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Abstract

In this paper, we describe a set of robust algorithms

for group-wise registration using both rigid and non-rigid

transformations of multiple unlabelled point-sets with no

bias toward a given set. These methods mitigate the need

to establish a correspondence among the point-sets by rep-

resenting them as probability density functions where the

registration is treated as a multiple distribution alignment.

Holder’s and Jensen’s inequalities provide a notion of sim-

ilarity/distance among point-sets and Rényi’s second order

entropy yields a closed-form solution to the cost function

and update equations. We also show that the methods can

be improved by normalizing the entropy with a scale factor.

These provide simple, fast and accurate algorithms to com-

pute the spatial transformation function needed to register

multiple point-sets. The algorithms are compared against

two well-known methods for group-wise point-set registra-

tion. The results show an improvement in both accuracy

and computational complexity.

1. Introduction

Point-set registration is a common problem in computer

vision, pattern recognition, medical imaging, robotics, and

many other fields. Tasks such as image registration, face

recognition, object tracking, image stitching or 3D object

fusion all require registration of features/point-sets. Fea-

tures representing an object’s contour or other distinguish-

ing characteristics are extracted from an image and com-

pared against those of other objects or templates, where

first, a correspondence between the point-sets is established,

and then, the spatial transformation that aligns them is re-

trieved. A similarity measure is used to compare the point-

sets, where the choice depends on the object features and

the problem.

The research community has developed many techniques

to solve point-set registration. The iterative closest point

(ICP) algorithm [1] is the most popular method, which uses

the nearest neighbour relationship to assign binary corres-

pondence and then determines the least squares transfor-

mation relating the point-sets. The method is very simple,

but it exhibits local convergence due to a non-differentiable

cost function. In addition, it suffers in the presence of out-

liers and is not suitable for non-rigid transformations. Ro-

bust point matching (RPM) [4] improves upon ICP by em-

ploying a global to local search and soft assignment for the

correspondence. The method jointly determines the corres-

pondence and the transformation between the two point-sets

via deterministic annealing and soft-assignment. However,

the method is not stable in the presence of outliers, and

due to the soft-assignment approach, the complexity of the

method is high.

To eliminate the point correspondence requirement, a

global approach is taken where the point-sets are repre-

sented as probability density functions (PDF). Tsin and

Kanade [21] were the first to propose such a method where

they modelled the two point-sets as kernel density func-

tions and evaluated their similarity and transformation up-

dates using the kernel correlation between the two den-

sity estimates. Glaunes et al. [8] matched the two point-

sets by representing them as weighted sums of Dirac delta

functions, where Gaussian functions were used to ‘soften’

the Dirac delta functions and diffeomorphic transformations

were used to minimize the distance between the two distri-

butions. Jian and Vemuri [12], [13] extended this approach

by representing the densities as Gaussian mixture models

(GMM). They derive a closed-form expression to compute

the L2 distance between the two Gaussian mixtures and the

update method to align the two point-sets.

All these methods are limited to registering only a pair

of point-sets. In certain applications, such as medical im-

age registration, there is a need to simultaneously register

a group of point-sets. None of these methods is directly

extendible to group-wise alignment of multiple point-sets.

In addition, these methods are all biased (unidirectional up-

date) where one point-set acts as the target and the other is

transformed to align with it. In applications where group-

wise registration is required, there may not be an actual

template to match against (e.g. medical images). There-

fore, there is a need to determine a middle, common orienta-

tion/position to align the point-sets. Estimating a meaning-
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ful average shape from a set of unlabelled shapes is a key

challenge in deformable shape modelling.

Chui et al. [6] presented a joint clustering and match-

ing algorithm that finds a mean shape from multiple shapes

represented by unlabelled point-sets. Their process follows

a similar approach to their previous work in [5] where ex-

plicit correspondence needs to be determined first. In addi-

tion, the method is not robust to outliers, so stability is not

always guaranteed.

Wang et al. [22] proposed a method for group-wise

registration where the point-sets are represented as density

functions. Based on the same principles as the PDF regis-

tration methods above, their algorithm simultaneously reg-

isters the point-sets and determines the mean set without

solving for correspondences or selecting any specific point-

set as a reference. Their approach minimizes the Jensen-

Shannon divergence among cumulative distribution func-

tions (CDFs). They shifted from PDFs because CDFs are

more immune to noise and are also well defined since CDF

is an integral measure. However, the CDF estimation is

computationally very expensive and there are no closed-

form solutions to their updates.

Chen et al. [3] developed another group-wise registration

method based on the Havrda-Charvát divergence for CDFs.

Similar to [22], they use the cumulative residual entropy to

represent the CDFs. Their method, CDF-HC, generalizes

the CDF-JS but it is much simpler to implement and com-

putationally more efficient.

In this paper, we introduce a set of methods for group-

wise registration based on Rényi’s quadratic entropy. The

major improvement of our methods is that they provide a

closed-form solution for the updates, which makes them

much simpler and faster to compute than both CDF-based

methods above, with no loss in accuracy. We compare our

methods against CDF-JS and CDF-HC on various data sets.

2. Background

In [9] and [10], a density-based point-set registration

method is introduced. The similarity between the two PDFs

is measured using an information theoretic measure, the

Cauchy-Schwarz (CS) divergence [15], derived from the

Cauchy-Schwarz inequality [18]:

∫

f(x)g(x)dx ≤
√

∫

f2(x)dx

∫

g2(x)dx, (1)

where in the case of PDFs, the equality holds if and only if

f(x) = Cg(x) with C = 1. The Cauchy-Schwarz diver-

gence is then defined as:

DCS(f‖g) = − log

(
∫

f(x)g(x)dx

)2

∫

f2(x)dx

∫

g2(x)dx

. (2)

The divergence directly compares PDF similarity and is

expressed in terms of inner products of the two PDFs which

essentially estimate a normalized Rényi’s quadratic cross-

entropy. Suppose we have two d-dimensional point-sets

Xf = {x(f)
1 , . . . ,x

(f)
Mf

} and Xg = {x(g)
1 , . . . ,x

(g)
Mg

}. It is

assumed that x
(f)
i ∈ Xf are drawn from f and x

(g)
j ∈ Xg

drawn from g. The CS divergence between point-sets Xf

and Xg is computed by plugging in the Parzen density es-

timates f̂ and ĝ of the PDFs f and g into (2). Namely, the

Parzen density estimate for f is given by [14]:

f̂(x;Xf ) =
1

Mf

Mf
∑

i=1

κ

(

x− x
(f)
i

σ

)

, (3)

where κ(·) is a valid kernel (window) function and σ its

bandwidth parameter. The estimate ĝ of g is obtained in a

similar way. The Gaussian function

Gσ(x, xi) =
1√
2πσ

exp

(

−‖x− xi‖2
2σ2

)

, (4)

is considered as the kernel of choice for its properties:

symmetry, positive definitiness, and exponential decay con-

trolled via the kernel bandwidth. By using the Gaussian

kernel, the plug in estimator of Cauchy-Schwarz diver-

gence has a closed-form expression in terms of convolu-

tions operators making it simple to estimate. An important

term in (2) is called the cross-information potential [15, 11],

which corresponds to the inner product between f and g.

The empirical estimator of the cross-information potential

has the following form:

CIP (Xf ,Xg) =

∫

f̂(x)ĝ(x)dx (5)

=
1

MfMg

Mf
∑

i=1

Mg
∑

j=1

G√
2σ

(

x
(f)
i ,x

(g)
j

)

.

This term is crucial in determining the similarity between

the two point-sets. When data points are interpreted as par-

ticles, the information potential measures the interaction of

the field created by one set of particles on the locations

specified by the other set. The Cauchy-Schwarz informa-

tion potential field exerts information forces on samples of

the second point-set forcing them to move toward a path

that will provide the most similarity between the two PDFs.

The CS-divergence is restricted to pairwise comparisons.

To account for group-wise comparisons, we propose two

extensions of the above idea that allow the comparison of

more than two density functions simultaneously. The first

proposed method uses Hölder’s divergence as a direct ex-

tension of the Cauchy-Schwarz divergence. The second ex-

tension, which is the main focus of this work, is obtained

based on Jensen’s inequality on the information potential.
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3. Group-wise registration based on Hölder’s

divergence

A generalized version of Hölder’s inequality to N func-

tions {fk} is given by:

(

∫ N
∏

k=1

fk(x)dx

)N

≤
N
∏

k=1

∫

fk
N (x)dx. (6)

Based on (6), Hölder’s divergence is thus defined as:

DH({fk}) = − log

(

∫ N
∏

k=1

fk(x)dx

)N

N
∏

k=1

∫

fk
N (x)dx

, (7)

which can be written as a difference of logarithms,

DH({fk}) =−N log

∫ N
∏

k=1

fk(x)dx

+

N
∑

k=1

log

∫

fk
N (x)dx.

(8)

Suppose we have N point-sets Xk, k ∈ 1, . . . , N . Each

Xk = {x(k)
1 , . . . ,x

(k)
Mk

}, where x
(k)
i ∈ R

d. Similar to

(5), an empirical estimator of Hölder’s divergence, with

closed-form solution, can be obtained using Parzen density

approximation with Gaussian kernel,

DH({f̂k}) =−N log

M1∑

i1=1

· · ·

MN∑

iN=1

N−1∏

p=1

N∏

q=p+1

Gp,q

+
N∑

k=1

log

Mk∑

i1,k=1

· · ·

Mk∑

iN,k=1

N−1∏

p=1

N∏

q=p+1

Gk,k,

(9)

where γ =
√
Nσ, Gp,q = Gγ(x

(p)
ip

− x
(q)
iq

), and

Gk,k = Gγ(x
(k)
ip,k

− x
(k)
iq,k

). Although having a closed-

form solution for Hölder’s divergence estimator is appeal-

ing at first glance, it also reveals its complexity. A di-

rect implementation of Hölder’s divergence (9) would re-

quire O(M1 · · ·MNN2d) operations which become pro-

hibitively large as the number of shapes and data points in-

crease. Clever manipulations of the terms in (9) can reduce

the number of operations to O
(

(maxi{Mi})2 N2d
)

. In

the following, we propose an alternative objective function

with O
(

(maxi{Mi})2 N2d
)

complexity.

4. Group-wise registration based on Rényi’s

second order entropy

To reach a closed-form but also computationally effi-

cient solution, we propose an objective function based on

Jensen’s inequality. However, unlike [22] where a group-

wise registration method was proposed using the Jensen-

Shannon (JS) divergence, our method is based on the direct

comparison of information potentials derived from Rényi’s

second order entropy.

4.1. Rényi’s second order entropy and the informa­
tion potential

Rényi’s entropy is a generalization of Shannon’s entropy

[19] for which the logarithm operation lies outside the ex-

pectation operator. Rényi’s entropy of a continuous random

variable X taking values in X , and with probability density

function f , is defined as:

Hα(X) = − 1

1− α
log

∫

X
fα(x)dx. (10)

In the limit α → 1, (10) approximates Shannon’s differen-

tial entropy [17]. For α = 2, an empirical estimator Ĥ2 of

H2, which has closed form solution and it is also differen-

tiable, can be obtained using Parzen windows. Let Xp be

an i.i.d sample of size M drawn from f . The expression,

Ĥ2(Xp) = − log
1

M2

M
∑

i=1

M
∑

j=1

G√
2σ(xj − xi), (11)

is an estimator of Rényi’s second order entropy. The quan-

tity inside of the logarithm in (11) is known as the informa-

tion potential, which as we will se below, allows the formu-

lation of a well behaved cost function for group-wise regis-

tration.

4.2. Group­wise registration based on information
potentials

Let X = {X1, . . . ,XN} be a collection of N shapes to

be aligned. Each Xk is an array of Mk points representing

a shape. Here, a shape is considered to be a set of i.i.d

samples drawn from a common random variable that have

undergone an unknown transformation Tk. Our goal is to

find a set of transformations Sk = T−1
k that map the collec-

tion of shapes X to a collection X̃ = {X̃k = T−1
k (Xk)}

regarded as i.i.d samples drawn from the same under-

lying random variable X̃ . Since the underlying random

variable that the shapes are assumed to be sampled from

is unknown, it is necessary to impose a set of regularity

conditions on the transformation mappings Sk and the

estimated matching distributions from each X̃i.

The information potential IP (f) =
∫

f2(x)dx is a con-

vex function since it corresponds to the squared L2 norm of

a density function1. From the convexity of the information

1Here, we restrict to the space of probability density functions with

bounded L2 norm.
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potential, the following inequality holds:

IP

(

N
∑

k=1

Πkf̂k

)

≤
N
∑

k=1

ΠkIP (f̂k), (12)

where f̂k is the Parzen density estimate for the kth point-set,

and

Πk =
Mk

∑N

k=1 Mk

. (13)

This indicates that the weighted sum of the information po-

tentials of each of the point-sets X̃k is greater than the in-

formation potential of their union X̃, and equality is valid

if and only if all the point-sets are the same. From this ob-

servation, we propose as a cost function, the difference be-

tween the two terms in the inequality (12). The proposed

cost function, expressed in terms of the point-sets X̃k, can

be written as:

J =

N
∑

k=1

ΠkIP (X̃k)− IP

(

N
⋃

k=1

X̃k

)

. (14)

Multi-shape alignment can be achieved by minimizing the

above difference. As will will show below, transforming the

samples Xk to X̃k, so that their weighted average informa-

tion potential is equivalent to the information potential of

their union X̃, yields the desired alignment.

5. Point-set registration

As we mentioned above, a collection ofN point-sets Xk,

assumed to be transformed versions of samples drawn from

a common random variable X̃ , can be aligned to a common

shape by finding a set of transformations Sk such that the

estimated distributions of Sk(Xk) minimize the objective

function (14). Nevertheless, this is an ill-posed problem be-

cause the distribution of X̃ is unknown. To select a partic-

ular solution, we impose constraints on the set of estimated

transformations as well as the target distribution. For each

Xk, the desired transformation can be broken into two parts:

1) affine transformation, and 2) non-rigid transformation.

The affine transformation has a global effect on the shape

and is mainly composed of linear transformations such as

rotation, scaling, shear, and a translation. The non-rigid

transformation accounts for local deformations that cannot

be expressed by the affine transformation. In addition, we

assume that the function is smooth in the sense that two sim-

ilar inputs correspond to two similar outputs. This assump-

tion is crucial when dealing with the non-rigid part of the

transformation. Smoothness of the solution is enforced by

introducing a regularization term into our problem.

5.1. Affine transformation

Let Xk denote a matrix of size Mk × d, where each row

vector is a point in R
d. An affine transformation is obtained

by a linear transformation AT followed by the addition of

the vector t ∈ R
d. For a point x ∈ Rd, the affine transfor-

mation Saff is expressed in terms of A and t, as follows:

Saff(x|A, t) = ATx+ t. (15)

A more compact form of (15) can be obtained by consid-

ering homogeneous coordinates, where the original vector

points are extended to (d + 1) dimensions with the last di-

mension as 1,

Saff(x|A, t) =
[

AT|t
]

[

x

1

]

. (16)

From here on, it is assumed that the points x
(k)
i have been

extended to deal with translations implicitly as shown in

(16).

5.2. Non­rigid transformation

Non-rigid transformations model local deformations,

which is a non-linear operation on the coordinate points of

the shape. In this work, we employ radial basis function

(RBF) expansions to compute the non-rigid transformation.

In the RBF expansion, the transformation is defined as a

linear combination of M basis functions φi(x),

Snr(x|W,φ) =

M
∑

i=1

wiφi (x) =

M
∑

i=1

wiφ (‖x− xi‖) .

(17)

Each of the basis elements φi is a nonlinear function of the

Euclidean distance between the point x, at which the func-

tion is evaluated, and the corresponding center pointxi. The

most common RBFs used for non-rigid transformations are

thin plate splines (TPS) [2] and Gaussian RBFs. The key

advantage of both of these functions is that their approxi-

mation errors approach to zero asymptotically. However,

the non parametric nature of the RBF expansion where all

data points are also control points, if not handled properly,

can have a significant impact on the computational com-

plexity. Although this is an important problem on its own

right, it is out of the scope of this paper, and will not be

addressed any further.

The transformation Sk is the linear combination of the

affine and non-rigid components as follows:

Sk(x|Ak, tk,Wk,φk) = Saff(x|Ak, tk) + Snr(x|Wk,φk)

=
[

AT
k |tk

]

[

x

1

]

+WT
kφk(x).

(18)

The mappingφk is defined by the set of basis functions cen-

tred at the points of Xk, which yields Wk of size Mk × d.

To simplify notation, we will denote the affine mapping by
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A. It should be understood that x is the augmented vector

and t is contained in A. Equation (18) is then written as:

Sk(x|Ak,Wk,φk) = AT
k x+WT

k φk(x). (19)

For each shape Xk, the transformed shape X̃k can be com-

pactly written in matrix form,

X̃k = [Xk|1]Ak +ΦkW, (20)

where Φk is the matrix of all pairwise evaluations of φ,

that is, (Φk)ij = φ
(

‖x(k)
i − x

(k)
i ‖

)

. However, since the

columns of the augmented matrix [Xk|1] could also be-

long to the span of the columns of Φk, part of the affine

transformation could be implicitly contained on the second

term of the r.h.s. of (20). It is possible to decouple the

affine and non-rigid components by projecting Φk to the

kernel of the span of the columns of Xk. The projection

can be obtained based on the QR factorization of [Xk|1].
Let QkRk = [Xk|1], where Qk =

[

QX
k |Q⊥

k

]

. A decou-

pled version of (20) can be obtained by replacing Φk with

Φ̄k =
(

Q⊥
k Q

⊥
k

T
)

Φk

(

Q⊥
k Q

⊥
k

T
)

. (21)

Out of sample extensions of the solution are given by:

Sk(x) = AT
k x+WT

k Φ̄kΦk
†φk(x), (22)

where Φk
† denotes the Moore-Penrose pseudo-inverse of

Φk. From this point on, to ease notation, Φk will be under-

stood as the decoupled version obtained in (21), and Xk as

the augmented matrix that accounts for the shift parameter

in the affine transformation.

5.3. Regularization

Incorporating a stabilizer into the solution is an impor-

tant part of shape registration because it enforces smooth-

ness on the transformation function. Since we are dealing

with a finite set of points, there can be an infinite num-

ber of transformations that match the corresponding points,

but have very different behavior for unseen portions of the

shape. Choosing the smoothest solution through a regular-

ization term provides a unique tractable solution.

The regularization theory originates from the work of

Tikhonov [20] where the existing optimization problem is

augmented with a regularization term. In our case, we have:

minimize
{Sk}

J ({Sk}) + λΩ({Sk}), (23)

where Ω({Sk}) is the regularization term that constraints

the smoothness of set of functions {Sk}, and λ is the free

parameter that trades-off between the alignment J ({Sk})
objective and the smoothness of the solution. For the non-

rigid transformation, the regularization term is given by the

pseudo-norm,

Ω({Sk}) = tr
(

WT
k ΦkWk

)

. (24)

5.4. Solving for transformation matrices A and W

The cost function J can be expressed in terms of the

cross-information potential (5). First, we have that for each

transformed shape X̃k with Mk points,

IP (X̃k) = CIP (X̃k, X̃k). (25)

The information potential of the collection of transformed

shapes ˜{Xk} is given by:

IP

(

N
⋃

k=1

X̃k

)

=
1

(

N
∑

k=1

Mk

)2

N
∑

k,ℓ=1

MkMℓCIP (X̃k, X̃ℓ).

(26)

The cross-information potential can be expressed in com-

pact form using Gram matrices. For a given kernel, in par-

ticular for the Gaussian kernel of fixed width, let the matrix

G(X̃k, X̃ℓ) contain all pairwise evaluations of points in X̃k

and X̃ℓ. For short, we will denote G(X̃k, X̃ℓ) as Gkℓ and

its entries by

G
(kℓ)
ij = G√

2σ

(

x̃
(k)
i , x̃

(ℓ)
j

)

. (27)

Then, the cross-information potential can be written as:

CIP (X̃k, X̃ℓ) = 1T
Mk

Gkℓ1Mℓ
, (28)

where 1M denotes a vector of length M and equal entries

1/M . The partial derivatives of the cost function can be eas-

ily computed based on the partial derivatives of the cross-

information potential, which are shown below:

∂CIP (X̃k, X̃ℓ)

∂Ak

∝Xk
TGkℓX̃ℓ −Xk

Tdg(MℓGkℓ1Mℓ
)X̃k,

∂CIP (X̃k, X̃ℓ)

∂Wk

∝Φk
TGkℓX̃ℓ −Φk

Tdg(MℓGkℓ1Mℓ
)X̃k,

(29)

where dg(v) denotes a diagonal matrix with the values of v

on its main diagonal.

5.5. Normalized information potential

Likewise differential entropy, the information potential

is not scale invariant, so using the cost function as presented

above to align the point-sets can end up at a saddle point

on the performance surface. A global minimum could be

reached by simply collapsing all the point-sets into to a sin-

gle point. To ensure that such a collapse does not occur, we

introduce a normalized form of the cost function that con-

fines the solution space. Here, we rely on the fact that the

entropy of a random variable depends on its standard de-

viation. To prevent unwanted, scaled-down solutions, we

modify the cost function in (14) dividing the information
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potentials by the squared root of the total variance, which

corresponds to the trace of the covariance matrix. The cost

function corresponds to the following difference of normal-

ized information potentials:

J =

N
∑

k=1

Πk

IP (X̃k)
√

tr(C̃k)
−

IP
(

⋃

X̃k

)

√

tr(C̃∪)
, (30)

where C̃k are the covariance matrices of each transformed

shape X̃k, and C̃∪ is the covariance of the union of all trans-

formed shapes.

6. Experimental results

To illustrate the group-wise registration capabilities of

the proposed method, Fig. 1 shows an example of multiple

shapes of the same object rotated, translated, and scaled to

different sizes. Fig. 1(A) shows the initial position of the

objects. The rest of the subfigures show steps through the

alignment process. Note that there are no jumps occurring

during the registration process. This is not the case for the

two methods based on CDFs that we compare against. The

resulting alignment is an average of rotation and scaling of

all the individual shapes. It does not coincide with any of

the original shapes, but it reflects a compromise in orienta-

tion and size of the different point-sets.

6.1. Groupwise registration for atlas construction

The following example shows group-wise registration

using both affine and non-rigid transformations on a dataset

borrowed from [3]. The dataset contains points extracted

from the outer contours of the corpus callosum (CC) of

seven subjects. In this experiment, we demonstrate the abil-

ity of our algorithm for unbiased 2D atlas construction. In

addition to the information potential and normalized infor-

mation potential differences, we also provide results based

on Hölder’s divergence. Fig. 2 shows the registration results

for the two algorithms and also for CDF-HC [3]. In our ex-

periments, we modified the optimization routine used for

CDF-HC with the minimize routine that uses conjugate gra-

dients and approximate line searches based on polynomial

interpolation with Wolfe-Powel conditions from [16]. The

first seven images 2(a)-2(g) show the deformation of each

point-set to the atlas generated by one of the three meth-

ods. The color scheme used in the first seven images is as

follows: the initial point-set is denoted with blue ‘+’, the

deformed points sets are denoted with circles which are in

color green, black, red and magenta corresponding to CDF-

HC, Holder’s, IP, and normalized IP algorithms. Image 2(h)

shows the superimposed point-sets before the registration.

Images 2(i)-2(l) show the superimposed point-sets after reg-

istration for each method. Notice that CDF-HC follows

more closely point-set 7, Figure 2(g), and its final regis-

tration is smaller than the rest of the point-sets. Holder’s

final registration has a close alignment with the initial posi-

tions of each individual point-set and is quite similar to the

unconstrained IP solution. However, both get scaled down

in the y-axis. This is due to the scaling problem previously

discussed. Image 2(l) shows the results of the normalized

IP with the constraint term in (30). This demonstrates the

importance of the constraint when we minimize the cost.

The results demonstrate that our methods not only provide

a final registration that resembles the average shape more

closely, but they also provide a better fit of the final point-

sets.

To compare the registration capabilities of the methods

against noise, we add a few outlier points in one of the

point-sets, namely, point-set 7. Fig. 3(a) shows the point-

sets before registration plus the outlier samples which are

shown in dark stars. Sub-figures 3(b), 3(c), and 3(e) show

the final registration for CDF-HC, Holder’s, and normal-

ized information potential, respectively. In addition to the

seven point-sets after registration, each sub-figure also con-

tains point-set 7 from the registration without the outlier

samples to show the deviations that may have occurred in

the final registration due to the outliers. The final registra-

tion shows that our method is more robust to outliers than

CDF-HC. When compared against point-set 7 of the regis-

tration without outliers, our method has very little deviation,

whereas CDF-HC shows a more pronounced convergence

of the point-sets towards the outliers.

We need to point out that even though our methods per-

form very well, we have two free parameters in the cases

when TPS are used; namely, the kernel size σ required to

estimate the information potential, and the regularization

parameter λ that controls the ‘smoothness’ of the function.

In addition, when Gaussian RBFs are employed, a kernel

bandwidth β that determines the locality influence of con-

trol points must be defined, as well. Determining these

parameters and establishing an optimal annealing rate are

problem dependent. In our examples above using the corpus

callosum data, we use TPSs as basis functions, λ = 0.1 for

the information potential and normalized information po-

tential algorithms and 0.01 for Holder’s algorithm. For all

three proposed algorithms, we initialize σ = 0.1 and ap-

ply 98% annealing rate. To observe the effect of different

regularization parameter values, Fig. 5 shows four different

values for λ while initializing σ = 0.2 with 98% annealing

rate.

Figure 5 depicts the behavior of the alignment when λ
is changed by one order of magnitude. It can be seen how

lower values of λ allow the points to freely move and pro-

vide an almost perfect overlap. Nevertheless, applying the

learned transformation from the noisy subsampled shapes to

the original shapes exposes the overfitting phenomena that
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(f) final alignment

Figure 1. Example of multiple shapes aligned using the Information potential cost function.
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(g) point-set 7
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(l) Normalized IP difference

Figure 2. Example of unbiased group-wise non-rigid registration on real CC data sets. Performance comparison using CDF-HC, estimate

of Holder’s, IP, and normalized IP methods.
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(e) Normalized IP difference

Figure 3. Example of unbiased groupwise no-rigid registration on outlier noise. Compare the three methods: CDF-HC, estimate of Holder’s,

IP difference and normalized IP difference.

can result when the non-rigid transformation is not properly

regularized.

6.2. Groupwise registration of biased datasets

To demonstrate the accuracy and robustness against

noise, we borrowed two data-sets from [3]: olympic logo

and noisy fish. These datasets were synthetically generated

to be biased. The first point-set is the original set and the

other six were generated by passing the point-set through

various non-rigid transformations using thin-plate splines.

For the second dataset, the fish, in addition to the transfor-

mation, ten randomly generated jitter points were also in-

serted into each point-set. Notice, this is a different kind

of perturbation from the one employed in the regularization

experiments (5), where the point locations were altered by

adding Gaussian noise. The initial point-set positions and

the final registration results for CDF-HC, Holder’s, IP, and

normalized IP are shown in Fig. 4. For the olympic and

fish data λ = 0.01, σ = 0.5 with 99% annealing rate for all

three algorithms.

To analytically measure the accuracy of the registration -

the similarity between the final point-sets, we compute the

Kolmogorov-Smirnov (KS) statistic [7] between the ground

truth point-set, the first set, and the final registered point-

sets. The average KS-statistic results for the corpus callo-

sum (CC7), CC7 with outliers CC7(+out), CC7 with out-

liers registration but only considering the original points for

the KS statistic CC7(-out), olympic logo, and the noisy fish

datasets are shown in Table 1. We also include KS-statistic

results of the CDF-JS [22] for the olympic and fish datasets

that are listed in [3]. The results show that our methods

perform better than CDF-JS and CDF-HC. It is important

to highlight the difference between the KS statistic on the

CC7 with outliers data set when the outliers are removed

from the set. When the outliers are removed after registra-

tion to compute the KS statistic, the normalized IP algo-

rithm not only exposes the best performance both also the

largest decrease in KS statistic in agreement with the visual

inspection from Figure 3.

The normalized information potential algorithm per-

forms well on any transformation type and noise level. In

addition, in comparison with CDF-HC, the information po-

tential algorithm is faster to compute. Table 2 shows the av-

erage computation time of CDF-HC, Hölder’s, information

potential, and normalized information potential on three dif-

ferent sets of data, where all three methods are set to run
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(j) Normalized IP

Figure 4. Example of biased group-wise non-rigid registration. Compare the four methods: Holder’s, information potential, normalized

information potential, and CDF-HC on the olympic logo and noisy fish datasets.

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c)

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d)

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(e)

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(f)

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(g)

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(h)

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(i)

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(j)

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(k)

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(l)

Figure 5. Registration results for different regularization levels λ.

The first row displays the resulting registration for λ = 0.1 us-

ing the original set of shapes 5(a), a sub-sampled set of points

which are corrupted with zero mean and 0.05 standard deviation

i.i.d. Gaussian noise 5(b), and the original set of shapes trans-

formed using the parameters learned based on the sub-sampled

noisy shapes 5(c). Similarly, row 2 (5(d), 5(e), and 5(f)) corre-

sponds to λ = 0.01, and rows 3 (5(g), 5(h), and 5(i)) and 4 (5(j),

5(k), and 5(l)) to λ = 0.001 and λ = 0.0001, respectively.

for 300 epochs. The results show that the proposed meth-

ods, Hölder’s, information potential, and normalized infor-

mation potential, are computationally less demanding. Our

Table 1. KS statistic

CDF-JS CDF-HC Holder IP Norm-IP

CC7 N/A 0.0661 0.0555 0.0503 0.0317

CC7(+out) N/A 0.0577 0.0635 0.0539 0.0405

CC7(-out) N/A 0.0556 0.0556 0.0529 0.0317

olympic 0.1103 0.0295 0.0206 0.0177 0.0177

fish(out) 0.1314 0.0462 0.0387 0.0383 0.0383

methods perform much faster than CDF-HC and CDF-JS.

Table 2. Run time
CDF-HC Holder IP Norm IP

CC7 252s 28s 30s 31s

CC7(outliers) 270s 29s 30s 31s

olympic 746s 74s 57s 60s

fish(outliers) 1946s 131s 111s 117s

7. Conclusions

In this paper, we presented a robust algorithm to simulta-

neously register multiple unlabelled point-sets represented

as density functions. We used the argument of the logarithm

in Rényi’s second order entropy and Jensen’s inequality to

yield a cost function with closed-form solution that allows

gradient based parameter updates. We observed that the

alignment based on the poposed cost function focuses on

high density regions making it robust to the presence of out-

liers. Furthermore, the proposed normalized cost function

avoids the necessity of impossing constraints on the rigid

transformation, which can be difficult to set, and the reg-

ularized non-rigid transformation can handle cases where

points-sets are noisy. These poperties arise from the aver-

aging behaviour of the group-wise registration, where no

point-set is employed as reference.
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