
Global Optimality in Neural Network Training

Benjamin D. Haeffele and René Vidal

Johns Hopkins University, Center for Imaging Science, Baltimore, MD 21218, USA.

bhaeffele@jhu.edu rvidal@cis.jhu.edu

Abstract

The past few years have seen a dramatic increase in the

performance of recognition systems thanks to the introduc-

tion of deep networks for representation learning. However,

the mathematical reasons for this success remain elusive.

A key issue is that the neural network training problem is

nonconvex, hence optimization algorithms may not return a

global minima. This paper provides sufficient conditions to

guarantee that local minima are globally optimal and that

a local descent strategy can reach a global minima from

any initialization. Our conditions require both the network

output and the regularization to be positively homogeneous

functions of the network parameters, with the regulariza-

tion being designed to control the network size. Our re-

sults apply to networks with one hidden layer, where size is

measured by the number of neurons in the hidden layer, and

multiple deep subnetworks connected in parallel, where size

is measured by the number of subnetworks.

1. Introduction

As a broad definition, feed-forward deep networks are

a collection of feature extraction layers, where each layer

applies some form of linear transformation (e.g., convolu-

tion, dot-product), followed by a nonlinearity (e.g., rectifi-

cation, max-pooling) to the output of the preceding layer.

Modern networks are similar to classical neural networks,

except that they involve many more layers and typically re-

place classical sigmoid nonlinearities by linear rectification

(i.e., ReLU units). These modifications, together with the

availability of massive amounts of data for training, have led

to dramatic improvements in classification performance for

various applications in computer vision, speech and natural

language processing. However, the mathematical reasons

for this success remain elusive.

An important mathematical challenge is that the problem

of learning the parameters of a deep network is non-convex,

hence optimization algorithms can get stuck in non-global

minima. In contrast, local minimizers of a convex optimiza-

tion problem are also global minimizers, so convex formu-

lations of learning problems are often preferable as they fa-

cilitate the analysis of the properties of the learning algo-

rithm. This is one of the reasons for the popularity of clas-

sical learning algorithms such as linear regression, support

vector machines, ℓ1 minimization, and nuclear norm mini-

mization, all of which involve solving a convex optimization

problem of the form:

min
X

ℓ(Y,Φ(X,S)) + λΘ(X). (1)

For classification problems, ℓ(Y,Φ(X,S)) is a loss func-

tion that measures the agreement between the true labels, Y ,

and the predicted labels, Φ(X,S), where S is the input data

to be classified and X represents the classifier parameters,

while Θ(X) is a regularization function designed to prevent

overfitting. Convex formulations require both the loss func-

tion and the regularization function to be convex onX , e.g.,

ℓ(Y,Φ(X,S)) = ‖Y − S⊤X‖2F and Θ(X) = ‖X‖2F .

Unfortunately, in practice many learning algorithms –

and particularly those that seek to learn an appropriate

representation of features directly from the data, such as

principal component analysis (PCA), low-rank matrix com-

pletion, nonnegative matrix factorization, sparse dictionary

learning, tensor factorization and deep learning – involve

solving a non-convex optimization problem such as:

min
{W i}K

i=1

ℓ(Y,Φ(W 1, . . . ,WK))+λΘ(W 1, . . . ,WK), (2)

where Φ is an arbitrary, convexity destroying mapping.1 For

example, in deep neural network training, the output of the

network is typically generated by applying an alternating

series of linear and non-linear functions to the input data:

Φ(W 1, . . . ,WK) = ψK(ψK−1(· · ·

ψ2(ψ1(S
⊤W 1)W 2) · · ·WK−1)WK),

(3)

where each W i is an appropriately sized matrix that con-

tains the connection weights between layers i − 1 and i of

the network, and the ψi(·) functions apply some form of

1For the sake of notational simplicity, we will omit the dependency of

Φ on the data, S, from now on.

7331

non-linearity after each matrix multiplication, e.g., a sig-

moid function, rectification, max-pooling.2

For a very small number of non-convex problems, e.g.,

PCA, one is fortunate, and a global minimizer can be found

in closed form. For other problems, e.g., ℓ0 minimization,

rank minimization, and low-rank matrix completion, one

can replace the non-convex objective by a convex surro-

gate and show that under certain conditions the solutions

to both problems are the same [9, 5]. In most cases, how-

ever, the optimal solutions cannot be computed in closed

form, and a good convex surrogate may not be easy to find.

This presents significant challenges to existing optimization

algorithms – including (but certainly not limited to) alter-

nating minimization, gradient descent, stochastic gradient

descent, block coordinate descent, back-propagation, and

quasi-Newton methods – which are typically only guaran-

teed to converge to a critical point of the objective function

[16, 20, 25, 26]. However, for non-convex problems, the

set of critical points includes not only global minima, but

also local minima, local maxima, saddle points and saddle

plateaus, as illustrated in Figure 1. As a result, the non-

convexity of the problem leaves the model somewhat ill-

posed in the sense that it is not just the model formulation

that is important but also implementation details, such as

how the model is initialized and particulars of the optimiza-

tion algorithm, which can have a significant impact on the

performance of the model.

(a)

(b)
(c)

(d)

(e)
(f)

(g)
(h)

Figure 1. Example critical points of a non-convex function (shown

in red). (a,c) Plateaus. (b,d) Global minima. (e,g) Local maxima.

(f,h) Local minima.

To address the issue of non-convexity, a common strat-

egy used in deep learning is to initialize the network

weights, {W k}, at random, update these weights using lo-

cal descent, check if the training error decreases sufficiently

fast, and if not, choose another initialization. In practice,

it has been observed that if the size of the network is large

enough, this strategy can lead to markedly different solu-

tions for the network weights, which give nearly the same

objective values and classification performance [6]. It has

also been observed that when the size of the network is

large enough and the nonlinearity is chosen to be a Rec-

tified Linear Unit (ReLU), ψ+(x) = max(x, 0), in lieu of

a sigmoid function, many weights are zero, a phenomenon

known as dead neurons, and the classification performance

significantly improves [7, 15, 14, 27]. While this empir-

2Here we have shown the linear operations to be simple matrix mul-

tiplications to simplify notation, but this easily generalizes to other linear

operators (e.g., convolution).

Guarantees of Our Framework

(i)

Figure 2. Guaranteed properties of the proposed framework. Start-

ing from any initialization, a non-increasing path exists to a global

minimizer. Starting from points on a plateau, a simple ”sliding”

method exists to find the edge of the plateau (green points).

ically suggests that when the size of the network is large

enough and ReLU nonlinearities are used all local minima

could be global, there is currently no rigorous theory that

provides a precise mathematical explanation for these ex-

perimentally observed phenomena.

Paper Contributions. In this paper, we study conditions

under which the optimization landscape for the non-convex

optimization problem in (2) is such that all critical points

are either global minimizers or saddle points/plateaus, as

shown in Figure 2. We show that if the network size is

large enough and the functions Φ and Θ are sums of pos-

itively homogeneous functions of the same degree, any lo-

cal minimizer such that some of its entries are zero is also

a global minimizer. Interestingly, ReLU and max-pooling

nonlinearities are positively homogeneous, while sigmoids

are not, which could provide a possible explanation for the

improved performance of ReLU and max pooling. Further-

more, many state-of-the-art networks are not trained with

classical regularization, such as an ℓ1 or ℓ2 norm penalty on

the weight parameters but instead rely on techniques such as

dropout. Our results also provide strong guidance on the de-

sign of network regularization to ensure the non-existence

of spurious local minima, showing that traditional weight

decay is not appropriate for deep networks. However, more

recently proposed forms of regularization such as Path-SGD

[18] or batch normalization [12] can be easily incorporated

into our analysis framework, and stochastic regularization

methods, such as a dropout [23], also have strong similari-

ties to our framework.

Related Work. Prior work on global optimality of neural

network training [3] showed that for neural networks with a

single hidden layer, if the number of neurons in the hidden

layer is not fixed, but instead fit to the data through a spar-

sity inducing regularization, then the process of training a

globally optimal neural network is analogous to selecting

a finite number of hidden units from a potentially infinite

dimensional space of all possible hidden units. A weighted

sum of the selected hidden units is then taken to produce the

output. The specific optimization problem is of the form

min
x
ℓ(Y,

∑

i

hi(S)xi) + λ‖x‖1, (4)

where hi(S) represents one possible hidden unit activation

7332

in response to the training data S from an infinite dimen-

sional space hi(S) ∈ H of all possible hidden unit activa-

tions. Clearly (4) is a convex optimization problem on x
(assuming ℓ(Y,X) is convex on X) and straightforward to

solve for a finite set of hi(S) activations. However, since

H is an infinite dimensional space the primary difficulty

lies in how to select the appropriate hidden unit activations.

Nonetheless, by using arguments from gradient boosting, it

is possible to show that problem (4) can be globally opti-

mized by sequentially adding hidden units to the network

until one can no longer find a hidden unit whose addition

will decrease the objective function [3, 10, 17].

Several recent works have also explored the error sur-

face of multilayer neural networks using tools derived from

random matrix theory and statistical physics. Applying

ideas from random matrix theory to high-dimensional non-

convex optimization, the authors of [8] argue that, un-

der certain assumptions, for high-dimensional optimization

problems if one is given a particular critical point, it is

vastly more likely that the critical point will be a saddle

point rather than a local minimizer and thus avoiding saddle

points is the key difficulty in high-dimensional, non-convex

optimization. Using arguments from statistical physics, the

authors of [6] show that, under certain assumed distribu-

tions of the training data and the network weight parame-

ters, as the number of hidden units in a network increases,

the distribution of local minima becomes increasingly con-

centrated in a small band of objective function values near

the global optimum (and thus all local minima become in-

creasingly close to being global minima).

Additional recent work has analyzed the problem of

training neural networks with a single hidden layer by esti-

mating high order statistical moments of the network map-

ping using tensor decomposition methods and show that,

with sufficient assumptions on the loss and data distribu-

tion, polynomial-time training is possible [13]. Further, the

authors of [21] study the problem of when a given initial-

ization of a neural network is likely to be within the basin

of attraction of a global minimizer and provide conditions

that ensure a random initialization will be within the basin

of a global minimizer with high probability.

Our results will largely echo ideas from the above work,

but we take a markedly different approach. Specifically, we

will analyze the problem using a purely deterministic ap-

proach which does not make any assumptions regarding the

distribution of the input data, the network weight parameter

statistics, or the network initialization. With this approach,

we will show that saddle points and plateaus are the only

critical points that one needs to be concerned with due to the

fact that for networks of sufficient size, local minima that

require one to climb the objective surface to escape from,

such as (f) and (h) in Figure 1, are guaranteed not to exist,

as illustrated in Figure 2.

2. Problem Formulation

In this paper, we will study the non-convex problem:

min
r∈N+

min
{W i}K

i=1

ℓ(Y,Φr(W
1, . . . ,WK))+

λΘr(W
1, . . . ,WK).

(5)

For classification problems, Y typically contains the labels

of the training examples, but in general this could be any

arbitrary set of desired network outputs. K describes the

number of weight layers in the network; the {W k} variables

describe the parameters of different layers; and Φr defines

the output of the network as a function of the network pa-

rameters. As an example, K = 2 is a network with one hid-

den layer where W 1 defines the weights from the input to

the hidden layer, and W 2 defines the weights from the hid-

den layer to the output (Figure 3, left). The integer r defines

the size of the network. For example, r could be the number

of neurons in the hidden layer of a two-layer neural network

(Figure 3, left), or the number of parallel sub-networks in

a deep network (Figure 3, right). Note that a key feature

of our formulation is that we optimize over the size of the

network r, so as a result we need a means to control the

network size and prevent overfitting. This is accomplished

through a regularization function Θr(W
1, . . . ,WK), while

the loss function ℓmeasures how well Y is approximated by

the network output, Φr(W
1, . . . ,WK), and λ > 0 balances

the trade-off between regularization and loss.

3. Motivation: Matrix Factorization

Before considering neural networks, as a motivating ex-

ample consider the following matrix factorization problem:

Given a matrix Y ∈ R
d1×d2 , find factors W 1 ∈ R

d1×r and

W 2 ∈ R
d2×r of small size, r, and small Frobenius norm

that approximate Y as W 1W 2⊤, i.e.:

min
r∈N+

min
W 1,W 2

1

2
‖Y −W 1W 2⊤‖2F +

λ

2
(‖W 1‖2F + ‖W 2‖2F).

(6)

Notice that this problem is a particular case of (5) where

K = 2; the loss function is chosen as the squared loss

ℓ(Y,X) = 1
2‖Y − X‖2F ; the factorization map Φr in (3)

reduces to matrix multiplication - i.e., Φr(W
1,W 2) =

W 1W 2⊤, S = I , ψi(Z) = Z; and the regularization

function is chosen as ℓ2 (Tykhonov) regularization, i.e.,

Θ(W 1,W 2) = 1
2 (‖W

1‖2F + ‖W 2‖2F).

For the matrix factorization problem above, the regular-

izer is convex on (W 1,W 2), but the overall objective is not

due to the product W 1W 2⊤. While this makes the opti-

mization problem in (6) non-convex, we can still analyze it

by recalling the variational form of the nuclear norm ‖X‖∗
(the sum of the singular values of the matrix X), which is

7333

given by [22]:

‖X‖∗ = min
r

min
W 1,W 2:W 1W 2⊤=X

1

2
(‖W 1‖2F+‖W

2‖2F). (7)

The strong similarity between (7) and the regularizer in (6)

suggests looking at the convex problem:

min
X

1

2
‖Y −X‖2F + λ‖X‖∗, (8)

which is a classical nuclear norm minimization problem,

whose solution can be found in closed form from the

SVD of Y . Additionally, well-known results from posi-

tive semidefinite optimization have shown that although (6)

is a non-convex optimization problem, all local minima of

(6) will be globally optimal provided r is initialized to be

sufficiently large [4, 2, 19, 11]. However, while for the

particular case of (6) the problem can be easily recast as

a semi-definite optimization problem [19], for alternative

choices of regularization functions, Θ, this quickly becomes

a non-trivial problem. Further, results from semi-definite

optimization apply to problems of the form

min
r∈N+

min
W 1,W 2

ℓ(Y,W 1W 2⊤) + λΘ̄(W 1W 2⊤) (9)

which are subtly (but critically) different from the problem

we consider here, as we consider regularization on the fac-

tors directly, Θ(W 1,W 2), instead of on the product of the

factors, Θ̄(W 1W 2⊤), resulting in problems that are typi-

cally considerably more challenging [1].

Nevertheless, we build on these ideas from matrix factor-

ization to analyze a wide range of non-convex optimization

problems, including neural network training and significant

generalizations of the matrix factorization problem given in

(6), and present a framework where a convex optimization

problem, e.g., (8), provides an achievable lower bound of

the non-convex problem of interest, e.g., (6). From this

strong coupling between the convex and non-convex prob-

lems we then derive sufficient conditions to verify if a local-

minimizer is a global-minimizer and show that if the size of

the variables in the non-convex problem is initialized to be

sufficiently large then from any initialization it is possible

to reach a global-minimizer using purely local descent.

4. Neural Networks with One Hidden Layer

The above discussion on matrix factorization can be ex-

tended to neural networks with one hidden layer by properly

adjusting the definitions of the maps Φr and Θr. In ma-

trix factorization, Φr can be re-written as Φr(W
1,W 2) =

W 1W 2⊤ =
∑r

i=1W
1
i W

2⊤
i , where W 1

i and W 2
i are the ith

columns of W 1 and W 2, respectively. Likewise, Θr can

be re-written as Θr(W
1,W 2) = 1

2 (‖W
1‖2F + ‖W 2‖2F) =∑r

i=1
1
2 (‖W

1
i ‖

2
2 + ‖W 2

i ‖
2
2). This motivates the following

more general definitions for Φr and Θr:

Φr(W
1,W 2) =

r∑

i=1

φ(W 1
i ,W

2
i) and

Θr(W
1,W 2) =

r∑

i=1

θ(W 1
i ,W

2
i),

(10)

where φ and θ are positively homogeneous of degree 2,

i.e., φ(αw1, αw2) = α2φ(w1, w2) for all α ≥ 0. Clearly,

φ(w1, w2) = w1w2⊤ and θ(w1, w2) = ‖w1‖22 + ‖w2‖22
satisfy this property. But notice that it is also satisfied, for

example, by the map φ(w1, w2) = ψ+(S⊤w1)w2⊤, where

recall ψ+(x, 0) = max(x, 0) is a ReLU applied to each en-

try of S⊤w1. The fundamental observation is that both lin-

ear transformations and ReLU nonlinearities3 are positively

homogeneous functions of degree one, and so the output of

a two-layer network is positively homogeneous of degree

two.

With these definitions, it is easy to see that the output

of a two-layer neural network with nonlinearity ψ+ on the

hidden units, such as the one illustrated in the left panel of

Figure 3, can be expressed by the map Φr in (10), where r
now represents the number of neurons in the hidden layer.

Therefore, we can write the training problem for a two-layer

network as:

min
r∈N+

min
W 1,W 2

ℓ(Y,Φr(W
1,W 2)) + λΘr(W

1,W 2). (11)

This problem is non-convex due to the mapping Φr, so to

analyze this non-convex problem, we define a generaliza-

tion of the nuclear norm in (7) for two-layer neural networks

as:

Ωφ,θ(X) = min
r∈N+

min
W 1,W 2:Φr(W 1,W 2)=X

Θr(W
1,W 2).

(12)

The intuition behind the above problem is that, given an out-

put X generated by the network for some input S, we wish

to find the network size r and weights (W 1,W 2) that pro-

duced the output X . Among all possible sizes and weights,

we prefer those that minimize Θr(W
1,W 2).

While Ωφ,θ is no longer necessarily a norm, we will

show in Proposition 1 that, under some additional condi-

tions on θ, Ωφ,θ is still convex. Therefore, if the loss ℓ is

convex on X , so is the problem

min
X

ℓ(Y,X) + Ωφ,θ(X). (13)

As shown in Theorem 1, the convex problem (13) gives an

achievable lower bound to the non-convex problem (11),

and a local minimizer of the non-convex problem such that

one of the columns of W 1 and W 2 is equal to zero gives a

global minimizer for both the convex and non-convex prob-

lems.

3Notice that many other neural network operators such as max-pooling

and convolution are also positively homogeneous.

7334

S Φ

, , ,W1
1 W3

1 W4
1W2

1
φ()

, , ,W1
3 W3

3 W4
3W2

3
φ()

, , ,W1 W3W4W2()

W1
1

W3
1 W4

1

W2
1

S

W1
1 W2

1

W1
4 W2

4

Φ(W
1, W2)

0

ReLU Network with One Hidden Layer Multilayer Parallel

Network

Figure 3. Example networks. (Left panel) ReLU network with a single hidden layer with the mapping Φr described by the equation in (10)

with (r = 4). Each color corresponds to one element of the elemental mapping φ(W 1

i ,W
2

i). The colored hidden units have rectifying non-

linearities, while the black units are linear. (Right panel) Multilayer ReLU network with 3 fully connected parallel subnetworks (r = 3),

where each color corresponds to the subnetwork described the elemental mapping φ(W 1

i ,W
2

i ,W
3

i ,W
4

i).

5. Deep Networks with Parallel Structure

In this section, we extend our results to networks formed

by the addition of r parallel sub-networks, with each sub-

network having the same architecture (see Figure 3, right).

After introducing some specialized notation for the network

weights and dimensions, we generalize the maps Φ and Θ
to the context of deep networks. We then introduce a reg-

ularizer on the network weights and show that it induces a

convex regularizer on the output. Finally, we state our main

results to give sufficient conditions to guarantee that local

minima are global minima and that for sufficiently large net-

works all local minima are guaranteed to be global minima.

Notation. We will use capital letters as a shorthand for a set

of dimensions, and individual dimensions will be denoted

with lower case letters. For example, X ∈ R
d1×...×dN ≡

X ∈ R
D for D = d1 × . . . × dN ; we also denote the

cardinality of X ∈ R
D as card(X) =

∏N
i=1 di. Sim-

ilarly, X ∈ R
D×R ≡ X ∈ R

d1×...×dN×r1×...×rM for

D = d1 × . . .× dN and R = r1 × . . .× rM . Given an ele-

ment from a tensor space, we will use a subscript to denote

a slice of the tensor along the last dimension. For example,

given a matrix W ∈ R
d1×r, then Wi ∈ R

d
1, i ∈ {1, . . . , r},

denotes the i’th column of W . Similarly, given a cube

W ∈ R
d1×d2×r then Wi ∈ R

d1×d2 , i ∈ {1 . . . , r}, de-

notes the i’th slice along the third dimension. Further, given

two tensors with matching dimensions except for the last

dimension, W ∈ R
D×rw and Q ∈ R

D×rq , we will use

[W Q] ∈ R
D×(rw+rq) to denote the concatenation of the

two tensors along the last dimension. We’ll also need the

following definitions:

1. A size-r set of K factors (W 1, . . . , WK)r ∈ R
(D1×r) ×

. . .×R
(DK×r) is defined to be a set of K tensors where

the final dimension of each tensor is equal to r.

2. A function θ : R
D1

× . . . × R
DK

→ R
D is

positively homogeneous with degree p if, ∀α ≥ 0,

θ(αw1, . . . , αwK) = αpθ(w1, . . . , wK). Note that this

implies that θ(0, . . . , 0) = 0 for p 6= 0.

3. A function θ : R
D1

× . . . × R
DK

→ R+ is positive

semidefinite if θ(0, . . . , 0) = 0 and θ(w1, . . . , wK) ≥
0, ∀(w1, . . . , wK).

Factorization and regularization maps. The maps Φr and

Θr are defined as sums of positively homogeneous elemen-

tal mappings φ and θ, i.e.:

Φr(W
1, . . . ,WK) =

r∑

i=1

φ(W 1
i , . . . ,W

K
i) and

Θr(W
1, . . . ,WK) =

r∑

i=1

θ(W 1
i , . . . ,W

K
i).

(14)

Note that for matrix factorization, the elemental mapping

φ : R
d1 × R

d2 → R
d1×d2 is defined as φ(w1, w2) =

w1w2⊤, which is positively homogeneous of degree 2, and

the factorization map Φr(W
1,W 2) =

∑r
i=1W

1
i W

2⊤
i =

W1W
⊤
2 is simply matrix multiplication for matrices with

r columns. For neural networks, a typical elemen-

tal mapping φ would be defined as φ(w1, . . . , wK) =
ψK(· · ·ψ2(ψ1(S

⊤w1)w2) · · ·wK), which denotes the ap-

plication of a linear transformation (dot-product, convolu-

tion) with parameters w1 to the data S followed by a posi-

tively homogeneous nonlinearity ψi (ReLU, max-pooling),

and so on for K weight layers. Therefore, the map Φr in

(14) corresponds to the addition of r deep sub-networks in

parallel, each one with the same number of layers and the

same number of neurons per layer (see Figure 3, right). The

well-known AlexNet network from [14], which consists of

a series of convolutional layers, linear-rectification, max-

pooling layers, response normalization layers, and fully

connected layers, can be described by taking r = 1 and

defining φ to be the entire transformation of the network

(with slight modification of the response normalization lay-

ers, which are not positively homogenous, see supplement).

7335

Note, however, that our results will rely on r potentially

changing or being initialized to be sufficiently large, which

limits the applicability of our results to current state-of-the-

art network architectures (see discussion).

The elemental regularization function θ : RD1

× . . . ×

R
DK

→ R+ ∪∞ takes as input the parameters of one sub-

network and returns a non-negative number. The require-

ments we place on θ are that it must be positively homoge-

neous and positive semidefinite.

A regularizer on the parameters of the network that

induces a convex regularizer on its output. To de-

fine our regularization function on the output of the net-

work, X = Φr(W
1, . . . , WK), it will be necessary that

the elemental regularization function, θ, and the elemen-

tal mapping, φ, satisfy a few properties to be considered

compatible for the definition of our regularization func-

tion. Specifically, we say that (φ, θ) are a nondegener-

ate pair if: 1) θ and φ are both positively homogeneous

with degree p, for some p > 0 and 2) θ(z1, . . . , zK) >
0, ∀(z1, . . . , zK) such that φ(z1, . . . , zK) 6= 0 and

for all sequences (z1[n], . . . , zK [n]), n = 1, . . . ,∞, if

‖φ(z1[n], . . . , zK [n])‖ → ∞ then θ(z1[n], . . . , zK [n]) →
∞.4

Notice that any norm ‖w‖ is positively homogeneous

with degree 1, so by taking products of norms or sums

of norms raised to an appropriate power we can match

the degree of positive homogeneity between the map-

ping and regularizer. A typical regularizer for a map-

ping of degree K could be θ(w1, . . . , wK) =
∏K

i=1 ‖w
i‖

or θ(w1, . . . , wK) =
∑K

i=1 ‖w
1‖K , where the choice of

norms is arbitrary. However, as we place very few require-

ments on θ, our framework can include an extremely wide

variety of potential regularization functions. For example,

indicator functions on conic sets, such as requiring the fac-

tors to be non-negative, are also positively homogeneous

and can be incorporated by our framework.

Given a nondegenerate pair (φ, θ) of an elemental map-

ping φ and an elemental regularization function θ, we define

the factorization regularization function, Ωφ,θ(X) : RD →
R+ ∪∞ to be

Ωφ,θ(X) ≡ inf
r∈N+

inf
(W 1,...,WK)r

r∑

i=1

θ(W 1
i , . . . ,W

K
i)

s.t. Φr(W
1, . . . ,WK) = X

(15)

with the additional condition that Ωφ,θ(X) = ∞ if X /∈⋃
r Im(Φr).
The following proposition shows that Ωφ,θ is a convex

function of X and that in general the infimum in (15) can

4Property 1 from the definition of a nondegenerate pair will be critical

to our formulation. Property 2 is typically satisfied for most ‘interesting’

choices of (φ, θ) and is designed to avoid ‘pathological’ Ωφ,θ functions

(such as Ωφ,θ(X) = 0 ∀X).

be achieved with a finitely sized network (i.e., r does not

need to approach∞)5.

Proposition 1 The function Ωφ,θ : RD → R∪∞ as defined

in (15) has the following properties

1. Ωφ,θ is positve definite, i.e., Ωφ,θ(0) = 0 and

Ωφ,θ(X) > 0 ∀X 6= 0.

2. Ωφ,θ is positively homogeneous with degree 1.

3. Ωφ,θ(X + Z) ≤ Ωφ,θ(X) + Ωφ,θ(Z) ∀(X,Z)

4. Ωφ,θ(X) is convex w.r.t. X ∈ R
D.

5. The infimum in (15) can be achieved with r ≤
card(X) ∀X s.t. Ωφ,θ(X) <∞.

Global optimality from local minima. While Ωφ,θ(X) is

convex, unlike the nuclear norm ‖X‖∗, it typically cannot

be evaluated in polynomial time due to its complicated def-

inition. Nonetheless, its convexity allows us to use Ωφ,θ as

an analysis tool to derive results for neural network train-

ing formulations. In particular, it allows us to consider the

convex (but typically non-tractable) problem, given by

min
X

F (X) ≡ ℓ(Y,X) + λΩφ,θ(X). (16)

Here X ∈ R
D is the output of the factorization map-

ping X = Φr(W
1, . . . ,WK), ℓ(Y,X) is a loss function

that is assumed to be once differentiable and convex in X ,

Ωφ,θ(X) is as defined by (15) where (φ, θ) is assumed to be

a nondegenerate pair, and λ > 0. Given these assumptions,

we are now ready to state our main results.

Theorem 1 Any local minimizer of the non-convex opti-

mization problem

min
(W 1,...,WK)r

fr(W
1, . . . ,WK) ≡

ℓ(Y,Φr(W
1, . . . ,WK)) + λ

r∑

i=1

θ(W 1
i , . . . ,W

K
i)

(17)

such that (W 1
i0
, . . . ,WK

i0
) = (0, . . . , 0) for some i0 ∈

{1, . . . , r} is a global minimizer of (17). Moreover, X =
Φr(W

1, . . . ,WK) is a global minimizer of (16).

Proof Sketch. The proofs of all our results are avail-

able in the supplement, but here we outline the sketch

of the argument. First, note that from the definition of

5In particular, the largest r needs to be is card(X), and we note

that card(X) is a worst case upper bound on the size of the factoriza-

tion. In certain cases the bound can be shown to be lower. As an

example, Ωφ,θ(X) = ‖X‖∗ when φ(u, v) = uvT and θ(u, v) =
‖u‖2‖v‖2. In this case the infimum can be achieved with r ≤ rank(X) ≤
min{card(u), card(v)}.

7336

Ωφ,θ the convex optimization problem (16) globally lower

bounds the non-convex factorization problem (17) for any

X = Φr(W
1, . . . , WK), and because (16) is a convex func-

tion of X , the conditions for global optimality are easily

derived. The result is completed by showing that a local

minimium of (17) which satisfies the statement of the The-

orem also satisfies the conditions to be global minimum of

(16) at X = Φr(W
1, . . . , WK), and due to the fact that

(16) globally lower bounds (17) this implies that the local

minimum of (17) is a global minimum.

From this result, we can then test the global optimality

of any local minimum from the immediate corollary:

Corollary 1 Given a function fr(W
1, . . . , WK) of the

form given in (17), any local minimizer of the optimization

problem

min
(W 1,...,WK)r

fr(W
1, . . . , WK) (18)

is a global minimizer if fr+1([W
1 0], . . . , [WK 0]) is a lo-

cal minimizer of fr+1.

Global minima can be found by local descent. From the

results of Theorem 1, we are now also able to show that if

we let the number of subnetworks (r) become large enough,

then from any initialization we can always find a global

minimizer of fr(W
1, . . . , WK) using a purely local descent

strategy. Specifically, we have the following result, whose

proof gives a meta-algorithm for solving the optimization

problem.

Theorem 2 Given a function fr(W
1, . . . , WK) as defined

by (17), if r > card(X) then from any point (Z1, . . . , ZK)
such that fr(Z

1, . . . , ZK) < ∞ there must exist a non-

increasing path from (Z1, . . . , ZK) to a global minimizer

of fr(W
1, . . . , WK).

Proof Sketch. The proof is done in a constructive manner

and defines a meta-algorithm that can be combined with any

local-descent algorithm to reach a global minimum.

1. Perform local descent until arriving at a local minimum.

2. If one of the parallel networks is all 0 - i.e., ∃i0 ∈
{1, . . . , r} such that (W 1

i0
, . . . , WK

i0
) = (0, . . . , 0) - then

we are at a global minimum due to Theorem 1.

3. Else if there exists a nonzero β ∈ R
r such that∑r

i=1 βiφ(W
1
i , . . . ,W

K
i) = 0 then scale β so that

mini βi = −1 and set W k
i ← (1 + βi)

1/pW k
i for

k = 1, . . . ,K. Such a β is guaranteed to exist if

r > card(X), and the operation of scaling the variables

by the (1+βi)
1/p terms is shown to traverse a flat surface

of the objective function until arriving at a point where

one of the parallel networks is all 0. From there, if a

local descent direction exists continue local-descent. If

no local descent direction exists then we are again at a

global minimum due to Theorem 1.

4. Otherwise, if r ≤ card(X) and no β exists in the prior

step then increment r by appending a subnetwork in par-

allel initialized as all-zeros. If a local-descent direction

exists continue local-descent. Otherwise, we are at a

global minimum due to Corollary 1.

6. Discussion: Limitations and Implications

While the framework described so far is very general,

and provides guarantees of global optimality for various

forms of neural network problems, we pause to note a few

practical limitations and then discuss implications of our re-

sults in the design of neural networks.

First, note that the size of the network is controlled by

a single parameter: r. While a single parameter is suffi-

cient for matrix factorization, where r is the size of the fac-

tors, and two-layer neural networks, where r is the number

of neurons in the hidden layer, this is insufficient to model

deep networks where we want to control also the number

of layers K as well as the number of neurons in each layer.

In other words, while one could naively assume that the re-

sults so far apply to current deep networks by setting r = 1
(i.e., the network is not assumed to have a parallel struc-

ture), this is not the case because the assumption that the

network needs to be “large enough” (i.e., r must be suf-

ficiently large) is essential to prove that local minima are

global. Therefore, to analyze current deep networks with-

out this parallel structure, it is essential that we extend the

framework to optimize over additional network size param-

eters, such as the number of layers and the numbers of neu-

rons per layer.

Additionally, the maximum upper-bound size for r in

Theorem 2 is typically much too large to be of practical use.

Note, however, that the bounds we have shown here are for

the most general case of mapping and regularizer, (φ, θ),
and that a very interesting line of future work is to explore

sufficient conditions on these functions that allows the size

of r to be greatly reduced. For example, in the nuclear norm

case of matrix factorization, it is well known that the largest

r will need to be is equal to the rank of the final solution.

As an example from neural networks, if the architecture of a

parallel sub-network (as defined by φ) is sufficiently rich to

span the output space (i.e., Im(φ) = R
D), then if θ satisfies

the triangle inequality it is easily seen from the definition of

Ωφ,θ that the infimum in (15) can always be achieved with

a single parallel network (i.e., r = 1).

A final limitation to note is that the meta-algorithm used

to construct the proof of Theorem 2 relies on using local

descent, which is to be contrasted with typical optimization

7337

algorithms such as gradient descent. While gradient descent

is certainly a form of local descent, we remind the reader

that in general finding a local descent direction of a non-

convex function can be a NP-hard problem in general (for

example, at a saddle-point), so our results do not necessarily

imply the existence of polynomial time algorithms that can

solve all of the potential formulations captured within our

framework. Again, however, we emphasize that our anal-

ysis is a worst-case analysis (i.e., choose any possible ini-

tialization) for any potential mapping and regularizer, and

significant potential exists to strengthen our results by con-

sidering specific families of mapping and regularizers, ini-

tialization strategies, or statistical distributions of the train-

ing data that allow for polynomial time guarantees.

Implications for Neural Networks. Despite the limitations

discussed above, our analysis suggests several significant

guiding principles regarding the training of neural networks

which can facilitate more efficient optimization. The first

is that balancing the degree of positive homogeneity be-

tween the regularization function and the mapping function

is crucial. In fact, it can be shown (see supplement, Sec-

tion 8) that if the degrees of positive homogeneity do not

match between the mapping and the regularization func-

tion, then it either becomes impossible to make guarantees

regarding the global optimality of a local minimum, or it

becomes possible that the regularization function will do

nothing to limit the size of the network, so the degrees of

freedom in the model are largely determined by the user de-

fined choice of r. In practice, this issue often arises in the

context of weight decay, where the regularization function

is typically chosen as Θr(W
1, . . . , WK) =

∑
i ‖W

i‖2F or

Θr(W
1, . . . , WK) =

∑
i ‖W

i‖1. Since these functions

are only positively homogeneous of degree 2 and 1, respec-

tively, the mapping of a deep network will typically not be

balanced with the regularization and one is guaranteed that

non-optimal local minima will exist regardless of the size

of the network (supplement, Proposition 2). We note that

this is a potential explanation of the noted inferior perfor-

mance of using weight decay versus dropout regularization

[23, 14, 24] and that several more recently proposed suc-

cessful regularization strategies are compatible with bal-

anced degrees of positive homogeneity. For example, the

Path-SGD regularizer proposed in [18] takes a product of

weights along a path through the network and then calcu-

lates a norm of all possible paths through the network. Note

that the product of weights along a path through the net-

work will typically have a degree of positive homogene-

ity equal to K and thus will be balanced with the degree

of positive homogeneity of the network output for typical

network architectures. Likewise, Batch Normalization pro-

posed in [12] essentially adds a whitening operation to the

input of a layer which is a positively homogeneous transfor-

mation similar to contrast normalization but across training

examples (see Section 9 of the supplement). Taken together,

our results suggest at several key properties one should ac-

count for in the design of network regularization and pro-

vide many interesting opportunities for experimental explo-

ration in future work.

A final implication of our analysis is that neural networks

which generate the output by taking the sum of multiple

parallel subnetworks are highly conducive to efficient op-

timization. This idea, of linearly combining the outputs

of multiple subnetworks, has clear analogies to ensemble

methods like boosting and bagging and was a large moti-

vation in the development of techniques such as dropout,

which stochastically approximates the average output of

an exponential number of subnetworks [23]. The frame-

work we present here is not an exact analogy to dropout, as

dropout enforces equality in network weights across paral-

lel networks with a shared parameterization (i.e., if a neuron

is present in a given subnetwork all of its input and out-

put weights must be equal to the same neuron in the other

subnetworks), but many interesting questions for future

work can be asked regarding the concept of summing mul-

tiple subnetworks combined with considering more gen-

eral forms of network mappings which allow for common

parametrization of the subnetworks.

7. Conclusions

Here we have presented a general framework which al-

lows for a wide variety of non-convex optimization prob-

lems, including certain forms of neural network training, to

be analyzed with tools from convex analysis and induces

a convex regularizer on the output of the non-convex map-

ping. In particular, we have shown sufficient conditions to

guarantee that any local minimum is a global minimum of

the non-convex factorization problem and that if the non-

convex factorization problem is done with factors of suf-

ficient size, then from any feasible initialization it is al-

ways possible to find a global minimizer using a purely lo-

cal descent algorithm. Additionally, our results suggest that

balancing the degrees of positive homogeneity between the

network mapping and the regularization function is critical

for preventing non-optimal local minima in the loss surface

of modern neural network architectures and offer guidance

for the design of network architectures and regularizers.

Acknowledgments. This work was supported by NSF

grants 1447822, 1618485 and 1618637. We thank Laurent

Younes for insightful discussions.

References

[1] F. Bach. Convex relaxations of structured matrix factoriza-

tions. arXiv:1309.3117v1, 2013. 4

[2] F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix fac-

torizations. arXiv:0812.1869v1, 2008. 4

7338

[3] Y. Bengio, N. L. Roux, P. Vincent, O. Delalleau, and P. Mar-

cotte. Convex neural networks. In Neural Information Pro-

cessing Systems, pages 123–130, 2005. 2, 3

[4] S. Burer and R. D. C. Monteiro. Local minima and conver-

gence in low-rank semidefinite programming. Mathematical

Programming, Series A(103):427—444, 2005. 4

[5] E. Candès and T. Tao. The power of convex relaxation: Near-

optimal matrix completion. IEEE Transactions on Informa-

tion Theory, 56(5):2053–2080, 2010. 2

[6] A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and

Y. LeCun. The loss surfaces of multilayer networks. In Inter-

national Conference on Artificial Intelligence and Statistics,

pages 192–204, 2015. 2, 3

[7] G. E. Dahl, T. N. Sainath, and G. E. Hinton. Improving

deep neural networks for lvcsr using rectified linear units and

dropout. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 8609–8613,

2013. 2

[8] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli,

and Y. Bengio. Identifying and attacking the saddle point

problem in high-dimensional non-convex optimization. In

Neural Information Processing Systems, pages 2933–2941,

2014. 3

[9] D. L. Donoho. For most large underdetermined systems of

linear equations the minimal ℓ1-norm solution is also the

sparsest solution. Communications on Pure and Applied

Mathematics, 59(6):797–829, 2006. 2

[10] J. H. Friedman. Greedy function approximation: a gradient

boosting machine. Annals of Statistics, pages 1189–1232,

2001. 3

[11] B. Haeffele, E. Young, and R. Vidal. Structured low-rank

matrix factorization: Optimality, algorithm, and applications

to image processing. In International Conference on Ma-

chine Learning, pages 2007–2015, 2014. 4

[12] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

International Conference on Machine Learning, pages 448–

456, 2015. 2, 8

[13] M. Janzamin, H. Sedghi, and A. Anandkumar. Beat-

ing the perils of non-convexity: Guaranteed training of

neural networks using tensor methods. arXiv preprint

arXiv:1506.08473, 2015. 3

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Neural Information Processing Systems, pages 1097–1105,

2012. 2, 5, 8

[15] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-

earities improve neural network acoustic models. In Interna-

tional Conference on Machine Learning, volume 30, 2013.

2

[16] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning

for matrix factorization and sparse coding. The Journal of

Machine Learning Research, 11:19–60, 2010. 2

[17] L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean. Boost-

ing algorithms as gradient descent. In Neural Information

Processing Systems, pages 512–518, 2000. 3

[18] B. Neyshabur, R. R. Salakhutdinov, and N. Srebro. Path-sgd:

Path-normalized optimization in deep neural networks. In

Neural Information Processing Systems, pages 2422–2430,

2015. 2, 8

[19] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-

rank solutions of linear matrix equations via nuclear norm

minimization. SIAM Review, 52(3):471–501, 2010. 4

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning

representations by back-propagating errors. Cognitive Mod-

eling, 5, 1988. 2

[21] I. Safran and O. Shamir. On the quality of the initial basin in

overspecified neural networks. In International Conference

on Machine Learning, pages 774–782, 2016. 3

[22] N. Srebro, J. D. Rennie, and T. S. Jaakkola. Maximum-

margin matrix factorization. In Neural Information Process-

ing Systems, volume 17, pages 1329–1336, 2004. 4

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neural

networks from overfitting. The Journal of Machine Learning

Research, 15(1):1929–1958, 2014. 2, 8

[24] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regu-

larization of neural networks using dropconnect. In Interna-

tional Conference on Machine Learning, pages 1058–1066,

2013. 8

[25] S. J. Wright and J. Nocedal. Numerical Optimization, vol-

ume 2. Springer New York, 1999. 2

[26] Y. Xu and W. Yin. A block coordinate descent method

for regularized multiconvex optimization with applications

to nonnegative tensor factorization and completion. SIAM

Journal on Imaging Sciences, 6(3):1758–1789, 2013. 2

[27] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang,

Q. V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, and

G. E. Hinton. On rectified linear units for speech processing.

In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 3517–3521, 2013. 2

7339

