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Abstract

Many computer vision problems require optimization of

binary non-submodular energies. In this context, local it-

erative submodularization techniques based on trust region

(LSA-TR) and auxiliary functions (LSA-AUX) have been re-

cently proposed [9]. They achieve state-of-the-art-results

on a number of computer vision applications.

In this paper we extend the LSA-AUX framework in two

directions. First, unlike LSA-AUX, which selects auxil-

iary functions based solely on the current solution, we pro-

pose to incorporate several additional criteria. This re-

sults in tighter bounds for configurations that are more

likely or closer to the current solution. Second, we propose

move-making extensions of LSA-AUX which achieve tighter

bounds by restricting the search space.

Finally, we evaluate our methods on several applica-

tions. We show that for each application at least one of our

extensions significantly outperforms the original LSA-AUX.

Moreover, the best extension of LSA-AUX is comparable to

or better than LSA-TR on four out of six applications.

1. Introduction

Minimization of binary pairwise non-submodular en-

ergies is a classical problem in combinatorial optimiza-

tion, e.g. see [15, 8, 2]. In the last decade optimization

methods based on LP relaxations, e.g. QPBO [21] and

TRWS [13], became popular in vision and are thoroughly

evaluated [12].

Another group of methods is based on local lineariza-

tion, e.g. parallel ICM, IPFP [16], and similar methods [4].

These methods iteratively linearize the energy around the

current solution and globally optimize the approximation

within the integer domain. Such approach often gets stuck

in poor local minimum by making large steps regardless of

the quality of approximation. IPFP tries to control the step

size by exploring relaxed solutions on a certain continuous

line in the vicinity of the new minimum. Unfortunately, as

with global LP relaxations, such relaxed solutions have no

guarantees with respect to the original integer problem.

Recently, two local submodularization methods, LSA-

TR and LSA-AUX have been proposed [9]. Instead of linear

approximation, they use a more general class of submodu-

lar functions, which gives better approximation, yet allows

efficient optimization.

LSA-TR is based on the trust region framework [23]. In

each iteration, it approximates the original energy around

current solution using a submodular function. The approxi-

mation is only trusted within a small region around current

solution, called the trust region. The next candidate solu-

tion is obtained by globally optimizing the approximation

within this trust region. The trust region size is then either

increased or decreased based on the quality of the approxi-

mation, providing a better control of the step-size problem.

LSA-AUX is based on the auxiliary function framework

[14, 18, 1], also known as bound optimization. In each it-

eration, it finds a submodular upper bound for the original

energy around the current solution and minimizes it glob-

ally. There is no need to control the step size as the global

minimizer is guaranteed to decrease the original energy.

Local submodularization methods were reported to ob-

tain state-of-the-art results on several applications, involv-

ing quadratic [9, 11] and high-order [22] energies, with

LSA-TR being the more accurate and LSA-AUX the faster.

In this paper we extend the LSA-AUX framework in two

directions. First, we introduce a new way to select upper

bounds for each supermodular potential. LSA-AUX uses

a predetermined bound based solely on its configuration in

the current solution. In contrast, we propose using an adap-

tive upper bound that is selected based on several additional

criteria such as unary term preference, energetic preference,

proximity to the current solution and combinations of the

above. Intuitively, this gives tighter bounds for configura-

tions that are more likely or closer to the current solution.

Second, inspired by move-making algorithms in the con-

text of multilabel energies [3, 17] and binary energies [10],

we propose two types of binary move-making extensions of

LSA-AUX. They achieve more accurate bounds by restrict-
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ing the search space. The first type is trivially based on

α-expansion, where the current solution is either allowed

to grow or to shrink. Such moves yield certain configura-

tions invalid. Therefore, they can be ignored when selecting

an upper bound, allowing tighter bounds for the remaining

configurations. The second type of move-making is based

on the geometry of the segment’s boundary. Each move ac-

curately models boundary change in a certain orientation

and we iterate over the orientations.

Note that the proposed extensions could be used in con-

junction with the recently published pseudo-bound opti-

mization [22] that employs families of pseudo-bounds.

We evaluate the proposed adaptive and move-making

auxiliary cuts on inpainting, segmentation with repulsion

and binary deconvolution as in [9], squared curvature [19],

compact shape [5] and multi-part object [6] priors. We show

that for each application at least one of our extensions sig-

nificantly outperforms the original LSA-AUX. Moreover,

the best extension of LSA-AUX is comparable to or better

than LSA-TR on four out of six applications.

This paper is structured as follows. Section 2 outlines the

energy and reviews LSA-AUX. Sections 3 and 4 describe

the proposed adaptive and move making auxiliary cuts re-

spectively. Section 5 reports the experimental results.

2. Overview of LSA-AUX

We address a general class of binary pairwise non-

submodular energies, which are popular in computer vision.

Without loss of generality, such energy can be written1 as

E(S) = STU + STMS, S ∈ {0, 1}Ω (1)

where S = (sp | p ∈ Ω) is a vector of binary indicator

variables defined on pixels p ∈ Ω, vector U = (up ∈
R | p ∈ Ω) represents unary potentials, and symmetric ma-

trix M = (mpq ∈ R | p, q ∈ Ω) represents pairwise po-

tentials. In many applications M is sparse with mpq = 0
for all non-interacting pixel pairs. We seek solutions to the

following integer quadratic optimization problem

min
S∈{0,1}Ω

E(S). (2)

When mpq ≤ 0 ∀(p, q), the energy (1) is submodular and a

global optimum for (2) can be found in polynomial time [2].

The general non-submodular case of (2) is NP hard.

LSA-AUX is based on the auxiliary functions frame-

work. It is a class of iterative algorithms that in each itera-

tion construct and optimize an upper bound of the original

energy E around current solution. It is assumed that those

bounds are easier to optimize than the original energy E.

1Note that the transformation is up to a constant.

We decompose the energy E in (1) into submodular and

supermodular parts E(S) = Esub(S) + Esup(S) such that

Esub(S) = STU + STM−S (3)

Esup(S) = STM+S (4)

where M− with elements m−
pq ≤ 0 and M+ with m+

pq ≥ 0
hold submodular and supermodular potentials respectively.

Given current solution St, the function At(S) is an aux-

iliary function of E if it satisfies the following conditions:

E(S) ≤ At(S) (5a)

E(St) = At(St) (5b)

We iteratively minimize a sequence of auxiliary functions:

St+1 = argmin
S

At(S) , t = 1, 2, . . . (6)

Using (5a), (5b), and (6), it is easy to prove that the solutions

in (6) yield a sequence of decreasing energy values.

E(St+1) ≤ At(St+1) ≤ At(St) = E(St).

The main challenge in bound optimization is designing

an appropriate upper bound At(.) satisfying (5a) and (5b).

However, in case of integer quadratic optimization problem

(2), this step is simple [9] and is summarized below.

Consider any supermodular potential2 β · spsq in (4). It

can be bounded above by linear function vpq(sp, sq) := vp ·
sp + vq · sq ≥ β · spsq for some positive scalars vp and vq .

Let (stp, s
t
q) be the configuration of pixels p and q in cur-

rent solution St. The table below specifies upper bounds for

the four possible configurations of (stp, s
t
q) as in [9]:

(stp, s
t
q) upper bound vtpq(sp, sq)

(0,0) β
2 sp +

β
2 sq

(0,1) βsp
(1,0) βsq
(1,1) β

2 sp +
β
2 sq

Table 1. Upper bounds used in [9].

Summing upper bounds for all supermodular potentials

in (4) gives an overall linear upper bound

Esup(S) ≤ STVt (7)

where vector Vt = (vtp|p ∈ Ω) consists of elements

vtp =
∑

q

m+
pq

2
(1 + stq − stp)

and St is the current solution.

2Here we use β instead of m+
pq for brevity.
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Let At(S) be an auxiliary function at St, defined by

At(S) := STVt + Esub(S). (8)

Using inequality (7) we satisfy condition (5a)

E(S) = Esup(S) + Esub(S) ≤ At(S).

Since ST
t Vt = Esup(St), our auxiliary function (8) also sat-

isfies condition (5b). Function At(S) is submodular. Thus,

we can globally optimize it in each iteration guaranteeing a

decrease in energy.

3. Adaptive Auxiliary functions

Bounds βsp and βsq provided in lines 2-3 of Tab. 1

for configurations (stp, s
t
q) = (0, 1) and (stp, s

t
q) = (1, 0)

are the tightest possible, as they coincide with the original

potential fpq = βspsq on three out of four possible dis-

crete configurations. This is not the case with the bound
β
2 sp + β

2 sq used for other two configurations (stp, s
t
q) =

(0, 0) and (stp, s
t
q) = (1, 1). It coincides with the original

potential fpq only on two out of four discrete configurations.

One can find tighter bounds for configurations (stp, s
t
q) =

(0, 0) and (stp, s
t
q) = (1, 1) in lines 1,4 of Tab. 1. For exam-

ple, βsp or βsq can also be used in these cases. Note that

bound βsq coincides with potential fpq on configurations

(0, 0), (1, 1) and (1, 0) and bound βsp coincides with fpq
on configurations (0, 0), (1, 1) and (0, 1). Selecting one of

the bounds essentially chooses which of the configurations

(0, 1) or (1, 0) is modeled exactly by the bound in addi-

tion to (0, 0) and (1, 1). Therefore throughout the paper we

use statements “we select bound βsp” and “we model con-

figuration (0, 1) precisely” interchangeably. Similarly, the

statements “we select bound βsq” and “we model configu-

ration (1, 0) precisely” are interchangeable.

Without additional information, it is not clear which of

the two equally tight bounds βsp and βsq is better for con-

figurations in lines 1,4 of Tab. 1. One way is to randomly se-

lect either βsp or βsq in those two cases. This is exactly the

permutation based approach [18] proposed in the context of

high-order supermodular terms when reduced to pairwise

potentials. We call this approach LSA-AUX-P. However in

[9], LSA-AUX-P was inferior or comparable to bounds in

Tab. 1 in all but one application.

An alternative way is to decide whether configuration

(0, 1) or (1, 0) is more “likely” in some sense. We choose

bound βsp if configuration (0, 1) is more likely, and βsq
otherwise. This way the chosen bound coincides with the

original pairwise potential on the more likely configuration.

Below we provide several selection criteria that give rise

to distinct auxiliary cuts algorithms. All these methods dif-

fer in the way they select bounds for current configurations

(stp, s
t
q) = (0, 0) and (stp, s

t
q) = (1, 1), leaving the bounds

for configurations (stp, s
t
q) = (0, 1) and (stp, s

t
q) = (1, 0)

unchanged, as in Tab. 1.

3.1. Unary Preference

The simplest way to decide which of two configurations

(0, 1) or (1, 0) is more likely is based on the unary terms.

Let U be the vector of unary coefficients as in (1). If pixel p

has a stronger preference for background compared to pixel

q, that is up > uq , we say that configuration (sp, sq) =
(0, 1) is more likely than (1, 0) and select bound βsp.

We refer to such version of LSA-AUX as AUX-U. The

table below specifies all cases of the selection criterion and

the resulting bounds for configurations (0, 0) and (1, 1):

unary preference upper bound vtpq(sp, sq)

(up < uq) βsq
(up > uq) βsp
(up = uq)

β
2 sp +

β
2 sq

3.2. ICM preference

A more involved way to choose between the bounds βsp
βsq is inspired by the principle of the parallel ICM [16].

In ICM, given current solution St, we fix all labels except

one and optimize over the remaining variables. In parallel

ICM, this is done simultaneously for all variables yielding

a linear approximation function, which can be efficiently

optimized. Such an approximation function is used in LSA-

TR approach in [9]. For selecting adaptive upper bounds we

use pairs of variables instead.

Given supermodular potential β · spsq , we fix all vari-

ables except sp and sq to current solution St. We then eval-

uate energy E of solution St, first substituting (sp, sq) =
(0, 1) and then substituting (sp, sq) = (1, 0), denoted by

S01
t and S10

t respectively. The configuration with the lower

energy is selected to be modeled precisely. This is done si-

multaneously for all supermodular potentials. We refer to

this version of LSA-AUX as AUX-ICM and specify the se-

lected bounds for each case in the table below.

ICM preference upper bound vtpq(sp, sq)

E(S01
t ) < E(S10

t ) βsp
E(S01

t ) > E(S10
t ) βsq

E(S01
t ) = E(S10

t ) β
2 sp +

β
2 sq

3.3. Distance from current solution St

Another approach to decide which of the configurations

(0, 1) or (1, 0) should be modeled precisely is based on the

distance from the current solution. Consider supermodular

potential β · spsq and let Dt = (dtp|p ∈ Ω) be the vector of

shortest distances from each pixel to the boundary of cur-

rent solution St. We say that changes closer to the bound-

ary are more desirable than changes farther from it. Assume

current configuration (stp, s
t
q) = (0, 0). If pixel p is closer

to the boundary than pixel q, that is dtp < dtq , we prefer

to model precisely the configuration in which p changes its

label rather than q. That is, we select configuration (1, 0).
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Similarly, if current configuration is (stp, s
t
q) = (1, 1) and

pixel p is closer to the boundary than pixel q, we select to

model precisely configuration (0, 1). The table below spec-

ifies all cases and the resulting bounds for configurations

(stp, s
t
q) = (0, 0) and (stp, s

t
q) = (1, 1):

(stp, s
t
q)∧ distance preference upper bound vtpq(sp, sq)

(0, 0) ∧ (dtp < dtq) βsq
(0, 0) ∧ (dtp > dtq) βsp

(dtp = dtq)
β
2 sp +

β
2 sq

(1, 1) ∧ (dtp > dtq) βsq
(1, 1) ∧ (dtp < dtq) βsp

Distance based approach for selecting bounds has an in-

teresting property. Implicitly, it defines a large family of

segments Ct = {S ⊂ Ω|STVt = Esup(S)} for which the

upper bound STVt coincides with the original supermodu-

lar energy term Esup(S). This means that we optimize the

original energy over segments in Ct exactly.

The family Ct is quite large. For example, it contains

all segments corresponding to the level sets of the distance

transform Dt computed from current solution St, see (a-

left) of Fig. 1. But this is just a small subset of the segments

in Ct. In fact, any segment, in which the transition from

label 1 to 0 occurs along the gradient orientation of the dis-

tance transform, is also in Ct, see (a-right) of Fig. 1.

It is worth noting that many segments that are not in Ct

may still have large sections of their contour modeled pre-

cisely by the upper bound STVt. Figure 1, (b) shows exam-

ples of segments with precisely modeled sections shown in

green and imprecise sections shown in red. The transition

from 1 to 0 across the red sections of the contour is either in

opposite orientation w.r.t. the gradient (b-left) or is parallel

to the gradient (b-right). The bound for such transitions is

not tight.

Due to regularizing properties of the distance trans-

form, family Ct consists of coherent segments with smooth

boundaries. Such segments are more likely candidate solu-

tions for vision applications. In contrast, choosing bounds

at random as in [18] yields a family Ct that is not likely to

contain (i.e. model precisely) segments with smooth bound-

aries, since a set of random configurations is not likely to

coincide with a smooth contour. We refer to distance based

version of LSA-AUX as AUX-DIST.

While distance based solutions are very good candidates,

combining distance criterion with the unary preference al-

lows an additional subset of candidates. In this subset, can-

didate solutions deviate from the level sets of the distance

transform based on the unary preference. We refer to such

version of LSA-AUX as AUX-DIST-U. The table below

specifies the selection criterion and the resulting bounds for

configurations (0, 0) and (1, 1):

(a)

(b)

Figure 1. Distance Preference. a) Left: Current solution St (blue)

and the level sets of its distance transform (gray) belong to Ct.

Right: a segment (green) in Ct where transition from 1 to 0 aligns

with the gradient orientation (black arrows). b) Segments that are

not in Ct, yet have large boundary sections that are modeled pre-

cisely (green). Sections with inaccurate bounds are shown in red.

(stp, s
t
q)∧ combined preference upper bound vtpq(sp, sq)

(0, 0) ∧ (dp + up < dq + uq) βsq
(0, 0) ∧ (dp + up > dq + uq) βsp
(0, 0) ∧ (dp + up = dq + uq)

β
2 sp +

β
2 sq

(1, 1) ∧ (dp − up < dq − uq) βsq
(1, 1) ∧ (dp − up > dq − uq) βsp
(1, 1) ∧ (dp − up = dq − uq)

β
2 sp +

β
2 sq

3.4. Supermodular Neighborhood Size

Another way to choose between the bounds is based on

the size of supermodular neighborhood. Given current so-

lution St we can measure for each pixel p the number nt
p of

supermodular potentials (p, r) with r in the foreground:

nt
p =

∑

(r∈Np)∧(mpr>0)

str. (9)

Consider supermodular potential (p, q). If both pixels are

in the foreground and (nt
p > nt

q), this means in most cases

that q is closer to the boundary. Therefore we model pre-

cisely configuration (1, 0) where p stays unchanged. If both

pixels are in the background and (nt
p > nt

q), this means that

p is closer to the boundary. Therefore we model precisely

configuration (1, 0), where q stays unchanged. Pixels that

are far from the boundary have a flat value nt
p that is either

zero (in the background) or the size of the supermodular

neighborhood (inside the object). The table below specifies

the selection criterion and the resulting bounds for configu-

rations (0, 0) and (1, 1):
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sup. neighborhood size upper bound vtpq(sp, sq)

(nt
p < nt

q) βsq
(nt

p > nt
q) βsp

(nt
p = nt

q)
β
2 sp +

β
2 sq

In the experiments we use a weighted version of (9), namely

nt
p =

∑
(r∈Np)∧(mpr>0) mpr ·s

t
r, since it works slightly but

consistently better in practice. We refer to this version of

LSA-AUX as AUX-SNS.

4. Move-Making Auxiliary Cuts

Inspired by move-making algorithms in the context of

multilabel [3, 17] and binary [10] energies, below we pro-

pose two types of binary move-making extensions. In con-

trast to the adaptive bounds approach, where one seeks up-

per bounds that are precise for certain configurations, move-

making extensions achieve better performance through re-

stricting the search space either explicitly or implicitly.

4.1. α­expansion Auxiliary Cuts

The first type is trivially based on α-expansion, where

the current solution is either allowed to grow or to shrink,

as in [10]. Such moves yield certain configurations invalid,

allowing the remaining, valid configurations to be modeled

precisely by an approximation. In each α-expansion move,

we hard constraint all variables that currently have label α

and run the auxiliary cuts method till convergence. We re-

peat the process of alternating α till convergence. Note, that

α-expansion can be used in conjunction with LSA-AUX [9]

and any of the adaptive auxiliary cuts in Sec. 3.

Figure 2 demonstrates the advantage of restricting the

search space for auxiliary cuts. The columns correspond to

four possible configurations of pairwise potential (stp, s
t
q) in

the current solution. The rows correspond to four configura-

tions of potentials (sp, sq) in a candidate solution. Based on

the current configuration an appropriate bound is selected in

each method (green line in each section). If there are two

choices, an alternative is specified in the brackets. We then

specify whether it is precise approximation or not for each

possible configuration of (sp, sq) in a candidate solution.

It can be seen that LSA-AUX [9] (yellow) is precise in

ten out of 16 cases. Adaptive auxiliary cuts (gray) is pre-

cise in twelve out of 16 cases. Finally, α−expansion of the

adaptive approach (blue and pink) is precise in eight out of

nine cases, since some of the configurations are invalid.

Whenever we use expansion moves with any of the meth-

ods proposed in Sec. 3, we add the -EXP suffix to their

name. For example, when AUX-U is used with expansion

moves, we call it AUX-U-EXP.

4.2. Compass Moves

The second type of move-making is based on geome-

try of the segment’s boundary. It is inspired by the order-

- exact approx.           - not accurate approx.  - invalid move

Curr Config

New Config

(0,0) (0,1) (1,0) (1,1)

LSA-AUX

[11]

(0,0)    

(0,1)    

(1,0)    

(1,1)    

Approximation for

current config

0.5βሺݔ + ሻݕ βݔ βݕ 0.5βሺݔ + ሻݕ
Adaptive 

AUX

(0,0)    

(0,1) ()   ()

(1,0) ()   ()

(1,1)    

Approximation for

current config

βݔ ሺβy) βݔ βݕ βݔ ሺβy)

Adaptive

AUX-EXP

0-expansion

(0,0)    

(0,1)    ()

(1,0)    ()

(1,1)    

Approximation for

current config

N/A βݔ βݕ βݔ ሺβy)
Adaptive 

AUX-EXP

1-expansion

(0,0)    

(0,1) ()   

(1,0) ()   

(1,1)    

Approximation for

current config

βݔ ሺβy) βݔ βݕ �/�
Figure 2. Adaptive auxiliary cuts with expansion moves have

higher proportion of precise bounds due to restricted search space.

preserving moves proposed in the context of multilabel en-

ergies [17]. In order preserving moves, each pixel ex-

pands on a chosen set of labels based on orientation of the

move. In contrast, in each compass move, an orientation

(up, down, left, right) is chosen and, for all supermodular

pairwise potentials in that orientation, we select configura-

tion (1, 0) to be modeled precisely by the upper bound. This

allows precise upper bounds for changes along either top-,

bottom-, left- or right-facing boundaries. We keep alternat-

ing the moves and for each move, we run auxiliary cuts till

convergence. We call such approach compass moves.

Figure 3, (top) illustrates compass moves on a small ex-

ample. Consider orientation “right”. For any supermodular

potential (p, q) where q is to the right of p, we model con-

figuration (sp, sq) = (1, 0) precisely. The striped region

specifies possible location of pixel q w.r.t. pixel p. Note that

we arbitrarily decided that pixels above p are considered to

be to its right. Other orientations are handled similarly.

As with the distance based preference, given current so-

lution St, compass moves also define a coherent family Ct

of segments for which the upper bound is precise. Fig. 3,

(bottom) shows examples of segments in family Ct for a

specific solution St and orientation “right”. The green sec-

tions of the boundary are modeled precisely because they

align with the selected orientation. The blue sections are

modeled precisely due to requirement 5b.
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St

right up

Ct

left down

q

p
q

p

q

p
q

p

Figure 3. Compass Moves: (top) - Given pixel p and any pixel q

in the striped region, configuration (1, 0) is modeled precisely for

orientations “right”, “up”, “left”, “down”. (bottom) - examples of

segments in family Ct for given St and orientation “right”.

Note, that unlike expansion moves that explicitly restrict

the search space, in compass moves the restriction is im-

plicit. Changes in the wrong orientation are possible but

less likely since they have a looser upper bound. This ver-

sion of auxiliary cuts is denoted by AUX-COMPASS.

5. Applications

Below we apply our methods to squared curvature reg-

ularization [19], several benchmark energies from [9] such

as inpainting, segmentation with repulsion and binary de-

convolution, as well as segmentation with compact [5] and

multi-region [6] shape priors. For each application we com-

pare the proposed adaptive and move-making extensions

with the original LSA-AUX (AUX here), its random permu-

tation version LSA-AUXP (AUXP) and LSA-TR. For com-

pletness, we also compare to other standards optimization

methods, such as QPBO [21], LBP [20], IPFP [16], TRWS

and SRMP [13]. Unless otherwise stated, all local approx-

imation methods are initialized with the entire domain as-

signed to the foreground. All global optimization methods

are run for up to 5000 iterations.

5.1. Squared Curvature

Below we focus on the squared curvature model in

[19]. In combination with appearance terms, the model

yields discrete binary energy with submodular and non-

submodular pairwise terms. The weight of curvature term

relative to appearance term is controlled by parameter λcurv.

For this application we use Picasso’s Don Quixote draw-

ing. We vary the weight λcurv and evaluate the performance

of the proposed extensions. The best three are compared

to LSA-TR, AUX and AUXP, see Fig. 4. All methods start

with the maximum likelihood solution based on the appear-

ance terms. When the weight of supermodular curvature

terms increases, the proposed methods consistently outper-

form LSA-TR (blue line), AUX (red) and AUXP (green).

All other standard optimization methods such as QPBO,

LBP, TRWS, SRMP, and IPFP were significantly inferior

even to the worst of the proposed extensions, AUX-DIST-

Input Image

Figure 4. Squared curvature model. We used Gaussian with (µ =
0, σ = 0.2) and (µ = 1, σ = 0.2) for the foreground and back-

ground appearance and 7× 7 stencils for angular resolution.

Alg.

Name

Mean

Runtime

Mean

Energy
#best Rank

MCBC 2053.89 sec -49550.1 59 1

BPS (LBP)∗ 72.85 sec -49537.08 6 6

ILP 3580.93 sec -49536.59 5 7

SA NaN sec -49533.08 11 4

TRWS-LF 2106.94 sec -49519.44 4 8

LSA 0.08 sec -49547.61 16 3

AUX-DIST 0.07 sec -49538.72 7 5

AUX-DIST-U 0.07 sec -49548.78 33 2

AUX-ICM 0.07 sec -49533.09 4 8

Table 2. Chinese characters in-painting database [12].

U-EXP, see supplementary material for details.

5.2. Chinese Characters Inpainting

Below we consider the task of in-painting of Chinese

characters, dtf-chinesechar [12]. We use a set of pre-trained

unary and pairwise potentials provided by the authors with

the dataset. Table 2 reports the performance of the best three

of the proposed extensions and previously published results

in [12, 9]. We omit rows with methods ranked below eight.

AUX-DIST-U is ranked second, but runs five orders of mag-

nitude faster than MCBC which is ranked first.

5.3. Segmentation with Repulsion

Below we consider segmentation with attraction and re-

pulsion pairwise potentials [9] based on pixels’ appearance

and relative position. We use 16-neighborhood system and

define the potentials as follows: ω(p, q) = −∆(p,q)+c

dist(p,q)
. Here

dist(p,q) denotes the distance between image pixels p and q

and ∆(p, q) is the difference in their respective intensities.

The constant c makes similar neighbors attract, resulting in

submodular potentials, and repulse otherwise, giving super-

modular potentials. λreg is the weight of the pairwise term.
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Input Img

Figure 5. Segmentation with repulsion and attraction. We used

µfg=0.4, µbg=0.6, σ=0.4 for appearance, λreg=100 and c=0.06.

Figure 5 reports the results. The best three of the pro-

posed extensions outperform both AUX, AUXP and all

standard optimization methods except LSA-TR. This is the

only application in which many of proposed extensions

were inferior to the original AUX, suggesting that each ap-

plication needs specifically designed adaptive bounds.

5.4. Binary Deconvolution

Consider a binary image convolved with a uniform 3× 3
filter and combined with a Gaussian noise ∼N(0, σnoise).
The goal of binary deconvolution is to recover the original

binary image. The energy is defined as

E(S) =
∑

p∈Ω

(Ip −
1

9

∑

q∈Np

sq)
2, (10)

where Np denotes the 3 × 3 neighborhood window around

pixel p and all pairwise interactions are supermodular.

Figure 6 reports the results. The best among the pro-

posed extensions, namely AUX-ICM and AUX-U, signif-

icantly outperform the original AUX and AUXP, but not

LSA-TR. For this application, LSA-TR shares the first rank

with IPFP. This is consistent with the results in [9].

5.5. Segmentation of Multi­Region Objects

In this section we focus on MRI liver segmentation. The

input image contains a liver with four tumors. The problem

is formulated as minimization of a non-submodular energy

[10]. It employs a multi-region model [6] and is able to en-

code geometric interactions such as inclusion and exclusion

between the regions.

σ = 0.2

Figure 6. Binary deconvolution. We report the energy as a function

of noise level σ, averaged over ten random instances.

The liver is modeled by a graph with five layers of bi-

nary variables, corresponding to liver (Fg), and four tumors

(A, B, C, D). See Fig. 7, (a-b) for a schematic illustration.

Inclusion of tumors within liver and exclusion constraints

between tumors are implemented using submodular and su-

permodular inter-layer pairwise potentials respectively. In

addition, we use Potts regularization on each layer. Please

see supplementary material for the technical details.

Figure 7, (c-d) shows the results. We use scribbles for ap-

pearance and as hard constraints. The top plot compares the

methods in terms of energy and running time. The bottom

plot zooms in on the most interesting part. Most methods ar-

rived at poor solutions that have violations of inclusion and

exclusion constraints. LSA-TR, AUX-DIST, AUX-DIST-U

achieve the same lowest energy, with AUX-DIST being an

order of magnitude faster.

5.6. Generalized Compact Shape Prior

Below we apply our methods to segmentation with gen-

eralized compact shape prior proposed in [10]. The orig-

inal compact shape prior in [5] partitions an object into

four quadrants around a given center, provided by the user.

Within each quadrant, the contour must follow the allowed

orientation for that quadrant, see Fig. 8, (a).

Instead of dividing the object into four quadrants, the

generalized prior [10] divides the background into four re-

gions as in Fig. 8, (b), corresponding to labels: top-left

(TL), top-right (TR), bottom-left (BL), bottom-right (BR).

There is also a label for the foreground object (fg). Sim-

ilarly to the multi-region model, this model uses a graph

with four binary layers: TL, TR, BL, BR. Each layer al-

lows discontinuities only in certain orientation using Potts.

There are also pairwise supermodular exclusion constraints

between the corresponding nodes of the binary layers to en-

force a coherent foreground object. See Fig. 8, (c-d) for

the schematic representation of the generalized model, and
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Figure 7. Multi-region liver segmentation. (a) schematic representation of liver and tumors, (b) inclusion and exclusion interactions

between corresponding nodes of different graph layers, (c) input scribbles - liver (blue) and tumors (green, yellow, cyan, magenta) along

with segmentation results, (d) energy vs. time plot (top) with zoom in (bottom). We set weights λsub = λsup = 100 and λPotts = 25.
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Figure 8. Generalized Compact Shape Prior: (a) the model in [5], (b) the generalized model in [10], (c) schematic representation of the

generalized model in [10], (d) a segment that cannot be modeled using [5], (e) can be segmented with [10], (f-e) results and comparison.

supplementary material for the technical details.

The model in [5] is a special case of the generalized

model [10], when the transitions between background la-

bels are horizontally and vertically aligned as in (b). The

generalized model does not require such alignment. For

example, it can model the object in (d) using four regions

shown in (e). This object cannot be segmented using [5]

due to restrictions on the orientation of the contours.

Below we report the results. Figure 8, (f) shows an input

image, user scribbles and the resulting appearance terms,

followed by final segmentations for each method. Figure 8,

(g) compares the methods in terms of energy and time. Most

methods arrived at poor solutions with violations of the ori-

entation and coherence constraints. LSA-TR and AUX-

DIST-U-EXP are the only methods that could optimize such

energy, with AUX-DIST-U-EXP obtaining the lowest en-

ergy in shorter time.

6. Conclusions and Future Work

We proposed two extensions to the LSA-AUX frame-

work. First, we incorporate energetic and distance based

criteria for selection of upper bounds. This results in tighter

bounds for configurations that are more likely or closer

to the current solution. Second, we proposed two move-

making extensions of LSA-AUX which achieve more accu-

rate upper bounds by means of restricted search space.

We conclude that different extensions work better for dif-

ferent applications, leaving room for designing application

specific adaptive bounds and moves. We also plan to extend

our approach to higher-order and multilabel energies. In ad-

dition, it would be interesting to design upper bounds based

on the theory of submodular functions [7].
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