variational distribution q(Ω) in

the E-step and maximizes the parameters Θ in the M-step.

Detailed update equations of the proposed non-parametric

EM algorithm made available in the Supplementary Material.

3.1. Missing Data

One of the main advantages of our probabilistic for-

mulation of temporal subspace clustering is the flexibil-

ity of allowing missing data. Generalization of the pro-

posed EM algorithm to handle missing data is straightfor-

ward and follows [10]. The only modifications come in

the form of adjusted terms for data summaries. For exam-

ple, in updating the precision parameters {αs}, the term
∥

∥xn − µs −Φs(zs ⊙ ws,n)
∥

∥

2
becomes

∑

ζ∈F

(

xn,ζ − µs,ζ −Φs,ζ(zs ⊙ ws,n)
)

×

(

xn,ζ − µs,ζ −Φs,ζ(zs ⊙ ws,n)
)

,

where ⊙ denotes the element-wise multiplication operator,

F is the index set of the observed (non-missing) features for

the data point xn, xs,ζ is the value of the present feature,

µs,ζ is the ζ-th element of the vector µs and Φs,ζ is the ζ-th

row of the matrix Φs. Similar expressions can be derived

for other data-dependent parameters.

For reconstruction purposes, given an input xi having

missing features, our model computes the reconstruction of

xi as

x̂i = Ep(xi|Θ)[xi]

where

p(xi|Θ) =

∫

N
(

xi;Φs(zs ⊙ ws,i) + µs, α
−1
s I

)

×

q(ws,i) dws,i

where s is the inferred cluster index for xi (ci = s), and

q(wci,i) is the variational posterior distribution of ws,i.

Since p(xi|Θ) cannot be computed in closed form, we ap-

proximate q(ws,i) with its mean Eq(ws,i)[ws,i] in the above

equation. Hence, x̂i is computed in closed-form as

x̂i = Φs(zs ⊙ E[ws,i]) + µs

4. Experimental Results

In this section, we compare our approach with several

state-of-the-art subspace clustering approaches on three

public human action and gesture datasets, including

the Carnegie Mellon Motion Capture (Mocap) dataset,

available at http://mocap.cs.cmu.edu), Ballet Action (Ballet)

dataset http://www.humansensing.cs.cmu.edu/mad,

and UMD Keck body-gesture (Keck) dataset

3069

http://mocap.cs.cmu.edu
http://www.cs.sfu.ca/research/groups/VML/semilatent/


Table 1. Statistics of various Subjects of Mocap dataset (S-x denotes

the Subject x).

S-13 S-49 S-54 S-80 S-113

# activity 5 3 7 8 12

# instance 1701 811 1616 1877 2842

# feature 62 62 62 62 62

Figure 2. Four activities performed by subject 13 in the Mocap

dataset: Boxing, Climb three steps, Laugh, and Drink soda.

http://www.umiacs.umd.edu/zhuolin/Keckgesturedataset.html

and one video scene segmentation datasets2.

Mocap dataset contains 149 subjects performing several

activities, from which we randomly selected 5 subjects con-

sisting of different trials, where each trial comprises multiple

activities (we selected 5 to 12 activities for each subject).

Fig. 2 shows a few snapshots of some of the activities (Box-

ing, Drink soda, Laugh, Climb three steps) for subject 13.

The statistics of various subjects used in the experiments are

summarized in Table 1.

For the Mocap datasets, we are given sensor measure-

ments at multiple joints of the human body (62 positions and

joint angles) captured at different time instances. The goal is

to segment the sensory data so that each cluster corresponds

to the same activity. Here, each data point corresponds to

a vector whose elements are the sensor measurements of

different joints at a fixed time instance.

The Ballet data set contains 44 real video sequences of

eight actions collected from an instructional ballet DVD [46].

Fig. 3 presents the sample frames of each action. We con-

catenate the randomly selected 10 sequences into a single

long video sequence. The original resolution of each frame

is 301× 301. To speed up the computation, we first down-

sample each frame to the size of 80× 30. Then, we build a

dictionary of the frames with 300 bases using the Orthogonal

matching Pursuit (OMP) algorithm [41] and encode each

frame as a 300 dimensional sparse vector.

The Keck dataset consists of 14 different naval body ges-

tures performed by three subjects. Fig. 4 shows the binary

2Due to the lack of space, the video scene segmentation results are

available in the Supplementary material.

Figure 3. Sample frames from the Ballet data set. From left to right

and top to bottom: Left-to-right hand opening, right-to-left hand

opening, standing hand opening, leg swinging, jumping, turning,

hopping, and standing still.

Figure 4. Sample gestures from the Keck dataset.

images of the some of the gestures of one subject in the

dataset. The original resolution of each frame is 480× 640.

Following [23], to speed up the computation, we first down-

sample each binary image (frame) to the size of 80 × 106.

Then, we compute the Euclidean distance transform [44] as

frame-level features. After that, we build a dictionary of tem-

poral words with 100 clusters using the k-means clustering,

and encode each frame as a 100 dimensional binary vector.

Finally, we concatenate the 14 gesture video sequences of

each subject into a single long video sequence. For com-

parison purposes, we contrast our proposed method (PM)

with three baseline subspace clustering methods SSC [7],

LRR [24], and LSR [29], and two state-of-the-art temporal

subspace clustering methods OSC [40] and TSC3 [23].

In all the experiments, we use the clustering accuracy

(ACC) and normalized mutual information (NMI) as the

evaluation metrics.

4.1. Hyper­Parameter Setting

For the EM algorithm, we set the truncation level for the

number of subspaces and their dimension to (K = 20, S =
30) for the Mocap dataset, (K = 15, S = 10) for the Ballet

dataset, and (K = 30, S = 50) for the Keck dataset. The

hyper-parameters a, b of the Beta distributions are set with

a = K and b = K/2 (other settings of a and b yield similar

results). The parameters for the EM algorithm are initialized

3The MATLAB codes for SSC , LRR, LSR, OSC, and TSC

are obtained from http://www.ccs.neu.edu/home/eelhami/codes.htm,

https://sites.google.com/site/guangcanliu/,

https://sites.google.com/site/canyilu/codes, https://github.com/sjtrny/OSC,

and https://sites.google.com/site/lisheng1989/home/Publications, respec-

tively
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Table 2. ACC with standard deviation on Subjects of Mocap dataset. The best (bold red), the second best (red).

method Subject-13 Subject-49 Subject-54 Subject-80 Subject-113

SSC 56.88 ± 2.01 85.47 ± 1.45 67.89 ± 2.33 59.04 ± 2.60 52.90 ± 2.27

LRR 57.18 ± 1.99 84.79 ± 1.78 68.81 ± 2.55 56.19 ± 2.50 53.35 ± 2.10

LSR 56.44 ± 2.16 82.27 ± 1.50 66.73 ± 1.90 67.10 ± 2.13 52.55 ± 2.16

OSC 60.66 ± 1.88 88.25 ± 1.70 70.58 ± 1.67 63.14 ± 2.03 68.79 ± 2.08

TSC 67.92 ± 2.00 95.99 ± 1.33 76.38 ± 2.00 66.33 ± 2.33 76.28 ± 2.10

PM (our) 74.75 ± 2.22 98.79 ± 1.88 81.43 ± 1.59 65.82 ± 2.49 79.50 ± 2.18

Table 3. NMI with standard deviation on Subjects of Mocap dataset. The best (bold red), the second best (red).

method Subject-13 Subject-49 Subject-54 Subject-80 Subject-113

SSC 0.5478 ± 0.023 0.7052 ± 0.016 0.6961 ± 0.028 0.5921 ± 0.029 0.6821 ± 0.035

LRR 0.5529 ± 0.030 0.6961 ± 0.020 0.6748 ± 0.020 0.6127 ± 0.032 0.6893 ± 0.029

LSR 0.5627 ± 0.027 0.7014 ± 0.013 0.6861 ± 0.018 0.6049 ± 0.030 0.6728 ± 0.033

OSC 0.6139 ± 0.019 0.8341 ± 0.017 0.7072 ± 0.022 0.6038 ± 0.025 0.7150 ± 0.025

TSC 0.6759 ± 0.020 0.9015 ± 0.015 0.7483 ± 0.024 0.6739 ± 0.019 0.7962 ± 0.029

PM (our) 0.7532 ± 0.024 0.9812 ± 0.019 0.8453 ± 0.024 0.7631 ± 0.023 0.8767 ± 0.023

Table 4. Clustering accuracies (with standard derivation) on Ballet

dataset. The best (bold red), the second best (red).

method ACC NMI

SSC 38.47 ± 3.07 0.3731 ± 0.023

LRR 35.15 ± 2.82 0.3923 ± 0.019

LSR 37.02 ± 3.21 0.4201 ± 0.020

OSC 41.04 ± 1.68 0.4008 ± 0.019

TSC 49.56 ± 2.31 0.5031 ± 0.013

PM (our) 53.46 ± 2.99 0.6206 ± 0.022

Table 5. Clustering accuracies (with standard derivation) on Keck

dataset. The best (bold red), the second best (red).

method ACC NMI

SSC 27.32 ± 3.41 0.3058 ± 0.038

LRR 15.03 ± 3.26 0.1159 ± 0.069

LSR 37.17 ± 2.52 0.3429 ± 0.021

OSC 43.02 ± 2.57 0.4832 ± 0.025

TSC 56.87 ± 2.92 0.6583 ± 0.020

PM (our) 55.49 ± 2.43 0.6711 ± 0.027

using a simple k-subspace algorithm [43]. For all the com-

pared methods, we have tuned the parameters to get their

best performance.

4.2. Results

The mean performance along with the standard devia-

tion of each method over 5 runs on the different subjects of

the three datasets is shown in Tables 2−5, from which we

can infer two major points. (i) Clearly, the temporal sub-

space clustering methods (PM, OSC, TSC) outperform the

standard subspace clustering methods (SSC, LRR, LSR)
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Figure 5. The results of different methods on datasets when the data

suffer from the loss of features. First row: Subject 49 of the Mocap

dataset. Second row: Ballet dataset. Third row: Keck dataset.

Horizontal axes denote the missing rates (%). (a),(b): ACC and

NMI results for MAR features, respectively. (c),(d): ACC and NMI

results for NMAR features, respectively.

because they can exploit the temporal dependency in the

data. (ii) our proposed method also outperforms the state of

the art temporal OSC and TSC methods. We attribute this
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Figure 6. Inferred model complexity for Subject 13 of Mocap dataset.
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Figure 7. Inferred model complexity for Subject 113 of Mocap dataset.

gain in performance to the probabilistic nature of the pro-

posed method, making it more robust to outliers and noise in

the datasets, in contrast to the optimization-based OSC and

TSC methods.

4.3. Model Interpretation

Figs. 6 and 7 examine the number of inferred subspaces,

as well as the number of bases for each subspace for the

Figure 8. Clustering results on Subject 54 in Mocap dataset. Differ-

ent colors denote different actions (GT stands for Ground Truth).

subjects 13 and 113 of the Mocap dataset. As can be seen

the model infers 7 and 10 subspaces for the subjects 13 and

113, respectively. For each cluster (subspace) the subspace

dimension is between 4 to 10 for the subject 13, and is

between 5 to 15 for the subject 113.

In Fig. 8 we contrast the clustering performance of com-

peting methods on Subject 54 of Mocap dataset. As can

be seen, SSC, LRR and LSR can not obtain meaningful

temporal segments, as they do not consider the temporal

information. On the other hand, OSC, TSC and our method

could obtain more coherent temporal segments. Further-

more, because of the proposed GP-GEM prior for temporal

data, our model can correctly recover the subspace structures

in temporal space, hence, it reveals more clear sequential

subspace structures than OSC and TSC.

4.4. Missing data Experiments

To demonstrate that our method can deal with the par-

tially observed data gracefully, we conduct experiments by

considering two contexts for missing data; the case when the

values in data are missing at random (MAR) and the case

when the values in data are missing not-at-random (MNAR).

Since the competing methods are not designed to deal
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Figure 9. The reconstruction results for Subject 13 of Mocap dataset. From top to bottom: Original frames, original frames with 5 markers

missing, recovered frames.

with missing data, we use zeros to replace the missing val-

ues, which has been shown [53] to have better performance

than other filling-in techniques. For the MNAR setting, we

conduct experiments by removing 20 × 20 squares form

different locations in the data matrices repeatedly until the

total fraction of the missing values is no less than the pre-

specified missing rate. Fig. 5 shows the clustering results

(average over 5 runs) of all methods under the MAR and

MNAR setting on the Subject 49 of the Mocap dataset, Bal-

let dataset, and Keck dataset (missing data experiments for

other subjects of Mocap dataset are available in the Supple-

mentary material). As can be seen, although the error for the

MNAR case tends to be larger than in the MAR case, our

probabilistic method is much more robust, particularly for

the large number of missing values) than all the competing

methods under different amounts of missing values.

To further investigate the reconstruction ability of our

probabilistic model for missing feature scenario, we use

Subject 13 of the Mocap dataset.

For this experiment, we randomly remove 5 markers (each

marker corresponds to a three dimensional spatial coordi-

nates of a human body joint) representing different body

segments from each frame. Then, we recover each frame

using Eq. 3.1. Since the competing methods are not suit-

able for recovering the missing features, we do not compare

them in this experiment. Fig. 9 show the recovery results

of the PM on some of the frames. The first row shows 5

randomly selected frames taken from Subject 13 of the Mo-

cap dataset. The second row shows the same frames with 5
markers missing. Finally, the last row of the figures gives

recovered frames provided by the results of our model. As

can be seen, the reconstructed missing values result in poses

close to the actual body postures.

5. Conclusion

In this paper, we have proposed a novel probabilistic
temporal subspace clustering model by incorporating the
temporal information into the model’s prior distribution that
is capable of inferring the number of subspaces and their
dimensions simultaneously from the available data. The
temporal dependency is captured by establishing the clus-
ter indices via a Gaussian process field followed by logistic
functions. A specific kernel function is also employed to alle-
viate the computational issues raised by using the GPs. The
experiments on three benchmark datasets demonstrate that
our probabilistic method outperforms other state-of-the-art
subspace clustering algorithms.
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