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Abstract

Convolutional neural networks (CNNs) with deep archi-

tectures have substantially advanced the state-of-the-art in

computer vision tasks. However, deep networks are typi-

cally resource-intensive and thus difficult to be deployed on

mobile devices. Recently, CNNs with binary weights have

shown compelling efficiency to the community, whereas the

accuracy of such models is usually unsatisfactory in prac-

tice. In this paper, we introduce network sketching as a

novel technique of pursuing binary-weight CNNs, targeting

at more faithful inference and better trade-off for practical

applications. Our basic idea is to exploit binary struc-

ture directly in pre-trained filter banks and produce binary-

weight models via tensor expansion. The whole process can

be treated as a coarse-to-fine model approximation, akin

to the pencil drawing steps of outlining and shading. To

further speedup the generated models, namely the sketches,

we also propose an associative implementation of binary

tensor convolutions. Experimental results demonstrate that

a proper sketch of AlexNet (or ResNet) outperforms the

existing binary-weight models by large margins on the Im-

ageNet large scale classification task, while the committed

memory for network parameters only exceeds a little.

1. Introduction

Over the past decade, convolutional neural networks (C-

NNs) have been accepted as the core of many computer

vision solutions. Deep models trained on a massive amount

of data have delivered impressive accuracy on a variety of

tasks, including but not limited to semantic segmentation,

face recognition, object detection and recognition.

In spite of the successes, mobile devices cannot take

much advantage of these models, mainly due to their in-

adequacy of computational resources. As is known to all,

camera based games are dazzling to be operated with object

recognition and detection techniques, hence it is eagerly

anticipated to deploy advanced CNNs (e.g., AlexNet [15],

VGG-Net [25] and ResNet [10]) on tablets and smart-

phones. Nevertheless, as the winner of ILSVRC-2012 com-

Figure 1. Sketching a network model by exploiting binary struc-

ture within pre-trained filter banks, after which the full-precision

model can be converted to an efficient one with binary (in black

and light grey) connections.

petition, AlexNet comes along with nearly 61 million real-

valued parameters and 1.5 billion floating-point operations

(FLOPs) to classify a image, making it resource-intensive

in different aspects. Running it for real-time applications

would require considerable high CPU/GPU workloads and

memory footprints, which is prohibitive on typical mobile

devices. The similar situation occurs on the deeper net-

works like VGG-Net and ResNet.

Recently, CNNs with binary weights are designed to

resolve this problem. By forcing the connection weights to

only two possible values (normally +1 and−1), researchers

attempt to eliminate the required floating-point multiplica-

tions (FMULs) for network inference, as they are consid-

ered to be the most expensive operations. In addition, since

the real-valued weights are converted to be binary, these

networks would commit much less space for storing their

parameters, which leads to a great saving in the memory

footprints and thus energy costs [8]. Several methods have

been proposed to train such networks [1, 2, 22]. However,

the reported accuracy of obtained models is unsatisfactory

on large dataset (e.g., ImageNet) [22]. Even worse, since

straightforwardly widen the networks does not guarantee

any increase in accuracy [14], it is also unclear how we can

make a trade-off between the model precision and expected

accuracy with these methods.
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In this paper, we introduce network sketching as a new

way of pursuing binary-weight CNNs, where the binary

structures are exploited in pre-trained models rather than

being trained from scratch. To seek the possibility of

yielding state-of-the-art models, we propose two theoret-

ical grounded algorithms, making it possible to regulate

the precision of sketching for more accurate inference.

Moreover, to further improve the efficiency of generated

models (a.k.a., sketches), we also propose an algorithm to

associatively implement binary tensor convolutions, with

which the required number of floating-point additions and

subtractions (FADDs)1 is likewise reduced. Experimental

results demonstrate that our method works extraordinarily

well on both AlexNet and ResNet. That is, with a bit more

FLOPs required and a little more memory space commit-

ted, the generated sketches outperform the existing binary-

weight AlexNets and ResNets by large margins, producing

near state-of-the-art recognition accuracy on the ImageNet

dataset.

The remainder of this paper is structured as follows. In

Section 2, we briefly introduce the related works on CNN

acceleration and compression. In Section 3, we highlight

the motivation of our method and provide some theoretical

analyses for its implementations. In Section 4, we introduce

the associative implementation for binary tensor convolu-

tions. At last, Section 5 experimentally demonstrates the

efficacy of our method and Section 6 draws the conclusions.

2. Related Works

The deployment problem of deep CNNs has become a

concern for years. Efficient models can be learnt either

from scratch or from pre-trained models. Generally, train-

ing from scratch demands strong integration of network

architecture and training policy [18], and here we mainly

discuss representative works on the latter strategy.

Early works are usually hardware-specific. Not restrict-

ed to CNNs, Vanhoucke et al. [28] take advantage of pro-

grammatic optimizations to produce a 3× speedup on x86

CPUs. On the other hand, Mathieu et al. [20] perform fast

Fourier transform (FFT) on GPUs and propose to compute

convolutions efficiently in the frequency domain. Addi-

tionally, Vasilache et al. [29] introduce two new FFT-based

implementations for more significant speedups.

More recently, low-rank based matrix (or tensor) decom-

position has been used as an alternative way to accomplish

this task. Mainly inspired by the seminal works from Denil

et al. [4] and Rigamonti et al. [23], low-rank based methods

attempt to exploit parameter redundancy among different

feature channels and filters. By properly decomposing pre-

trained filters, these methods [5, 12, 16, 32, 19] can achieve

1Without ambiguity, we collectively abbreviate floating-point additions

and floating-point subtractions as FADDs.

appealing speedups (2× to 4×) with acceptable accuracy

drop (≤ 1%). 2

Unlike the above mentioned ones, some research works

regard memory saving as the top priority. To tackle the stor-

age issue of deep networks, Gong et al. [6], Wu et al. [31]

and Lin et al. [18] consider applying the quantization tech-

niques to pre-trained CNNs, and trying to make network

compressions with minor concessions on the inference ac-

curacy. Another powerful category of methods in this scope

is network pruning. Starting from the early work of LeCun

et al’s [17] and Hassibi & Stork’s [9], pruning methods

have delivered surprisingly good compressions on a range

of CNNs, including some advanced ones like AlexNet and

VGGnet [8, 26, 7]. In addition, due to the reduction in

model complexity, a fair speedup can be observed as a

byproduct.

As a method for generating binary-weight CNNs, our

network sketching is orthogonal to most of the existing

compression and acceleration methods. For example, it can

be jointly applied with low-rank based methods, by first

decomposing the weight tensors into low-rank components

and then sketching them. As for the cooperation with

quantization-based methods, sketching first and conducting

product quantization thereafter would be a good choice.

3. Network Sketching

In general, convolutional layers and fully-connected lay-

ers are the most resource-hungry components in deep C-

NNs. Fortunately, both of them are considered to be over-

parameterized [4, 30]. In this section, we highlight the

motivation of our method and present its implementation

details on the convolutional layers as an example. Fully-

connected layers can be operated in a similar way.

Suppose that the learnable weights of a convolutional

layerL can be arranged and represented as {W(i) : 0 ≤ i <
n}, in which n indicates the target number of feature maps,

and W
(i) ∈ R

c×w×h is the weight tensor of its ith filter.

Storing all these weights would require 32× c×w× h×n
bit memory, and the direct implementation of convolutions

would require s × c × w × h × n FMULs (along with the

same number of FADDs), in which s indicates the spatial

size of target feature maps.

Since many convolutional models are believed to be

informational redundant, it is possible to seek their low-

precision and compact counterparts for better efficiency.

With this in mind, we consider exploiting binary structures

withinL, by using the divide and conquer strategy. We shall

first approximate the pre-trained filters with a linear span

of certain binary basis, and then group the identical basis

tensors to pursue the maximal network efficiency. Details

2Some other works concentrate on learning low-rank filters from

scratch [27, 11], which is out of the scope of our paper.
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are described in the following two subsections, in which we

drop superscript (i) from W because the arguments apply

to all the n weight tensors.

3.1. Approximating the Filters

As claimed above, our first goal is to find a binary ex-

pansion of W that approximates it well (as illustrated in

Figure 2), which means W ≈ 〈B,a〉 =
∑m−1

j=0 ajBj ,

in which B ∈ {+1,−1}c×w×h×m and a ∈ R
m are the

concatenations ofm binary tensors {B0, ...,Bm−1} and the

same number of scale factors {a0, ...,am−1}, respectively.

We herein investigate the appropriate choice of B and a

with a fixed m. Two theoretical grounded algorithms are

proposed in Section 3.1.1 and 3.1.2, respectively.

Figure 2. Approximate the real-valued weight tensor with a sum

of scaled binary tensors.

3.1.1 Direct Approximation

For easy understanding, we shall first introduce the di-

rect approximation algorithm. Generally, the reconstruc-

tion error (or approximation error, round-off error) e2 :=
‖W − 〈B,a〉‖2 should be minimized to retain the model

accuracy after expansion. However, as a concrete decision

problem, directly minimizing e2 seems NP-hard and thus

solving it can be very time consuming [3]. In order to finish

up in reasonable time, we propose a heuristic algorithm, in

which Bj and aj are sequentially learnt and each of them

is selected to be the current optimum with respect to the e2

minimization criterion. That is,

Bj ,aj = argmin
B∈B, a∈R

∥

∥

∥
Ŵj − aB

∥

∥

∥

2

, (1)

in which B := {+1,−1}c×w×h, the norm operator ‖ · ‖
is defined as ‖X‖ := 〈X,X〉1/2 for any 3-D tensor X, and

Ŵj indicates the approximation residue after combining all

the previously generated tensor(s). In particular, Ŵj = W

if j = 0, and

Ŵj = W −

j−1
∑

k=0

akBk (2)

if j ≥ 1. It can be easily known that, through derivative

calculations, Equation (1) is equivalent with

Bj = sgn(Ŵj) and aj =
〈Bj ,Ŵj〉

t
(3)

Algorithm 1 The direct approximation algorithm:

Input: W: the pre-trained weight tensor, m: the desired

cardinality of binary basis.

Output: {Bj ,aj : 0 ≤ j < m}: a binary basis and a

series of scale factors.

Initialize j ← 0 and Ŵj ←W.

repeat

Calculate Bj and aj by Equation (3).

Calculate Ŵj+1 = Ŵj−ajBj and update j ← j+1.

until j reaches its maximal number m.

under this circumstance, in which function sgn(·) calculates

the element-wise sign of the input tensor, and t = c×w×h.

The above algorithm is summarized in Algorithm 1. It

is considered to be heuristic (or greedy) in the sense that

each Bj is selected to be the current optimum, regardless

of whether it will preclude better approximations later on.

Furthermore, some simple deductions give the following

theoretical result.

Theorem 1. For any m ≥ 0, Algorithm 1 achieves a

reconstruction error e2 satisfying

e2 ≤ ‖W‖2(1− 1/t)m. (4)

Proof. Since Bj = sgn(Ŵj), we can obtain that,

〈Bj ,Ŵj〉 =
∑

l
|ŵ

(l)
j | ≥ ‖Ŵj‖, (5)

in which ŵj is an entry of Ŵj , with superscript (l) indicates

its index. From Equation (2) and (5), we have

‖Ŵj+1‖
2 = ‖Ŵj‖

2 − aj〈Bj ,Ŵj〉

= ‖Ŵj‖
2

(

1−
〈Bj ,Ŵj〉

2

t‖Ŵj‖2

)

≤ ‖Ŵj‖
2 (1− 1/t) .

(6)

The result follows by applying Formula (6) for j varying

from 0 to m− 1.

3.1.2 Approximation with Refinement

We can see from Theorem 1 that, by utilizing the direct

approximation algorithm, the reconstruction error e2 decays

exponentially with a rate proportional to 1/t. That is, given

a W with small size (i.e., when t is small), the approx-

imation in Algorithm 1 can be pretty good with only a

handful of binary tensors. Nevertheless, when t is relatively

large, the reconstruction error will decrease slowly and the

approximation can be unsatisfactory even with a large num-

ber of binary tensors. In this section, we propose to refine

the direct approximation algorithm for better reconstruction

property.
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Algorithm 2 Approximation with refinement:

Input: W: the pre-trained weight tensor, m: the desired

cardinality of binary basis.

Output: {Bj ,aj : 0 ≤ j < m}: a binary basis and a

series of scale factors.

Initialize j ← 0 and Ŵj ←W.

repeat

Calculate Bj and aj by Equation (3) and (7).

Update j ← j + 1 and calculate Ŵj by Equation (2).

until j reaches its maximal number m.

Considering that, in Algorithm 1, both Bj and aj are

chosen to minimize e2 with fixed counterparts. However,

in most cases, it is doubtful whether B and a are optimal

overall. If not, we may need to refine at least one of them

for the sake of better approximation. On account of the

computational simplicity, we turn to a specific case when

B is fixed. That is, suppose the direct approximation has

already produced B̂ and â, we hereby seek another scale

vector a satisfying ‖W − 〈B̂,a〉‖2 ≤ ‖W − 〈B̂, â〉‖2. To

achieve this, we follow the least square regression method

and get

aj =
(

BT
j Bj

)−1
BT

j · vec(W), (7)

in which the operator vec(·) gets a column vector whose

elements are taken from the input tensor, and Bj gets

[vec(B0), ..., vec(Bj)].
The above algorithm with scale factor refinement is

summarized in Algorithm 2. Intuitively, the refinement

operation attributes a memory-like feature to our method,

and the following theorem ensures it can converge faster in

comparison with Algorithm 1.

Theorem 2. For any m ≥ 0, Algorithm 2 achieves a

reconstruction error e2 satisfying

e2 ≤ ‖W‖
2
m−1
∏

j=0

(

1−
1

t− λ(j, t)

)

, (8)

in which λ(j, t) ≥ 0, for 0 ≤ j ≤ m− 1.

Proof. To simplify the notations, let us further denote

wj := vec(Wj) and bj+1 := vec(Bj+1), then we can

obtain by block matrix multiplication and inverse that,

(BT
j+1Bj+1)

−1 =

[

Φ+ ΦψψTΦ/r −Φψ/r
−ψTΦ/r 1/r

]

, (9)

in which Φ = (BT
j Bj)

−1, ψ = BT
j bj+1, and r =

bTj+1bj+1 − ψ
TΦψ. Consequently, we have the following

equation for j = 0, ...,m− 1,

wj+1 =

(

I −
Λ(bj+1b

T
j+1)

bTj+1Λbj+1

)

wj , (10)

by defining Λ := I −BjΦB
T
j . As we know, given positive

semi-definite matrices X and Y , tr(XY ) ≤ tr(X)tr(Y ).
Then, Equation (10) gives,

‖Ŵj+1‖
2 ≤ ‖Ŵj‖

2 −
wT

j (bj+1b
T
j+1)Λ(bj+1b

T
j+1)wj

(bTj+1Λbj+1)2

= ‖Ŵj‖
2 −

wT
j (bj+1b

T
j+1)wj

bTj+1Λbj+1

= ‖Ŵj‖
2

(

1−
〈Bj ,Ŵj〉

2

bTj+1Λbj+1‖Ŵj‖2

)

.

Obviously, it follows that,

‖Ŵj+1‖
2 ≤ ‖Ŵj‖

2(1− 1/(t− λ(j, t))), (11)

in which λ(j, t) := bTj+1(I − Λ)bj+1. Since λ(j, t) repre-

sents the squared Euclidean norm of an orthogonal projec-

tion of bj+1, it is not difficult to prove λ(j, t) ≥ 0, and then

the result follows.

3.2. Geometric Interpretation

After expanding the pre-trained filters, we can group

the identical binary tensors to save some more memory

footprints. In this paper, the whole technique is named as

network sketching, and the generated binary-weight model

is straightforwardly called a sketch. Next we shall interpret

the sketching process from a geometric point of view.

For a start, we should be aware that, Equation (1) is

essentially seeking a linear subspace spanned by a set of

t-dimensional binary vectors to minimize its Euclidean dis-

tance to vec(W). In concept, there are two variables to be

determined in this problem. Both Algorithm 1 and 2 solve

it in a heuristic way, and the jth binary vector is always

estimated by minimizing the distance between itself and the

current approximation residue. What make them different

is that, Algorithm 2 takes advantage of the linear span of its

previous j−1 estimations for better approximation, whereas

Algorithm 1 does not.

Let us now take a closer look at Theorem 2. Compared

with Equation (4) in Theorem 1, the distinction of Equa-

tion (8) mainly lies in the existence of λ(j, t). Clearly,

Algorithm 2 will converge faster than Algorithm 1 as long

as λ(j, t) > 0 holds for any j ∈ [0,m − 1]. Geometrically

speaking, if we consider Bj(B
T
j Bj)

−1BT
j as the matrix

of an orthogonal projection onto Sj := span(b0, ..., bj),
then λ(j, t) is equal to the squared Euclidean norm of a

vector projection. Therefore, λ(j, t) = 0 holds if and

only if vector bj+1 is orthogonal to Sj , or in other words,

orthogonal to each element of {b0, ..., bj} which occurs

with extremely low probability and only on the condition

of t ∈ {2k : k ∈ N}. That is, Algorithm 2 will probably

prevail over Algorithm 1 in practice.
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4. Speeding-up the Sketch Model

Using Algorithm 1 or 2, one can easily get a set of mn
binary tensors on L, which means the storage requirement

of learnable weights is reduced by a factor of 32t/(32m +
tm)×. When applying the model, the required number of

FMULs is also significantly reduced, by a factor of (t/m)×.

Probably, the only side effect of sketching is some increases

in the number of FADDs, as it poses an extra burden on the

computing units.

In this section, we try to ameliorate this defect and intro-

duce an algorithm to further speedup the binary-weight net-

works. We start from an observation that, yet the required

number of FADDs grows monotonously with m, the inher-

ent number of addends and augends is always fixed with

a given input of L. That is, some repetitive FADDs exist

in the direct implementation of binary tensor convolutions.

Let us denote X ∈ R
c×w×h as an input sub-feature map

and see Figure 3 for a schematic illustration.

Figure 3. As highlighted in the rounded rectangles, with high

probability, repetitive FADD exists in the direct implementation

of binary tensor convolutions.

4.1. Associative Implementation

To properly avoid redundant operations, we first present

an associative implementation of the multiple convolutions

X ∗ B0, ...,X ∗ Bmn−1 on L, in which the connection

among different convolutions is fully exploited. To be more

specific, our strategy is to perform convolutions in a hierar-

chical and progressive way. That is, each of the convolution

results is used as a baseline of the following calculations.

Suppose the j0-th convolution is calculated in advance and

it produces X∗Bj0 = s, then the convolution of X and Bj1

can be derived by using

X ∗Bj1 = s+ (X ∗ (Bj0 ⊻Bj1))× 2, (12)

or alternatively,

X ∗Bj1 = s− (X ∗ (¬Bj0 ⊻Bj1))× 2, (13)

in which ¬ denotes the element-wise not operator, and ⊻

denotes an element-wise operator whose behavior is in ac-

cordance with Table 1.

Bj1 Bj2 Bj1 ⊻Bj2

+1 −1 −1
+1 +1 0
−1 −1 0
−1 +1 +1

Table 1. Truth table of the element-wise operator ⊻.

Since Bj0 ⊻Bj1 produces ternary outputs on each index

position, we can naturally regard X ∗ (Bj0 ⊻ Bj1) as an

iteration of switch ... case ... statements. In this manner,

only the entries corresponding to±1 in Bj0⊻Bj1 need to be

operated in X, and thus acceleration is gained. Assuming

that the inner-product of Bj0 and Bj1 equals to r, then (t−
r)/2 + 1 and (t + r)/2 + 1 FADDs are still required for

calculating Equation (12) and (13), respectively. Obviously,

we expect the real number r ∈ [−t,+t] to be close to either

t or −t for the possibility of fewer FADDs, and thus faster

convolutions in our implementation. In particular, if r ≥
0, Equation (12) is chosen for better efficiency; otherwise,

Equation (13) should be chosen.

4.2. Constructing a Dependency Tree

Our implementation works by properly rearranging the

binary tensors and implementing binary tensor convolutions

in an indirect way. For this reason, along with Equation-

s (12) and (13), a dependency tree is also required to drive

it. In particular, dependency is the notion that certain binary

tensors are linked to specify which convolution to perform

first and which follows up. For instance, with the depth-

first-search strategy, T in Figure 4 shows a dependency tree

indicating first to calculate X ∗ B1, then to derive X ∗ B0

from the previous result, then to calculate X ∗ B3 on the

base of X ∗B0, and so forth. By traversing the whole tree,

all mn convolutions will be progressively and efficiently

calculated.

Figure 4. A dependency tree for our algorithm. It suggests an order

under which the associative convolutions are to be performed.

In fact, our algorithm works with a stochastically giv-

en tree, but a dedicated T is still in demand for its op-

timum performance. Let G = {V,E} be an undirected

weighted graph with the vertex set V and weight matrix

E ∈ R
mn×mn. Each element of V represents a single

binary tensor, and each element of E measures the distance
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Algorithm 3 The associative implementation:

Input: {Bj : 0 ≤ j < mn}: the set of binary tensors,

X: the input sub-feature map, T : the dependency tree.

Output: {yj : 0 ≤ j < mn}: the results of convolution.

Get z = T .root and calculate yz.key = X ∗Bz.key .

Initialize the baseline value by s← yz.key .

repeat

Search the next node of T and update z, s.
Calculate yz.key by using Equation (12) or (13).

until search ends.

between two chosen tensors. To keep in line with the

previous subsection, we here define the distance function

of the following form

d(Bj0 ,Bj1) := min

(

t+ r

2
,
t− r

2

)

, (14)

in which r = 〈Bj0 ,Bj1〉 indicates the inner-product of

Bj0 and Bj1 . Clearly, the defined function is a metric on

{−1,+1}c×w×h and its range is restricted in [0, t]. Recall

that, we expect r to be close to ±t in the previous subsec-

tion. In consequence, the optimal dependency tree should

have the shortest distance from root to each of its vertices,

and thus the minimum spanning tree (MST) of G is what

we want.

From this perspective, we can use some off-the-shell

algorithms to construct such a tree. Prim’s algorithm [21]

is chosen in this paper on account of its linear time com-

plexity with respect to |E|, i.e., O(m2n2) on L. With the

obtained T , one can implement our algorithm easily and

the whole process is summarized in Algorithm 3. Note that,

although the fully-connected layers calculate vector-matrix

multiplications, they can be considered as a bunch of tensor

convolutions. Therefore, in the binary case, we can also

make accelerations in the fully-connected layers by using

Algorithm 3.

5. Experimental Results

In this section, we try to empirically analyze the pro-

posed algorithms. For pragmatic reasons, all experiments

are conducted on the famous ImageNet ILSVRC-2012

database [24] with advanced CNNs and the open-source

Caffe framework [13]. The training set is comprised of

1.2 million labeled images and the test set is comprised of

50,000 validation images.

In Section 5.1 and 5.2, we will test the performance of

the sketching algorithms (i.e., Algorithm 1 and 2) and the

associative implementation of convolutions (i.e., Algorith-

m 3) in the sense of filter approximation and computational

efficiency, respectively. Then, in Section 5.3, we evaluate

the whole-net performance of our sketches and compare

them with other binary-weight models.

Layer Name Filters Params (b) FLOPs

Conv1 96 ∼1M ∼211M

Conv2 256 ∼10M ∼448M

Conv3 384 ∼28M ∼299M

Conv4 384 ∼21M ∼224M

Conv5 256 ∼14M ∼150M

Fc6 1 ∼1208M ∼75M

Fc7 1 ∼537M ∼34M

Fc8 1 ∼131M ∼8M

Table 2. Details of the learnable layers in AlexNet [15], in which

”Conv2” is the most computationally expensive one and ”Fc6”

commits the most memory (in bits). In all these layers, FLOPs

consist of the same number of FADDs and FMULs.

5.1. Efficacy of Sketching Algorithms

As a starting experiment, we consider sketching the fa-

mous AlexNet model [15]. Although it is the champi-

on solution of ILSVRC-2012, AlexNet seems to be very

resource-intensive. Therefore, it is indeed appealing to seek

its low-precision and efficient counterparts. As claimed in

Section 1, AlexNet is a 8-layer model with 61M learnable

parameters. Layer-wise details are shown in Table 2, and

the pre-trained reference model is available online 3.

Using Algorithm 1 and 2, we are able to generate binary-

weight AlexNets with different precisions. Theoretical

analyses have been given in Section 3, so in this subsection,

we shall empirically analyze the proposed algorithms. In

particular, we demonstrate in Figure 6 how ”energy” ac-

cumulates with a varying size of memory commitment for

different approximators. Defined as 1 −
∑

e2/
∑

‖W‖2,

the accumulative energy is negatively correlated with recon-

struction error [32], so the faster it increases, the better. In

the figure, our two algorithms are abbreviately named as

”Sketching (direct)” and ”Sketching (refined)”. To compare

with other strategies, we also test the stochastically gen-

erated binary basis (named ”Sketching random”) as used

in [14], and the network pruning technique [8] which is

not naturally orthogonal with our sketching method. The

scalar factors for ”Sketching (random)” is calculated by

Equation (7) to ensure its optimal performance.

We can see that, it is consistent with the theoretical

result that Algorithm 1 converges much slower than Algo-

rithm 2 on all learnable layers, making it less effective on

the filter approximation task. However, on the other hand,

Algorithm 1 can be better when compared with ”Sketching

(random)” and the pruning technique. With small working

memory, our direct approximation algorithm approximates

better. However, if the memory size increases, pruning

technique may converge faster to its optimum.

3https://github.com/BVLC/caffe/tree/master/

models/bvlc_alexnet.
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As discussed in Section 4, parameter m balances the

model accuracy and efficiency in our algorithms. Figure 6

shows that, a small m (for example 3) should be adequate

for AlexNet to attain over 80% of the accumulative energy

in its refined sketch. Let us take layer ”Conv5” and ”Fc6”

as examples and see Table 3 for more details.

Layer Name Energy (%) Params (b) FMULs

Conv2 sketch 82.9 ∼0.9M ∼560K

Fc6 sketch 94.0 ∼114M ∼12K

Table 3. With only 3 bits allocated, the refined sketch of AlexNet

attains over 80% of the energy on ”Conv2” and ”Fc6”, and more

than 10× reduction in the committed memory for network parame-

ters. Meanwhile, the required number of FMULs is also extremely

reduced (by 400× and ∼3000×) on the two layers.

5.2. Efficiency of Associative Manipulations

The associative implementation of binary tensor manip-

ulations (i.e., Algorithm 3) is directly tested on the 3-bit

refined sketch of AlexNet. To begin with, we still focus

on ”Conv2 sketch” and ”Fc6 sketch”. Just to be clear, we

produce the result of Algorithm 3 with both a stochastically

generated dependency tree and a delicately calculated MST,

while the direct implementation results are compared as

a benchmark. All the implementations require the same

number of FMULs, as demonstrated in Table 3, and signifi-

cantly different number of FADDs, as compared in Table 4.

Note that, in the associative implementations, some logical

evaluations and ×2 operations are specially involved. N-

evertheless, they are much less expensive than the FADDs

and FMULs [22], by at least an order of magnitude. Hence,

their cost are not deeply analyzed in this subsection 4.

Implementation Conv2 sketch Fc6 sketch

Direct ∼672M ∼113M

Associative (random) ∼328M ∼56M

Associative (MST) ∼265M ∼49M

Table 4. The associative implementation remarkably reduces the

required number of FADDs on ”Conv2 sketch” and ”Fc6 sketch”.

From the above table, we know that our associative

implementation largely reduces the required number of

FADDs on ”Conv2 sketch” and ”Fc6 sketch”. That is, it

properly ameliorates the adverse effect of network sketch-

ing and enables us to evaluate the 3-bit sketch of AlexNet

without any unbearably increase in the required amount of

computation. In addition, the MST helps to further improve

its performance and finally get ∼2.5× and ∼ 2.3× reduc-

4Since the actual speedups varies dramatically with the architecture of

processing units, so we will not measure it in the paper.

Figure 5. The associative implementation of binary tensor convo-

lutions helps to gain 2× to 3× reductions in the required number

of FADDs on all learnable layers of ”AlexNet sketch”.

tions on the two layers respectively. Results on all learnable

layers are summarized in Figure 5.

5.3. Whole­net Performance

Having tested Algorithm 1, 2 and 3 on the base of their

own criteria, it is time to compare the whole-net perfor-

mance of our sketch with that of other binary weight mod-

els [1, 22]. Inspired by the previous experimental results,

we still use the 3-bit (direct and refined) sketches for eval-

uation, as they are both very efficient and accurate. Con-

sidering that the fully-connected layers of AlexNet contain

more than 95% of its parameters, we should try sketching

them to an extreme, namely 1 bit. Similar with Rastegari

et al. [22], we also keep the ’fc8’ layer (or say, the output

layer) to be of its full precision and report the top-1 and top-

5 inference accuracies. However, distinguished from their

methods, we sketch the ’conv1’ layer as well because it is

also compute-intensive (as shown in Table 1).

Model Params (b) Top-1 (%) Top-5 (%)

Reference ∼1951M 57.2 80.3

Sketch (ref.) ∼193M 55.2 78.8

Sketch (dir.) ∼193M 54.4 78.1

BWN [22] ∼190M 53.8 77.0

BC [1] ∼189M 35.4 61.0

Table 5. Network sketching technique generates binary-weight

AlexNets with the ability to make faithful inference and roughly

10.1× fewer parameters than its reference (in bits). Test accuracies

of the competitors are cited from the paper. An updated version of

BWN gains significantly improved accuracies (top-1: 56.8% and

top-5: 79.4%), but the technical improvement seems unclear.

Just to avoid the propagation of reconstruction errors, we

need to somehow fine-tune the generated sketches. Natu-

rally, there are two protocols to help accomplish this task;

one is known as projection gradient descent and the other

is stochastic gradient descent with full precision weight

update [1]. We choose the latter by virtue of its better

convergency. The training batch size is set as 256 and the

momentum is 0.9. We let the learning rate drops every

20,000 iterations from 0.001, which is one tenth of the
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Figure 6. Network sketching approximates AlexNet well enough with a much smaller amount of committed memory, and the refinement

operation helps to achieve better convergency on all of its learnable layers.

original value as set in Krizhevsky et al.’s paper [15], and

use only the center crop for accuracy evaluation. After

totally 70,000 iterations (i.e., roughly 14 epochs), our s-

ketches can make faithful inference on the test set, and the

refined model is better than the direct one. As shown in

Table 5, our refined sketch of AlexNet achieves a top-1

accuracy of 55.2% and a top-5 accuracy of 78.8%, which

means it outperforms the recent released models in the name

of BinaryConnect (BC) [1] and Binary-Weight Network

(BWN) [22] by large margins, while the required number

of parameters only exceeds a little bit.

Network pruning technique also achieves compelling

results on compressing AlexNet. However, it demands a

lot of extra space for storing parameter indices, and more

importantly, even the optimal pruning methods perform

mediocrely on convolutional layers [8, 7]. In contrast,

network sketching works sufficiently well on both of the

layer types. Here we also testify its efficacy on ResNet [10].

Being equipped with much more convolutional layers than

that of AlexNet, ResNet wins the ILSVRC-2015 classifi-

cation competition. There are many instantiations of its

architecture, and for fair comparisons, we choose the type

B version of 18 layers (as with Rastegari et al. [22]).

A pre-trained Torch model is available online 5 and we

convert it into an equivalent Caffe model before sketching 6.

For the fine-tuning process, we set the training batch size

as 64 and let the learning rate drops from 0.0001. After

200,000 iterations (i.e., roughly 10 epochs), the generated

5https://github.com/facebook/fb.resnet.torch/

tree/master/pretrained.
6https://github.com/facebook/fb-caffe-exts.

sketch represents a top-1 accuracy of 67.8% and a top-5

accuracy of 88.4% on ImageNet dataset. Refer to Table 6

for a comparison of the classification accuracy of different

binary-weight models.

Model Params (b) Top-1 (%) Top-5 (%)

Reference ∼374M 68.8 89.0

Sketch (ref.) ∼51M 67.8 88.4

Sketch (dir.) ∼51M 67.3 88.2

BWN [22] ∼28M 60.8 83.0

Table 6. Network sketching technique generates binary-weight

ResNets with the ability to make faithful inference and roughly

7.4× fewer parameters than its reference (in bits). The test accu-

racies of BWN are directly cited from its paper.

6. Conclusions

In this paper, we introduce network sketching as an novel

technology for pursuing binary-weight CNNs. It is more

flexible than the current available methods and it enables

researchers and engineers to regulate the precision of gener-

ated sketches and get better trade-off between the model ef-

ficiency and accuracy. Both theoretical and empirical anal-

yses have been given to validate its efficacy. Moreover, we

also propose an associative implementation of binary tensor

convolutions to further speedup the sketches. After all these

efforts, we are able to generate binary-weight AlexNets and

ResNets with the ability to make both efficient and faithful

inference on the ImageNet classification task. Future works

shall include exploring the sketching results of other CNNs.
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