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Abstract

The inherent noise in the observed (e.g., scanned) binary

document image degrades the image quality and harms the

compression ratio through breaking the pattern repentance

and adding entropy to the document images. In this pa-

per, we design a cost function in Bayesian framework with

dictionary learning. Minimizing our cost function produces

a restored image which has better quality than that of the

observed noisy image, and a dictionary for representing

and encoding the image. After the restoration, we use this

dictionary (from the same cost function) to encode the re-

stored image following the symbol-dictionary framework by

JBIG2 standard with the lossless mode. Experimental re-

sults with a variety of document images demonstrate that

our method improves the image quality compared with the

observed image, and simultaneously improves the compres-

sion ratio. For the test images with synthetic noise, our

method reduces the number of flipped pixels by 48.2% and

improves the compression ratio by 36.36% as compared

with the best encoding methods. For the test images with

real noise, our method visually improves the image qual-

ity, and outperforms the cutting-edge method by 28.27% in

terms of the compression ratio.

1. Introduction

To have binary document images with better quality and

smaller sizes are the two goals that have been pursued for

decades. The high compression ratio of document images

mainly relies on the information redundancy embedded in

the repeated patterns of the document image, as well as an

intelligent way to leverage this pattern repentance.

Unfortunately, when the document image is obtained

through scanning or other imaging devices, noise is in-

evitably introduced. This inherent noise breaks the pattern

repentance, increases the entropy, and therefore lowers the

∗This research work was done when Yandong Guo and Cheng Lu were

Ph.D. students at Purdue University.

(a) Unknown,

original image

(b) Input: noisy

observation
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our method

Figure 1. The imaging and compression pipeline for document

images. In the bottom area of the figure, we zoom in the document

image to visualize the details of the two characters “l”. As shown

in subfigure (b), the input of our system contains noise inevitably

introduced by using the imaging device (scanners, cameras, etc.).

Our method restores the input noisy image and compresses the

restored image. As shown in subfigure (c), our method success-

fully removes the noise and maintains/recovers the very fine de-

tails (one-pixel width stroke). Moreover, we present in Sec. 5 that

encoding our restored images, compared with encoding the ob-

served images, improves the compression ratio by 36.36% in the

synthetic noise setup and 28.27% in the real noise setup.

compression ratio. As shown in Figure 1 (b), the same let-

ter “l” look different from each other in the observed image,

though they used to have the same typeface and font size in

the original image in Figure 1 (a). The stroke lost its smooth

boundary in the observed image. In most of the scenarios,

only the observed noisy images are available. More exam-

ples are shown in Figure 4 and 7.

Conventionally, there are two options to compress these

observed images. In the first option, people encode the ob-

served image as it is (lossless mode). In this case, the qual-

ity of the compressed image is equal to the quality of the ob-

served image, while a significant portion of the bits are used

to store nothing but noise. Option two is the lossy mode,

which tends to have high compression ratio, but would typ-

ically make the image quality worse than the quality of the

observed image input, or even introduces semantic errors to
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the document image.

In this paper, we solve the above problem from a dif-

ferent perspective. We propose a restoration method to im-

prove the quality of the observed noisy image, and simul-

taneously favors the compression ratio (compared with di-

rectly encoding the observed image). The intuition is that

the pattern repentance of the observed noisy document im-

age is naturally recovered during our image restoration pro-

cedure, and this pattern repentance benefits the compression

ratio. Our method is summarized in two steps. First, we re-

store the image by minimizing a cost function (Eq. 1) in

Bayesian framework. Second, after the restoration, we use

the same dictionary for restoration to encode the restored

document image.

Our cost function is the summation of a likelihood term

and a prior term,

{x̂, D̂} = argmin
x,D

{− log p(y|x)−log p(x|D)−log p(D)} .

(1)

The likelihood term − log p(y|x) is used to simulate a typ-

ical imaging pipeline (from the unknown, noise-free image

x to the observed noisy image y), while the prior term (the

rest of the cost) is designed to encourage the image x to

be sparsely represented by a dictionary D of limited size.

We learn this dictionary globally from the observed noise

image, and leverage the non-local information embedded in

the dictionary to improve the image quality and recover the

repeated patterns of the document image.

More specifically, we learn our dictionary in the con-

ditional entropy estimation (CEE) space in [16], and

leverage CEE to calculate the sparse representation cost

− log p(x|D) in the prior term. The previous art [16]

demonstrates that the distribution of binary signals is bet-

ter modeled in the CEE space (compared with that in the

Euclidean space), and the CEE space has significant advan-

tages in evaluating the amount of the information contained

in image patches given the associated dictionary entries.

After the restoration, we first encode the dictionary D̂

estimated in the cost function in Eq. 1, and then encode the

restored image x̂ using this dictionary as a reference. Our

encoding follows the JBIG2 lossless encoding standard [4].

Since our sparse representation cost− log p(x|D) is cal-

culated by estimating the information entropy in the image

given the dictionary, and we use the same dictionary for

restoration and compression, our prior term in Eq. 1 has

the capability of approximating the number of bits required

to encode the image. Therefore, minimizing the cost func-

tion in the preprocessing step does not only improve the im-

age quality, but also numerically reduces the approximated

file size required to encode the image, with the constraint

− log p(y|x). To the best of our knowledge, this is the first

time that the same dictionary is shared by restoration and

compression.

We conduct experiments with test images with synthetic

noise and real noise. Experimental results demonstrate that

our restored image has higher quality than that of the ob-

served image, and encoding the restored image generates

higher compression ratio compared with directly encoding

the input observed image.

The contribution of our paper is summarized as follows.

• We design a cost function in Eq. 1. This cost func-

tion is used to model image restoration, and also ap-

proximate the number of bits required to encode the

image. Minimizing this cost function simultaneously

improves the quality of the observed (e.g., scanned)

document image, and improves the compression ratio.

• We learn our dictionary in the conditional entropy

space, where the binary signal distribution is better

modeled [16].

• To the best of our knowledge, it is the first time that

the same dictionary is used for restoration and com-

pression.

• Our bistream is compliant with the JBIG2 standard.

The paper is organized as follows. In Sec. 2, we review

some of the most related work. In Sec. 3, we describe our

mathematical model for both imaging and prior learning.

In Sec. 4, the method to optimize our model is presented.

Experimental results for the test images with synthetic and

real noise are shown in Sec. 5.

2. Related works

Since we have not yet seen much effort published in op-

timizing restoration quality and compression ratio together,

we review compression and restoration methods separately.

2.1. JBIG2 encoding

After we finish preprocessing the image with Eq. 1,

we encode the restored image with the symbol-dictionary

framework defined in the JBIG2 compression standard with

the lossless mode, developed by the Joint Bi-level Image

Experts Group [4]. The JBIG2 compression standard pro-

duces higher compression ratios than the previous stan-

dards, such as T.4, T.6, and T.82 [1, 2, 3, 22, 5], through

the symbol-dictionary framework. A typical JBIG2 encoder

works by first separating the document images into repeated

connected components, called symbols. Then, the encoder

encodes the learned dictionary entries as part of the bit-

stream, then encode the image using the dictionary entries

as reference [15, 21, 8, 20, 34].

With the lossless mode, all the difference between the

image patch and the associated dictionary entry is entropy

encoded. The conventional JBIG2 lossless encoders com-

press the observed noisy image. In this case, the inherent
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noise tends to increase entropy in the image and consumes

extra bits when the document image is encoded. On the

contrary, our method compress the restored image to pro-

duce better quality and higher compression ratio.

While all the conventional JBIG2 encoders compress the

observed image, some encoders achieve higher compres-

sion by better dictionary learning. The dictionary learning

typically consists of two critical tasks; one is to construct

the dictionary, the other one is to select the best dictionary

entry for a given image patch (symbol). These two tasks

could be done alternatively or simultaneously.

Typically, the dictionary entry selection for a given sym-

bol is accomplished by minimizing a measure of dissimilar-

ity between the symbol and the dictionary entry. Dissimi-

larity measures widely used in JBIG2 include the Hamming

distance, known as XOR [19], and weighted Hamming dis-

tance, known as WXOR [29, 14]. The weighted Hamming

distance is calculated as the weighted summation of the dif-

ference between a symbol bitmap and a dictionary entry

bitmap. Zhang, Danskin, and Yong have also proposed a

dissimilarly measure based on cross-entropy which is im-

plemented as WXOR with specific weights [39, 40]. The

XOR has the lowest computational cost, while WXOR and

cross-entropy methods are more widely used because they

are more sensitive to clustered errors and can achieve lower

substitution error [14, 13]. These days, to evaluate the dis-

similarity between the symbol and the dictionary entry us-

ing conditional probability estimation shows great potential

in [31, 16, 17]. The OCR-based method needs extensive

training, and is sensitive to font and/or language type, so is

beyond the discussion in this paper.

For dictionary construction, various methods have been

proposed. These methods typically cluster the symbols

into groups, according to a dissimilarity measure, using K-

means clustering or a minimum spanning tree [34, 36, 35].

Within each group, one dictionary entry is used to represent

all the symbols of that group.

Note that the JBIG2 standard also provides a lossy op-

tion. Different from the typical definition of “lossy” in

JPEG or typical video coding, the lossy-JBIG2 refers to re-

placing the image symbols with their associated dictionary

entries. The lossy option is very risky to use due to the

following two types of potential quality degradation. The

first one is called substitution error, which happens when

the symbol is replaced by a dictionary entry with different

semantic meaning. For example, the letter “c” could easily

be replaced by the letter “o”, especially in the low resolu-

tion scanning condition. Though many methods, including

[29, 14], have been proposed to control the substitution er-

ror, we have yet to see any of them claims zero error rate.

The second type of quality degradation happens when the

symbol is substituted by a dictionary entry with the same se-

mantic meaning, but lower quality. However, there has not

been much effort in this field to ensure the dictionary entry

has better quality than the symbols to be replaced. Due to

these reasons, we do not consider the lossy mode of JBIG2

encoder in this paper.

2.2. Image restoration

The paper [26] provides a very comprehensive review

from the perspective of filtering. Among all these meth-

ods, model-based reconstruction/restoration methods with

a Markov random field (MRF) prior [18, 12, 6], offers very

robust results. Moreover, recent methods utilizing non-local

information obtain the cutting-edge performance in restor-

ing gray/color images, e.g., [42, 37, 7, 24, 9, 10, 11, 25],

and promising results in various reconstruction applica-

tions, e.g., [32, 41, 33, 23].

Extra work is needed to transfer these methods designed

for gray image restoration to our problem. One major rea-

son is that the distortion in binary document images has

different patterns which can not be well approximated by

Gaussian distribution (the implicit assumption in most of

the restoration works above). The non-local information

of the binary document image need to be used in a better

way. Moreover, none of these above restoration methods

are designed to improve the compression ratio. We solve

these problems in this paper by optimizing one cost func-

tion, which simultaneously takes care of image quality and

compression ratio.

3. Statistical model

Let x ∈ {0, 1}K denote the unknown noise-free image,

the vector y ∈ {0, 1}K denote the observed image, we ob-

tain the restored image to be encoded by minimizing the

cost function in Eq. 1. Details of each term in Eq. 1 are

presented in the following subsections.

3.1. Forward model for the likelihood term

Given the distortion-free unknown image x ∈ {0, 1}K ,

the observed image y ∈ {0, 1}K has the following likeli-

hood distribution,

p(y|x) =
∏

k

p(yk|x) , (2)

where,

p(yk|x) = 1− |yk − µk| (3)

µ = Ax . (4)

The term |yk − µk| is the absolute value of yk − µk. In the

above equations, Eq. (4) is based on the low pass assump-

tion of printing and scanning due to the limited resolution

of these procedures. We formulate this low pass filter using

the matrix A ∈ ℜK×K , each row of which performs a low
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pass filter to the image x, and denote the intermediate image

to be µ ∈ [0, 1]K . We constrain the matrix A to be sparse

to achieve low computational cost, and also constrain A to

be circulant to achieve homogeneous filtering to the image

x. Moreover, we propose the following constraint on each

row of A to ensure there is no energy change introduced by

filtering.
∑

l

Ak,l = 1 . (5)

Equation (3) describes the conditional probability distri-

bution of the kth pixel yk. Since the pixel yk has the value

of either 1 or 0, we can express Eq. (3) as follows,

p(yk = 1|µk) = µk (6)

p(yk = 0|µk) = 1− µk . (7)

The above Eq. (6) and (7) show that Eq. (3) is a valid prob-

ability distribution. Moreover, Eq. (6) and (7) demonstrate

our intuitions to design the likelihood function: if the pixel

µk in the intermediate image has a large value closer to 1,

we have larger chance to obtain yk = 1; while if the pixel

µk has a small value closer to 0, we have larger chance to

obtain yk = 0.

With the two models for low pass filtering in Eq. (4)

and following quantization described in Eq. (6) and (7), we

establish the likelihood function in Eq. (2) based on the

assumption that each of the pixels in the observed image y

are conditionally independent distributed, given the latent

image x.

p(y|x) =
∏

k

(

1− |yk −
∑

l

Ak,lxl|

)

(8)

Here, for both simplicity reason and the model general-

ity, we assume that the probability distribution of the pixel

yk is only determined by the pixel value of µk. For a spe-

cific quantization algorithm, such as error diffusion, we can

update the likelihood function accordingly.

3.2. Prior model with dictionary learning

We design the prior term in Eq. (1) as follows,

− log p(x|D)− p(D) ∝−
∑

i

log p(Bix|df(i);φ)

−
∑

j

log p(dj) . (9)

In the first summation term, the term p(Bix|df(i);φ)

is the conditional probability of the ith symbol given the

f(i)th dictionary entry df(i) ∈ D, parameterized by φ.

The matrix Bi is the operator used to extract the ith patch

(called the ith symbol) in the image, and j = f(i) denote

the function that maps each individual symbol, Bix, to its

corresponding dictionary entry, dj ∈ D. For notation sim-

plicity, we define

si = Bix . (10)

The second summation term is the penalizer of the dictio-

nary size.

Our prior design has two meanings. One is for restora-

tion: to encourage the image to be represented by a dictio-

nary with limited size. The other one is to approximate the

number of the bits required to encode the image.

More specifically, the variable φ is introduced to param-

eterize the conditional probability p(si|dj ;φ). We do not

calculate Euclidean distance between the image batch and

the associated dictionary entry as the log of the conditional

probability because the distortion in document binary im-

ages typically does not follow the independently identically

Gaussian distributed assumption well (which is the prereq-

uisite of using Euclidean distance). Intuitively speaking, the

benefit of using φ to parameterize the conditional probabil-

ity is that we can have larger weight for the rare distortion

patterns, while have smaller weight for the common distor-

tion patterns, through a rigid optimization procedure over

φ. Different weights for different distortion patterns intro-

duce a good approximation to the amount of information

needed to be encoded for the symbol given the associated

dictionary entry [16, 17]. This good approximation benefits

the dictionary entry selection and construction, which even-

tually benefits the restoration and the compression. More

detailed experimental results in Sec. 5 further demonstrate

advantages in estimating φ in aspects of both compression

and restoration.

We briefly review how we model the conditional proba-

bility p(si|dj ;φ). The conditional probability p(si|dj ;φ)
can have a very complicated form, since both si and dj are

high dimensional random variables. This makes the param-

eter vector φ contain too many elements to be estimated. To

solve this problem, we model p(si|dj ;φ) as the product of

a sequence of simple probability density functions,

p(si|dj ;φ) =
∏

s

p (si(r)|c(si,dj , r);φ) , (11)

where the term p (si(r)|c(si,dj , r);φ) is the conditional

probability for the rth symbol pixel si(r) conditioned on

its reference context c(si,dj , r), of which the definition is

shown in Fig. 2.

Figure 2 graphically illustrates one example of the struc-

ture of the reference context. As shown, the reference con-

text c(si,dj , r) is a 10-dimensional binary vector, consist-

ing of 4 causal neighborhood pixels of si(r) in si, and 6
non-causal neighborhood pixels of dj(r) in dj . The decom-

position in (11) is based on the assumption that, the symbol

pixel si(r), given its reference context c(si,dj , r), is condi-

tionally independent of its previous (in raster order) symbol
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(a) Neighbors in symbol (b) Neighbors in dictionary entry

Figure 2. The 4 causal neighborhood pixels of si(r) in si, and

the 6 non-causal neighborhood pixels of dj(r) in dj . Note that

this is not the only neighborhood system we can use. We choose

the neighborhood system which is also used in the JBIG2 standard

[4], but estimate the conditional probability in a different way, as

described in Sec. 4.

pixels except its 4 casual neighbors. This conditional inde-

pendency design makes our decomposition different from

the existing decomposition/factorization methods in infer-

ence complicated distributions [28, 27, 30].

With the decomposition in Eq. (11), we further heuris-

tically assume that for a given document image, the natural

parameter φ in p (si(r)|c(si,dj , r);φ) is completely de-

termined by the reference context c(si,dj , r). Since the

symbol pixels are binary, we model their conditional dis-

tribution given a particular reference context as a Bernoulli

distribution, shown as follows,

p(si(r)|c(si,dj , r);φ) = φ1−si(r)
c (1− φc)

si(r) , (12)

where the variable φc denotes the natural parameter of the

Bernoulli distribution and fully determined by the value of

the reference context vector c = c(si,dj , r). In total, this

reference context c(si,dj , r) could possibly have 210 dif-

ferent values with our 10 bit neighborhood system in Fig.

2, so there are 210 parameters to be estimated.

φ = [φ1, φ2, . . . , φ1024]
T

(13)

4. Optimization

With the likelihood distribution in Eq. (2),(3), and (4),

and the prior distribution in Eq. (9), we obtain the cost func-

tion to be optimized as,

{x̂, D̂, f̂ , φ̂} = argmin
x,D,f,φ

−
∑

k

log(1− |yk −
∑

l

Ak,lxl|)

−
∑

i

log p(Bix|df(i);φ)−
∑

j

log p(dj) (14)

We propose to use an alternating optimization strategy.

First, we initialize the unknown image x by,

x← y . (15)

MBIR DL Encoding(y) {

/ ∗ Initialization ∗ /

x̂← y

{D̂(0), f̂ (0)} ← XOR-OP (x̂)

repeat

Update φ̂ using (19)

Update D̂, f̂ using (20)

Update x̂ using (25)

until Converge or Maximum number of iterations

reached

Encode x̂ using JBIG2 with lossless option

return JBIG2 bitstream

}

Figure 3. Pseudocode of our method called model based iterative

restoration for compression with dictionary learning (MBIR-DL-

Encoding). First, as the initial step, we initialize the unknown

image x with the observed image y. Then, we repeat the param-

eter estimation, dictionary construction, and image restoration for

multiple times until converge. After convergence, we encode the

restored image x̂ using the JBIG2 lossless option.

Then, we update the dictionary D, the mapping f , param-

eter φ, and the unknown image x alternatively. Overall

structure of our method is listed in Fig. 3, while details

are provided in the following subsections.

4.1. Dictionary learning

At the initial stage, we learn a temporary dictionary D̂

and mapping f̂ from the current image estimation x̂(0).

During the dictionary learning, we first estimate the param-

eter φ,

φ̂ = argmin
φ

−
∑

i

log p(Bix̂|d̂f̂(i);φ)−log pφ(φ) , (16)

where the term pφ(φ) is proposed to to stabilize the esti-

mation of φ. In this distribution, we assume that all the

elements in φ are independent and identically distributed,

following Beta distribution,

pφ(φ) =
∏

c

Beta(φc|a, b) , (17)

Beta(φc|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
φa−1
c (1− φc)

b−1 . (18)

We set a = b = 2.

With Eq. (11) and (12), and the prior (17) and (18), we

update Eq. (16) as the following Eq. (19), which leads to
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an efficient calculation of φ̂.

φ̂ = argmax
φ

{

N
∑

i=1

∑

r

[1− ŝi(r)] log φc(ŝi,d̂f̂(i),r)

+

N
∑

i=1

∑

r

ŝi(r) log
(

1− φ
c(ŝi,d̂f̂(i),r)

)

+
∑

c

log φc(1− φc)

}

(19)

With the estimation of the conditional probability param-

eter φ̂ fixed, we construct the dictionary D̂ and the mapping

f̂ using,

{D̂, f̂} ← argmin
D,f

−
∑

i

log p(Bix̂|df(i); φ̂)

−
∑

j

log p(dj) (20)

We treat this optimization as a clustering problem in entropy

space, and use unsupervised greedy agglomerative cluster-

ing method to build up the dictionary and mapping.

4.2. Image restoration

In section, we present our method to restore the image

with the dictionary D̂ and the mapping f̂ fixed,

x̂← argmin
x

−
∑

k

log(1− |yk −
∑

l

Ak,lxl|)

−
∑

i

log p(Bix|d̂f̂(i); φ̂) (21)

Due to the complexity of Eq. (21), we design an iterative

restoration method. At each step, we update only one pixel

of the unknown image x, and keep the rest pixels the same.

We use x̃u to denote the new image with the uth pixel to

be updated. The value change of the likelihood term (21) is

simplified as,

∆1 = − log

∏

{k|Ak,u 6=0} (1− ‖yk −
∑

l Ak,lx̃
u
l ‖)

∏

{k|Ak,u 6=0} (1− ‖yk −
∑

l Ak,lxl‖)
(22)

Note that only the rows in A of which the uth element is

nonzero need to be evaluated.

With the image update, the value change of the prior term

is

∆2 = −
∑

i

log p(Bix̃
u|d̂

f̂(i); φ̂)

+
∑

i

log p(Bix|d̂f̂(i); φ̂) , (23)

which is efficiently calculated because only the symbol

which contains the updated pixel x̃u needs to be consid-

ered. Suppose si(u)(r) is the i(u)th symbol which contains

the updated uth pixel, and the changed pixel has a index r,

we can rely on the decomposition in Eq. (11) to simplify

Eq. (23) as,

∆2 = log p
(

s̃i(u)(r)|c(s̃i(u), d̂f̂(i), r); φ̂
)

− log p
(

si(u)(r)|c(si(u), d̂f̂(i), r); φ̂
)

, (24)

With the discussion above, we can update the uth pixel

as,

x̂u = argmin
xu∈{0,1}

∆1 +∆2 . (25)

As shown in Fig. 3, we repeat the parameter estimation,

dictionary construction, and image restoration for multiple

times until convergence, or a predefined maximum number

of iterations is reached due to computing time reason. Af-

ter convergence, we encode the restored image x̂ using the

JBIG2 lossless option. The value of Eq. (1) is guaranteed to

keep decreasing during the optimization procedure. We can

not guarantee the global optimum due to a lack of convex-

ity, but experimental results show that the local optimum we

obtained is promising.

5. Experimental result

In this section, we present all the methods for compar-

ison, and list all the parameter values we have used. We

conducted experiments with both synthetic noise and real

noise to evaluate the performance of our method in terms of

both image quality and compression ratio.

5.1. Methods for comparison

We investigated four cutting-edge methods in our paper.

All these methods follows symbol-dictionary framework in

JBIG2 with lossless mode.

The first two methods encode the observed image (in-

put) without restoration. The major difference between

these two methods is the way they construct dictionary

for encoding: one method learns the dictionary based

on the weighted-XOR dissimilarity measurement (WXOR-

Lossless) [29, 14], while the other method, called CEE-

Lossless, learns a dictionary based on the conditional en-

tropy estimation [16].

The other two methods encode the restored image es-

timated from the observed image. One is the method we

proposed in this paper, called model-based iterative restora-

tion with dictionary learning (MBIR-DL). In our MBIR-DL

method, we fixed the matrix A in Eq. (4) as a Gaussian filter

with σ2
r = 0.2 throughout all the experiments, and applied

the JBIG2 lossless mode after the restoration.

In order to emphasize the benefits from the dictionary

used in MBIR-DL, we replace the dictionary prior in our

MBIR-DL with a standard Markov Random field (MRF)
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Method Restoration Encoding Dict.

WXOR-Lossless No WXOR [29, 14]

CEE-Lossless No CEE [16]

MBIR-MRF Yes, MRF prior CEE [16]

MBIR-DL Yes, dictionary prior CEE [16]

Table 1. The methods for comparison. The first two methods

(WXOR-Lossless and CEE-Lossless) encode the input observed

image as it is. The other two methods encode the restored im-

age estimated from the observed image. Our method MBIR-DL

restores the observed image with a dictionary prior, while MBIR-

MRF uses Markov Random field as prior. In regards of encod-

ing, all these methods follow the symbol-dictionary framework

in JBIG2 with lossless mode. The WXOR-Lossless method en-

codes image with a dictionary learned based on Weighted-XOR

(WXOR) dissimilarity measurement. The rest three methods use

the same method (conditional entropy estimation (CEE) described

in [16]) to construct the dictionary for encoding.

for binary signals using the 8-pixel neighborhood system,

defined in Eq. (26),

p(xk) ∝ exp







−
∑

{l,k}∈C

|xk − xl|







. (26)

We call this method MBIR-MRF. After its restoration,

MBIR-MRF encodes the restored image using the same

way as MBIR-DL. These methods are summarized in Tab.

1.

5.2. Synthetic noise

We generate test images with synthetic noise so that we

can evaluate the quality of the restored image with a per-

fectly aligned, noise-free reference image. Let x denote

the reference image (noise free), and x̂ denote the restored

image estimated from the observed noisy image, we count

the total number of different pixels between x and x̂ as our

quality metric, defined as

e =
∑

k

|x̂k − xk| , (27)

where k is the pixel index. Note that for a scanned image

with inherent real noise, it is very difficult to obtain a per-

fectly aligned, noise free reference image (even the original

document pdf is available).

5.2.1 Data generation

We obtain the noise free reference image x from the web.

First, we downloaded pdf files of curriculum vitae of well-

known professors. 1 Then, we rastered them into binary

1Due to space limit, we publish the test data and more detailed experi-

mental results in supplementary materials.

(a) Original (b) Noisy (c) MBIR-MRF (d) MBIR-DL

(e) Original (f) Noisy (g) MBIR-MRF (h) MBIR-DL

Figure 4. Visualization of the restoration results obtained by using

MBIR-DL and MBIR-MRF. We re-list the example of letter “l”

in Fig. 1 (a) here for the convenience of the comparison between

MBIR-MRF and MBIR-DL.

document images with the the resolution 3240× 2550. To-

gether, there are 114 binary document images containing

mainly text.

In order to synthesize the noise introduced during the

imaging procedure, we applied a Gaussian low-pass fil-

ter to each of the test images, which corresponds to A
in Eq. (4). Note that a similar Gaussian filter is imple-

mented in the firmware in many commercial products, such

as Multi-functional printers (MFP). We followed the same

noise model in Eq. (3) to generate the scanned image y.

Since different value of σ lead to different blurry levels and

introduce different levels of distortions, in our experiment,

we applied a 3 × 3 size Gaussian filter with σ2 = 0.1,

0.12, 0.14, and 0.16 to simulate different levels of noise

introduced during the imaging process. Then we obtained 4
groups of noisy images with different noisy levels.

5.2.2 Compare with compression without restoration

We compare our method with WXOR-Lossless in [29, 14]

and CEE-Lossless in [16]. Both WXOR-Lossless and CEE-

Lossless encode the observed image directly with the JBIG2

lossless mode. The quality of their compressed image is ex-

actly the same as that of the observed image. On the con-

trary, our MBIR-DL method (parameter fixed) consistently

improves the image quality for the test images with different

noise levels, as shown in Fig. 5.

Moreover, our MBIR-DL method also consistently out-

performs CEE-Lossless and WXOR-Lossless in terms of

image compression ratio. This is because MBIR-DL re-

stores the observed images and recovers the pattern repen-

tance. Note that the CEE-Lossless method produces smaller

file size compared with the file size with the WXOR-

Lossless, because the dictionary learned in the conditional

entropy space better represents the binary image.
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Figure 5. Comparison between our MBIR-DL and WXOR-

Lossless, CEE-Lossless. Neither WXOR-Lossless nor CEE-

Lossless change the pixel value of the input image and they have

the same quality. Our MBIR-DL improves image quality and re-

duces the file size of the bitstream. Note that more noise (larger

σ
2) generally increases file size.
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Figure 6. The MBIR-DL method outperforms MBIR-MRF in

terms of both image quality and compression ratio.

5.2.3 MBIR-DL v.s. MBIR-MRF

In order to demonstrate the benefit from the dictionary used

in the restoration of MBIR-DL, we compare MBIR-DL with

MBIR-MRF. As described in 5.1, the only difference be-

tween the two methods is that MBIR-MRF uses Markov

random field (MRF) as prior, while MBIR-DL uses the dic-

tionary as prior.

As shown in Fig. 6, our MBIR-DL methods outperforms

MBIR-MRF in terms of both restoration quality and com-

pression ratio. In Fig. 4, we visualize the restoration results

comparison by zooming in the test images. Note that the

subfigure (d) is a very typical case that our MBIR-DL can

recover a very sharp left-corner of the left letter “l” through

the usage of the non-local information. However, without

non-local information usage, MBIR-MRF does not have the

ability to recover this type of fine details with only one pixel

wide. Also, the subfigures in the last row demonstrate that

our MBIR-DL can recover images from severe distortion,

though still not perfect.

5.3. Real noise

In order to evaluate the performance of our MBIR-DL

method in real application scenarios, we scanned 41 binary

document images. The noise is from the imaging device

and more complicated than the synthetic noise. All of our

Method File size (KB) Compression ratio

Lossless-TIFF 53.7 KB 19.37

XOR-Lossless 35.4 KB 29.36

CEE-Lossless 27.8 KB 37.40

MBIR-MRF 27.3 KB 38.08

MBIR-DL 21.5 KB 48.01

Table 2. Bitstream file size obtained by using different methods to

the scanned test images with real noise

(a) Original image (b) Scanned image (c) MBIR-DL

Figure 7. Visualization of the restored image obtained by using

MBIR-DL

test images in this subsection were scanned at 300 dpi, and

have size 3275 × 2525 pixels. These test images contain

mainly text, but some of them also contain line art, tables,

and generic graphical elements, but no halftones. The text

in these test images has various typefaces and font sizes.

As shown in Tab. 2, MBIR-DL achieves the highest

compression ratio among all the competitors. Since there is

no reference image, we evaluate the image quality with non-

reference metrics. Using the non-reference metric specifi-

cally define for binary document images in [38], we demon-

strate that the visual quality of our restored image has been

improved by 5.1%. We zoomed in to sample areas in the

test image for better visualization, as shown in Fig. 7.

Moreover, we verified the compressed images using both

tesseract-OCR and human visual check for each of the sym-

bols in the image. No substitution error was found in the

MBIR-DL compressed image.

6. Conclusion

We propose a model-based iterative restoration with dic-

tionary learning method to solve a joint optimization re-

gards of image quality and compression ratio. By reducing

the inevitable noise introduced during the imaging process,

including printing, scanning and quantization, our method

simultaneously improves the image quality and compres-

sion ratio substantially, compared directly encoding the ob-

served image input). For the test images with synthetic dis-

tortion, our method reduced the number of flipped pixels

by 48.2%, improves the compression ratio by 36.36% as

compared to the cutting-edge methods. For the test images

with real distortion, our method outperforms the cutting-

edge compression method by 28.27% in terms of the com-

pression ratio.
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