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Abstract

We consider the compression artifacts reduction pro-

blem, where a compressed image is transformed into an

artifact-free image. Recent approaches for this problem ty-

pically train a one-to-one mapping using a per-pixel L2 loss

between the outputs and the ground-truths. We point out

that these approaches used to produce overly smooth re-

sults, and PSNR doesn’t reflect their real performance. In

this paper, we propose a one-to-many network, which mea-

sures output quality using a perceptual loss, a naturalness

loss, and a JPEG loss. We also avoid grid-like artifacts

during deconvolution using a “shift-and-average” strategy.

Extensive experimental results demonstrate the dramatic vi-

sual improvement of our approach over the state of the arts.

1. Introduction

Compression Artifacts Reduction is a classical problem

in computer vision. This problem targets at estimating an

artifact-free image from a lossily compressed image. In this

age of information explosion, the number of images sprea-

ding on the Internet increases rapidly. Lossy compression

(e.g., JPEG [41], WebP [13], and HEVC-MSP [40]) is inevi-

tably adopted for saving bandwidth and storage space. Ho-

wever, lossy compression in its nature leads to information

loss and undesired artifacts, which severely reduces the user

experience. Thus, how to recover visually pleasing artifact-

free images has attracted more and more attention.

Given the fact that JPEG is the most extensively used

lossy compression scheme across the world, in the follo-

wing, we focus on discussing JPEG compression artifacts

reduction. Various approaches have been proposed to sup-

press JPEG compression artifacts. Early works [37] manu-

ally developed filters to remove simple artifacts. Recently,

learning-based approaches are occupying the dominant po-

sition. [22, 5, 2, 28, 27, 36] proposed to reconstruct artifact-

free images using sparse coding. These approaches can pro-

duce sharpened images but are usually accompanied with
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(a) Results of ARCNN (b) Our results

Figure 1: Compression artifacts reduction examples. Com-

pared with ARCNN, our results have much richer textures;

e.g., see the fur in Row 1 and the bushes in Row 2.

noisy edges and unnatural regions. To date, deep learning

has been proved to possess great capability for vision tasks.

In particular, ARCNN [8] and DDCN [15] have demon-

strated the power of deep convolutional neural networks

(CNNs) in eliminating JPEG compression artifacts. D3 [44]

casted sparse coding into a deep fully-connected network

and has also obtained impressive results. Nevertheless,

state-of-the-art deep learning approaches don’t produce sa-

tisfactory outcomes either. The recovered images used to be

overly smooth, containing significantly fewer textures when

compared to the (uncompressed) ground-truth images. See

Fig. 1a for examples (Ground-truths can be found in Fig. 5).

Taking an image as input, the JPEG encoder first divi-

des it into non-overlapped coding blocks. After that, dis-

crete cosine transform (DCT) is applied on each block, and

the resultant DCT coefficients are uniformly quantified ac-

cording to the JPEG quantization table. For decoding, the

JPEG decoder performs inverse DCT on the quantified coef-

ficients to obtain pixel values. It can be seen that informa-

tion loss and compression artifacts are all due to quantiza-

3038



tion. Most learning-based approaches, including the afore-

mentioned state of the arts (e.g., ARCNN, D3, and DDCN),

just learn a one-to-one mapping between JPEG-compressed

images and the corresponding ground-truths. Such designs

have a drawback. Due to the many-to-one property of quan-

tization, there are indeed multiple ground-truths for a com-

pressed image. Owing to the subjective preference of ima-

ges from human visual system, different people may favor

different ground-truths. Therefore, it is better to develop

a one-to-many mapping for recovering artifact-free images,

which provide users a series of high-quality candidates, and

let the users pick what they like.

Nevertheless, measuring the output quality is a difficult

task. Most existing approaches like ARCNN adopted a per-

pixel L2 loss, since it is straight forward and can encourage

finding solutions whose pixel values are closed to ground-

truths. Unfortunately, the L2 loss is a convex function, so

there is only one optimal solution given an input. This is

contrary to the many-to-one property of quantization, and

will lead to incorrect results. Consider a toy example in

which 4 different gray levels, say 1, 2, 3, and 4, are all

quantified to 1. Now we are going to recover 1∼4 from

1. If we learn a mapping using the L2 loss, no matter how

we model the mapping, at last we will find one unique so-

lution and map 1 to this specific value. As the mapping

is trained to minimize the L2 error averaged on a dataset,

this solution will tend to be the ground-truth average (e.g.,
1+2+3+4

4
= 2.5), which is not any ground-truth obviously.

Looking back to compression artifacts reduction, now it is

also clear where those overly smooth outputs of existing ap-

proaches come from: Since each compressed image is de-

terministically mapped to the ground-truth average because

of the per-pixel L2 loss, lots of details cancel each other out

during averaging, resulting in blurred regions everywhere.

What’s worse, the per-pixel loss doesn’t well describe

the perceptual differences between images. For instance, if

we shift any of two identical images by one pixel, these two

images are still perceptually similar, although they would

be quite different as measured by the per-pixel loss. Recent

works discovered that perceptual similarity can be better

described by differences between high-level image features

extracted from pretrained CNNs. This technique has been

applied in feature visualization [38], feature inversion [31],

style transfer [11, 10], etc., and has succeeded in recove-

ring semantic structures in comparison to the per-pixel loss.

Nevertheless, high-level features are generally invariant to

low-level details, so results from this technique usually con-

sist of visible distortions and insufficient textures.

On the other side, Generative Adversarial Networks

(GANs) [12] have been demonstrated to be promising in

producing fine details [12, 7, 34]. This interesting technique

is usually employed to generate images that seems natural,

with the naturalness measured by a binary classifier. The

Lnatural
LjpegLperceptProposal

Component
Measurement Component

Figure 2: An overview of the one-to-many network. Given a

JPEG-compressed image, the proposal component genera-

tes artifact-free candidates, whose qualities are further eva-

luated by the measurement component.

intuition is, if generated images are hard to be distinguished

from natural images, then they should be “natural” enough

for humans. However, although significant improvements

have been introduced [7, 34], GANs still have difficulty in

generating visually pleasing semantic structures.

In this work, we combine the benefits of these two

techniques within a one-to-many mapping. More specifi-

cally, we propose a one-to-many network, which is decom-

posed into two components – a proposal component and a

measurement component, as shown in Fig. 2. The propo-

sal component takes a JPEG compressed image as input,

and then outputs a series of artifact-free candidates. The

measurement component estimates the output quality. We

adopt a perceptual loss that depends on high-level features

from a pretrained VGGNet [39] to estimate the perceptual

quality of candidates. In addition, we train a discrimina-

tive network to measure the candidate naturalness, which

becomes our second loss. Meanwhile, we notice that using

these two losses is still not sufficient for good results. Both

of them don’t respect image characteristics like color distri-

bution. As a result, outputs from the proposal component

often contain unwanted noises and have different contrast

when compared with inputs or ground-truths. To resolve

this issue, we further introduce a JPEG loss using the JPEG

quantization table as a prior, to regularize the DCT coeffi-

cient range of outputs. Besides, we find that, when combi-

ned with highly non-convex loss functions, deconvolution

usually leads to grid-like artifacts. We propose a “shift-

and-average” strategy to handle this problem. Experiments

prove that our approach is able to generate results favored

by humans. Compare Fig. 1a and Fig. 1b for examples.

2. Related Works

2.1. Compression Artifacts Reduction

Many approaches have been proposed to cope with com-

pression artifacts. Early works utilized carefully chosen fil-

ters to suppress blocking and ringing artifacts. For example,

Reeve and Lim [35] applied a Gaussian filter to the pixels

around coding block boundaries to smooth out blocking ar-

tifacts. Besides, Chen et al. [3] employed a low-pass filter

on the DCT coefficients of adjacent coding blocks for de-

blocking. However, it is unlikely that such manual designs

can sufficiently model compression degradation.
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Recently, learning-based approaches are gradually be-

coming the first choice. One of the representative ap-

proaches is sparse coding [22, 5, 2, 28, 27, 36]. In ge-

neral, these approaches first encode an input image by

a compressed-image dictionary, and then pass the sparse

coefficients into an uncompressed-image dictionary for re-

construction. Sparse-coding-based approaches are usually

inefficient, as they require a complicated optimization pro-

cedure. What’s worse, it is quite difficult to employ end-to-

end training. Thus, their performances are limited.

Neural networks date back decades [25]. Nowadays,

deep neural networks, especially deep CNNs, have shown

explosive successes in both high-level [24, 39, 33] and low-

level [9, 8, 44, 15] vision problems. ARCNN [8] demonstra-

ted the great potential of end-to-end trained CNNs in remo-

ving various compression artifacts. DDCN [15] pointed out

that the 4-layer ARCNN was insufficient to eliminate com-

plex artifacts and thus proposed a much deeper (20-layer)

architecture. D3 [44] converted sparse-coding approaches

into a LISTA-based [14] deep neural network, and obtained

speed and performance gains. Both of DDCN and D3 adop-

ted JPEG-related priors to improve reconstruction quality.

2.2. Perceptual Loss

A number of recent works used a perceptual loss, which

is defined on high-level features extracted from pretrained

CNNs, as the optimization target. Mahendran and Ve-

daldi [31] inverted features from convolutional networks by

minimizing the feature reconstruction loss, in order to ana-

lyze the visual information captured by different network

layers. Similar optimization targets have been used in fea-

ture visualization [38], artistic style transfer [11, 10], and so

on. In particular, Johnson et al. [21] trained a feed-forward

network to solve the optimization problem, largely reducing

the computational cost. This work is particular relevant

to ours, as they have showed impressive results in image

super-resolution by replacing the per-pixel L2 loss with the

perceptual loss during the training of a CNN. However, as

discussed in the Introduction, only minimizing the percep-

tual loss usually leads to unsatisfactory details.

2.3. Generative Adversarial Networks

Starting from Goodfellow et al. [12] who introduced

GANs for generating digits, GANs have attracted signifi-

cant attention in the area of image generation. In general,

a GAN contains a generative network and a discriminative

network. The discriminative network is trained to determine

whether an image is from reality or the generative network.

And the generative network is trained to improve its outputs

so that they are good enough and cannot be easily distin-

guished from reality. Training GANs is tricky and unstable.

Denton et al. [7] built a Laplacian pyramid of GANs (LAP-

GAN) to generate natural images in a coarse to fine scheme.

In addition, DCGAN [34] proposed some good practices for

training GANs. More applications of GANs can be found

in [32, 19, 42]. Concurrent with our work, Ledig et al. [26]

also combine a VGGNet-based perceptual loss and GANs

for image restoration, and have achieved impressive results.

3. One-to-Many Network

3.1. Formulation

Consider a JPEG-compressed image Y . Our goal is to

recover from Y a series of artifact-free images F (Y ) which

are as similar as possible to the uncompressed ground-truth

X . Note that here we only consider one ground-truth for

each input. Although a compressed image may come from

numerous uncompressed images, in practice, due to the

available data, at most time we can only access one ground-

truth for a compressed image. Nevertheless, our discussion

can be easily extended to multiple ground-truths.

3.2. Proposal Component

Our one-to-many network contains two major compo-

nents. In this sub-section we describe the proposal compo-

nent, which provides a model for F . More specifically, we

develop the mapping F as a deep CNN. To enable the one-

to-many property, within the network we introduce an auxi-

liary variable Z as a hidden additional input. The network

takes a compressed image Y as input; at the same time it

samples a Z from a zero-centered normal distribution with

standard deviation 1. Both of Y and Z are then feed into the

network for non-linear mapping. As JPEG compression is

not optimal, redundant information neglected by the JPEG

encoder may still be found in a compressed image. A deep

CNN on Y can effectively discover and utilize such infor-

mation to recover details eliminated by quantization. The

sampled Z adds randomness to the network, encouraging it

to explore and generate distinct artifact-free candidates.

3.2.1 Network Structure

The proposal component roughly follows the network struc-

ture set forth by [42] and [21]. At first the compressed

image Y and the sampled Z are given as inputs of two diffe-

rent branches. After that the outputs of these two branches

are concatenated. On top of the concatenated feature maps,

an aggregation sub-network is further performed to generate

an artifact-free prediction. Fig. 3 illustrates this component.

Very recently, skip connection, especially the identity

shortcut, has become very popular in building deep neural

networks. He et al.’s deep residual network (ResNet) [16]

which consists of many stacked residual units has shown

state-of-the-art accuracy for several challenging recognition

tasks. Our work follows their wisdom. In the proposal com-

ponent, each branch contains 5 residual units, and the ag-
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Figure 3: The architecture of the proposal component. The

filter number of the last layer is equal to the channel number

of inputs. The other convolutional layers contain 64 filters.

gregation sub-network comprises 10 residual units. For the

residual unit we adopt the variant proposed in He et al.’s

later work [18]. More specifically, each residual unit inclu-

des two Batch Normalization [20] layers, two ReLU [24]

layers, and two convolutional layers.

Before a compressed image is forwarded to the network,

it is down-sampled by a stride-2 4 × 4 convolutional layer.

And finally the network output is up-sampled by a stride-

2 4 × 4 deconvolutional layer to maintain the image size.

There are two benefits to networks that down-sample and

then up-sample. First, due to the reduced input resolution,

the computational cost is much lower (only 1

4
compared

with the no down-sampling version). Second, with a same

filter size and a same layer number, 2x down-sampling can

increase the effective receptive field size by 2, which is ad-

vantageous for integrating large-area spatial information.

3.2.2 Up-Sampling

There is no free lunch. Although down-sampling has

several benefits, up-sampling is not as trivial as it first

c c… …

……

…… ……

Deconv

Shift Average

c ∗ (w2 + w4)

c ∗ (w1 + w3)

c ∗

1

2

4
∑

i=1

wi

Figure 4: An illustration for the shift-and-average strategy.

looks. Let us consider a 1-D example, using a stride-2
deconvolutional layer with filter size 4 for up-sampling.

Denote the filter as [w1, w2, w3, w4]. Now assume we

apply deconvolution on a constant input [· · · , c, c, · · · ],
where c is a scalar. The expected output should be con-

stant as well. However, the actual output will be c ∗
[· · · , w2 + w4, w1 + w3, w2 + w4, w1 + w3, · · · ]. If we re-

quire the actual output to meet the expected output, then the

trained filter should satisfy w1 + w3 = w2 + w4. This con-

straint may be implicitly learned if we use a per-pixel L2

loss on top of the deconvolutional layer, because the L2 loss

is simple enough so that learning the filter weights is nearly

a convex optimization problem. But if a highly non-convex

loss is adopted, we find that a network would struggle in

learning this requirement, resulting in apparent grid-like ar-

tifacts. Indeed, this kind of artifacts can be seen in results of

many previous works which combined deconvolution with

a complicated loss function (e.g., see Fig. 8 in [21]).

Note that using a different filter size won’t resolve this is-

sue (in fact, it may be worse if the filter size is odd). Instead,

in this work we propose a simple strategy namely “shift-

and-average”. Continuing the previous example, after we

obtain the deconvolution output (denoted as deconv), the

following two steps are performed:

1. Duplicate deconv and shift it right by 1 pixel.

2. Average deconv and the shifted version.

Fig. 4 provides an illustration. We can see that a constant

input will result in a constant output, which is expected.

This strategy can be easily extended to 2-D data. For 2-D

stride-2 deconvolution, 3 shifts (i.e., shift right, shift down,

shift right and down) are performed in Step 1. In general,

for stride-N 2-D deconvolution, N2 − 1 shifts are required.

Nevertheless, both steps in the proposed strategy can be ef-

ficiently parallelized, and thus run extremely fast on GPUs.

3.3. Measurement Component

After we obtain an output X̂ = F (Y ;Z) from the pro-

posal component, the measurement component is adopted

to estimate whether X̂ is favored by humans. We define

three loss functions for measurement.

3.3.1 Perceptual Loss

The perceptual loss estimates semantic similarity between

X̂ and X . Previous works [10, 11, 21] found that features
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from deep networks pretrained for image classification can

well describe perceptual information. Especially, Mahen-

dran and Vedaldi [31] showed that, features extracted from

lower layers tend to retain photographically accurate infor-

mation, whereas higher-layer features are more invariant to

color, texture, and shape differences. Thus, rather than ad-

vocating per-pixel matching, the perceptual loss is defined

to encourage X̂ and X to share similar high-layer features:

Lpercept(X̂,X) =
1

Hφ

‖φ(X̂)− φ(X)‖22, (1)

where φ is features computed from a network, and Hφ is the

feature size. In this work, we employ the activations of the

last convolutional layer of the 16-layer VGGNet [39], i.e.,

Layer “relu5 4”, as φ.

3.3.2 Naturalness Loss

The perceptual loss has high degree of geometric and photo-

metric invariance. This is good for reconstructing semantic

structures, but it also has some drawbacks. Consider a natu-

ral image and a moderately smoothed version. Minimizing

the perceptual loss won’t strongly favor the un-smoothed

version, as normally those smoothed-out details don’t have

a great influence on semantic discrimination. However, we

wish to recover artifact-free images as “natural” as possible.

We introduce another loss to resolve this issue, follo-

wing the spirit of GANs. We build an additional network

D to distinguish whether an image is generated from the

proposal component F or it is a natural image. Network D
performs binary classification and outputs the probability of

an input being “natural”. We add (the negative log of) this

probability on X̂ as the second loss for the measurement

component, encouraging X̂ to have a high probability:

Lnatural(X̂) = −log(D(X̂)). (2)

Network D needs to be trained as well. We adopt the

binary entropy loss as its optimization target:

LD(X, X̂) = −
(

log(D(X)) + log(1−D(X̂))
)

. (3)

As can be seen from Eq. (2) and Eq. (3), network F and

network D are competing against each other: network F
tries to generate an artifact-free image X̂ which is hard for

network D to differentiate from natural images, while D is

trained to avoid getting fooled by F .

For the structure of network D, we generally follow the

architectural guidelines proposed by DCGAN [34], with the

network depth doubled. More specifically, we also adopt 4
convolutional units, but each unit is composed of 2 convolu-

tional layers instead of 1. Every convolutional layer except

the last is followed by a Batch Normalization and a Leaky

ReLU [30]. The outputs of the last convolutional unit are

feed into a Logistic regression classifier. We despite the dif-

ferences of our network D and DCGAN in Table 1.

Table 1: Comparison of DCGAN and our network D.

“conv” is short for convolution. Each convolutional layer

except the last is followed by a Batch Normalization and a

Leaky ReLU, sequentially. The filter size is always 4 × 4.

The filter numbers are shown right after “conv”.

DCGAN Network D

Conv Unit 1
stride-1 conv (64)

stride-2 conv (64) stride-2 conv (64)

Conv Unit 2
stride-1 conv (128)

stride-2 conv (128) stride-2 conv (128)

Conv Unit 3
stride-1 conv (256)

stride-2 conv (256) stride-2 conv (256)

Conv Unit 4
stride-1 conv (512)

stride-2 conv (512) stride-2 conv (512)

Classifier Logistic Regression

3.3.3 JPEG Loss

Intuitively, if we adjust the contrast of an image, little se-

mantic information will change. That is, the perceptual

loss is insensitive to the color distribution of a reconstructed

image X̂ . Besides, Eq. (2) shows that the naturalness loss

doesn’t concern whether the color distributions of X̂ and the

input Y match, either. Oppositely, for the purpose of com-

pression artifacts reduction, we hope the color distribution

of an input can be roughly retained. Hence, we introduce an

additional JPEG-related loss to enforce this constraint.

Estimating the real color distribution is rather difficult.

Fortunately, the JPEG standard is composed of various pre-

defined parameters. By wisely leveraging these parame-

ters, at least we can obtain the lower bound and the upper

bound of pixel values. As aforementioned, for compression,

the JPEG encoder divides the DCT coefficients of an input

image by a quantization table, and then rounds the results

to the nearest integer. The JPEG decoder performs decom-

pression by multiplying back the quantization table. Thus,

the relations between a compressed image Y and the corre-

sponding uncompressed image X can be formulated as:

Y dct(i, j) = ROUND
(

Xdct(i, j)/Q(i, j)
)

∗Q(i, j), (4)

where Xdct and Y dct are the DCT coefficients of X and

Y , respectively. Q is the quantization table. i and j are

indices in the DCT domain. Eq. (4) implies the following

DCT coefficient range constraint:

Y dct −Q/2 ≤ Xdct ≤ Y dct +Q/2. (5)

So each recovered artifact-free image X̂ should satisfy

Eq. (5) as well. We propose the following JPEG loss:

Ljpeg(X̂, Y ) =
1

H
X̂

MAX

(

(

X̂dct − Y dct
)2

−

(

Q

2

)2

, 0

)

(6)

where H
X̂

is the size of X̂ . As can be seen, the JPEG loss

is a truncated L2 loss. A reconstructed image X̂ whose
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DCT coefficients fall outside the lower / upper bound (i.e.,

|X̂dct − Y dct| > Q
2

) will be penalized.

3.4. Joint Training for the One­to­Many Network

We merge all the aforementioned loss functions to build

the measurement component:

L(X̂,X, Y ) =Lpercept(X̂,X) + λ1Lnatural(X̂)+

λ2Ljpeg(X̂, Y ).
(7)

In this paper, we always set λ1 to 0.1. λ2 needs some

special treatments. Note that the JPEG encoder performs

quantization on each 8 × 8 non-overlapped coding block

individually. For a patch misaligned with the coding block

boundaries, we cannot obtain its DCT coefficients. Hence,

we set different λ2 values according to the given patches.

Generally speaking, the training procedure for our one-to-

many network is similar to the original GAN [12], which

includes two main steps in each iteration:

1. Fix the proposal component F , optimize the discrimi-

native network D with Eq. (3).

2. Fix network D, optimize the proposal component F
with the measurement component (i.e., Eq. (7)). If

an input patch is aligned with the JPEG coding block

boundaries, set λ2 to 0.1; otherwise set λ2 to 0.

In the first epoch of training we only perform the second

step without network D, i.e., network D is not trained nor

used in the first epoch. The reason is, at the beginning the

generated images are not good, so even a trivial network D
can distinguish them from natural images. Feeding them to

network D is just a waste of computational resources.

4. Experiments

In this section, we conduct experiments to demonstrate

the effectiveness of the proposed one-to-many network.

Dataset. In all experiments, we employ the ImageNet da-

taset [6] for training. The validation set of the BSDS500

dataset [1] is used for validation. Following the standard

protocol of previous approaches, the MATLAB JPEG en-

coder is applied to generate JPEG-compressed images. Ne-

vertheless, other JPEG encoders are generally acceptable as

we didn’t notice visible differences in resultant images.

Parameter Settings. We roughly follow the parameter

settings in DCGAN [34]. We train our one-to-many net-

work for 3 epochs, using Adam [23] with learning rate 1e−4

and momentum term β1 = 0.5. The batch size is set to

16. For the Leaky ReLU, the slope of the leak is set to 0.2.

Training images are prepared as same-size patches for net-

work inputs. All weights are initialized using He et al.’s

uniform initializer [17]. During testing, the proposal com-

ponent runs as a fully convolutional network [29] to gene-

rate full-image predictions.

4.1. Baseline Evaluations

The traditional metrics used to evaluate compression ar-

tifacts reduction are PSNR, SSIM [43], and PSNR-B [45].

All of them rely on low-level differences between pixels.

Especially, PSNR is equivalent to the per-pixel L2 loss. So

when measured by PSNR, a model trained to minimize the

per-pixel L2 error should always outperform a model that

minimizes Eq. (7). For fair comparison, in this experiment

we replace the measurement component by the per-pixel L2

loss. We also drop the auxiliary variable in the proposal

component as there is only 1 optimal solution under the L2

loss. We name this variant as “baseline” in the following.

We compare our baseline with two latest compression

artifacts reduction approaches, i.e., ARCNN, and DDCN,

on the test set of the BSDS500 dataset [1]. We also include

the latest generic image restoration framework TNRD [4]

for comparison. D3 is not examined here as so far there is

no open code or model for evaluation. Three JPEG qualities

are evaluated: 5, 10, and 20. All experiments in this section

are conducted on the luminance channel (in YCbCr color

space), according to the protocol of previous approaches.

Table 2 shows the quantitative results. On the whole,

our baseline largely outperforms ARCNN, and TNRD on

all JPEG qualities and evaluation metrics, and is on par

with DDCN. In particular, our baseline performs best for

Quality 5, indicating it is especially suitable for low-quality

inputs, which have higher demand for good reconstruction.

We emphasize that our goal of this paper is not to achieve

the best PSNR / SSIM / PSNR-B results, but instead to im-

prove the human favorability of recovered artifact-free ima-

ges. Thus, we didn’t add techniques like the DCT-domain

priors used in D3 and DDCN to further improve PSNR.

In Cols. 3∼4 of Fig. 5, we present restored images from

DDCN and our baseline for qualitative evaluations. In gene-

ral, we can see that, both approaches tend to produce overly

smooth results. The reconstructed images lack fine details

and rich textures when compared with the ground-truths.

Although our baseline has outperformed existing approa-

ches on PSNR, its visual quality is still far from satisfactory.

4.2. Favorability Evaluations

In this section we evaluate the human favorability of re-

covered images. Unfortunately, currently there is no ob-

jective metric to measure the favorability. Hence, we con-

duct qualitative experiments for evaluations. As has been

discussed, the many-to-one quantization step makes reco-

very highly ill-posed. Ambiguity becomes more extreme

as input quality reduces. For low qualities, most high-

frequency information of the original image is eliminated.

3043



Ground-truth / PSNR JPEG / 24.09 DDCN / 25.20 Baseline / 25.29 One-to-Many / 23.59

Ground-truth / PSNR JPEG / 24.24 DDCN / 25.26 Baseline / 25.38 One-to-Many / 23.57

Figure 5: Comparisons under Quality 5 on BSDS500. Row 1: Image 6046; Row 2: Image 344010. Best view on screen.

Table 2: Comparisons with the State of the Arts on the

BSDS500 Dataset. Red color indicates the best perfor-

mance; Blue color indicates the second best performances.

Quality Approach PSNR (dB) SSIM PSNR-B (dB)

5

JPEG 25.36 0.6764 22.91

ARCNN 26.72 0.7256 26.48

TNRD 26.81 0.7279 26.65

DDCN 26.98 0.7333 26.76

Baseline 27.12 0.7406 26.87

10

JPEG 27.80 0.7875 25.10

ARCNN 29.10 0.8198 28.73

TNRD 29.16 0.8225 28.81

DDCN 29.59 0.8381 29.18

Baseline 29.56 0.8352 29.10

20

JPEG 30.05 0.8671 27.22

ARCNN 31.28 0.8854 30.55

TNRD 31.41 0.8889 30.83

DDCN 31.88 0.8996 31.10

Baseline 31.89 0.8977 31.04

So in the following experiments we focus on Quality 5 as lo-

wer qualities require more effective recovery of details. We

train our one-to-many network according to Section 3.4.

The results of our one-to-many network for Image 6045

and Image 344010 are shown in the last column of Fig. 5.

By comparing them with the results of existing approaches

and our baseline, we can see that our one-to-many network

does a pretty good job at recovering edges and details. The

textures are much richer in our approach, such as the fur and

the rocks in Image 6046, and the bushes in Image 344010,

etc. Note that our one-to-many network does not add details

indiscriminately. For example, in Image 6046, our approach

largely enriches the fur of the donkey, but the background

sky remains clean, suggesting that the one-to-many network

is aware of image semantics.

We also perform evaluations on the Set14 dataset [46].

Here, for each compressed image, we sample two different

Zs to obtain two reconstructed candidates, and show them

in the last two columns of Fig. 6. As can be seen, these

candidates have different details, and all of them look more

vivid than the results of our baseline. Interestingly, from the

perspective of PSNR, in both Fig. 5 and Fig. 6 our one-to-

many network performs even worse than JPEG-compressed

input images, whereas it is obvious that our results are more

visually pleasing. This demonstrates that PSNR is not suf-

ficient for quality measurement.

4.3. Extension to Color Images

Our approach is not limited to gray images. We re-train

our one-to-many network on RGB images and show results

in Fig. 7. As can be observed, our approach has produced

much finer details in comparison to DDCN or our baseline.

4.4. Further Analysis

Up-sample We conduct another experiment to examine

the proposed shift-and-average strategy. By comparing

Fig. 8a and Fig. 8b, we can observe that, without the pro-

posed strategy, grid-like artifacts are visible over the whole

image, suggesting that they are results of the composition

of a traditional deconvolution operation and a highly non-

convex loss function. The proposed strategy is able to sup-

press such artifacts without hurting the perceptual quality.

Loss Fig. 8 also exhibits the influences of each loss.

Fig. 8b shows that using Lpercept for measurement is able

to recover primary semantic information. After adding

Lnatural, fine details are supplemented, as indicated in

Fig. 8c. However, the contrast of the resulting image is sig-

nificantly different from the input or ground-truth (both can
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Ground-truth / PSNR JPEG / 22.32 Baseline / 23.28 One-to-Many (1) / 21.50 One-to-Many (2) / 21.53

Ground-truth / PSNR JPEG / 25.43 Baseline / 26.77 One-to-Many (1) / 24.99 One-to-Many (2) / 25.32

Figure 6: Comparison under Quality 5 on Set14. Row 1: Image “baboon”; Row 2: Image “coastguard”. Best view on screen.

Ground-truth JPEG DDCN Baseline One-to-Many

Figure 7: Comparison under Quality 5 on BSDS500. Row 1: Image 100039; Row 2: Image 108004. Best view on screen.

(a) (b) (c)

Figure 8: (a) Train using Lpercept without the shift-and-

average strategy; (b) Train using Lpercept with the shift-

and-average strategy; (c) Train using Lpercept and Lnatural.

be found in Fig. 5). Once we put in Ljpeg , the contrast is ad-

justed (see Row 1, Column 5 of Fig. 5). More interestingly,

it seems that additional details appear as well. One expla-

nation is, high-contrast natural images usually have more

complex textures than low-contrast images, so Lnatural will

encourage the network to synthesize more details after the

contrast is enhanced by Ljpeg . These experiments demon-

strate the importance of all proposed losses.

5. Conclusion

In this paper, we systematically studied how to effecti-

vely recover artifact-free images from JPEG-compressed

images. As a natural inversion of the many-to-one JPEG

compression, we propose a one-to-many network. The pro-

posed model, when optimized with a perceptual loss, a na-

turalness loss, and a JPEG loss, could reconstruct multiple

artifact-free candidates that are more favored by humans,

and thus drastically improved the recovery quality.

One limitation of our approach is the scalability to vari-

ous JPEG qualities. Currently we need to train an individual

model for each quality. Besides, how to objectively evaluate

the favorablity of output images remains to be a problem.

We hope to address these issues in the future.
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