
BranchOut: Regularization for Online Ensemble Tracking

with Convolutional Neural Networks

Bohyung Han

POSTECH, Korea

bhhan@postech.ac.kr

Jack Sim

Google Inc.

jacksim@google.com

Hartwig Adam

Google Inc.

hadam@google.com

Abstract

We propose an extremely simple but effective regulariza-

tion technique of convolutional neural networks (CNNs),

referred to as BranchOut, for online ensemble tracking.

Our algorithm employs a CNN for target representation,

which has a common convolutional layers but has multi-

ple branches of fully connected layers. For better regu-

larization, a subset of branches in the CNN are selected

randomly for online learning whenever target appearance

models need to be updated. Each branch may have a differ-

ent number of layers to maintain variable abstraction levels

of target appearances. BranchOut with multi-level target

representation allows us to learn robust target appearance

models with diversity and handle various challenges in vi-

sual tracking problem effectively. The proposed algorithm is

evaluated in standard tracking benchmarks and shows the

state-of-the-art performance even without additional pre-

training on external tracking sequences.

1. Introduction

Visual tracking is valuable source of low-level informa-

tion for high-level video understanding, so it has been ap-

plied to many computer vision tasks such as action recog-

nition [6, 35], event detection [24], object detection from

video [21], and so on. Despite tremendous amount of ef-

forts, visual tracking is still regarded as a challenging prob-

lem since there exist a lot of variations imposed on target

and surrounding background, and it is not straightforward to

handle all the variations in a single framework. Most of all,

it is extremely difficult to learn representative but adaptive

features for robust tracking, especially in online scenarios.

We propose a novel visual tracking algorithm focusing

on target appearance modeling, where the appearance is

learned by a convolutional neural network (CNN) with mul-

tiple branches as shown in Figure 1. The target state is es-

timated by an ensemble of all branches while online model

update is performed by the standard error backpropagation.

In addition, we allow the individual branches to have differ-

ent numbers of fully connected layers and maintain multi-

level target representations.

The main challenge in this ensemble approach is how to

decorrelate multiple branches and diversify learned models

to maximize benefit of ensemble. Note that our problem

is particularly challenging because training should be per-

formed online with only a limited number of training exam-

ples in the presence of label noises. To deal with these chal-

lenges, we take an extremely simple strategy, BranchOut,

which disregards a subset of the branches in the CNN cho-

sen randomly for model update. This technique is helpful to

maintain diversity of target appearance models and achieve

performance improvement over deterministic methods. The

proposed learning framework shares the motivation with

Dropout [32] and DropConnect [34], where a subset of ac-

tivations or weights in the fully connected layers are set to

zeros randomly for each mini-batch during training. Our

contribution is summarized as follows:

• We propose a simple but effective regularization tech-

nique, BranchOut, which is well-suited for online en-

semble tracking. BranchOut alleviates the limitations

of naı̈ve ensemble learning approach—lack of model

diversity and noisy labels of training data.

• Our network has a different number of fully connected

layers in individual branches and maintains multi-level

representations based on a CNN using the branches.

• We explore various options of online ensemble learn-

ing for visual tracking and verify the effectiveness of

BranchOut and multi-level representation. Our algo-

rithm illustrates the state-of-the-art performance even

without pretraining with external tracking videos.

The rest of this paper is organized as follows. We first

review existing visual tracking algorithms in Section 2. The

proposed online stochastic learning and visual tracking al-

gorithm design are described in Section 3 and 4, respec-

tively. Section 5 presents experimental results with discus-

sion, and Section 6 concludes our paper.

3356

input

3@107×107

conv1

96@51×51

conv2

256@11×11

conv3

512@3×3

fc4

512

fc5

512

average pool

512

fc6-softmax

2

...

..
.

..
.

1

2

K

1

2

K

KK-1

Figure 1. The proposed architecture. The network is composed of three convolutional layers and has multiple branches with fully connected

layers. Each branch may have different number of layers, and one or two fully connected layers are integrated in our experiment.

2. Related Work

Visual tracking has a long history and there are tremen-

dously many papers published in the last few decades. How-

ever, due to space limitation, we will review several active

classes of methodology only in this section.

Tracking algorithms based on correlation filters are pop-

ular these days. This trend is mainly attributed to their great

performance in terms of accuracy and efficiency. Bolme et

al. [3] have introduced a minimum output sum of squared

error (MOSSE) filter for visual tracking. Kernelized cor-

relation filters (KCF) using circulant matrices [15] are em-

ployed to handle multi-channel features in Fourier domain.

DSST [7] decouples the filters for translation and scaling to

achieve accurate scale estimation, and MUSTer [17], mo-

tivated by a psychological memory model, utilizes short-

and long-term memory stores for robust appearance model-

ing. Tracking algorithms relying on correlation filters often

suffer from boundary effects. To alleviate this issue, [11]

proposes the Alternating Direction Method of Multipliers

(ADMM) technique, and Spatially Regularized Discrimi-

native Correlation Filters (SRDCF) [9] introduces a spatial

regularization term.

As machine learning techniques for object detection

makes great progress in recent years, tracking-by-detection

becomes one of the standard approaches for visual tracking.

In this framework, tracking is performed using a classifier

that distinguishes target object from background. The crit-

ical challenge in this approach is how to avoid drift prob-

lem during online learning, where only a small number of

training examples are available and the labels are potentially

noisy. Various learning frameworks have been investigated,

and they include structured SVMs [14], multiple instance

learning [1], P-N learning [20], online boosting [13], etc.

Although the above approaches work fairly well in con-

strained environments, they have a common inherent limita-

tion that they rely on low-level hand-crafted features, which

are not sufficiently robust to various challenges imposed on

target objects. CNNs have achieved great performance im-

provement in many computer vision tasks, and visual track-

ing is not an exception. Recent approaches often trans-

fer CNNs pretrained on a large-scale dataset such as Ima-

geNet [31]. CNN-SVM [16] combines a pretrained CNN

and online SVMs to obtain target-specific saliency maps

for tracking and segmentation. Wang et al. [36] employ

a fully convolutional framework and propose a feature map

selection method to generate foreground heat maps, while

Ma et al. [28] adaptively train correlation filters using fea-

ture hierarchy in a pretrained CNN. DeepSRDCF [8] in-

tegrates CNN-based features into [9] for performance im-

provement. To reduce the drawback from single resolution

feature maps, [10] proposes to integrate multi-resolution

deep feature maps through implicit interpolation. Since the

CNNs trained for image classification task may not be ap-

propriate for visual tracking, MDNet [30] attempts to train

a CNN using external tracking sequences in a multi-domain

learning framework. This approach is very successful and

shows outstanding performance compared to all the prior

methods; its performance is competitive even without the

multi-domain pretraining stage.

Ensemble learning based on CNNs has been studied ac-

tively for visual tracking. TCNN [29] maintains multiple

CNNs in a tree structure to learn ensemble models and es-

timate target states while allowing all CNNs to share con-

volutional layers. This approach achieves competitive per-

formance even to MDNet without pretraining on the se-

quences for tracking. STCT [37] has a similar motivation

to ours in the sense that an ensemble CNN-based classifier

is trained to reduce correlation across models. Our algo-

rithm is closely related to [26], which realizes stochastic

learning using bagging [4]—standard method to diversify

training examples for ensemble learning.

3357

3. Stochastic Ensemble Learning

This section describes our stochastic ensemble learning

technique, referred to as BranchOut, for visual tracking, and

discusses why the proposed framework is effective to main-

tain model diversity and improve tracking performance po-

tentially.

3.1. Stochastic Learning for Regularization

Our main goal is to develop an ensemble tracking algo-

rithm based on a CNN with multiple branches by a proper

regularization. This objective is hard to achieve particularly

because there are only a limited number of training exam-

ples while labels are potentially noisy because they need to

be estimated by imperfect tracking algorithms. To deal with

such challenging situations, we randomly select a subset of

branches for model updates and hope each model to evolve

independently over time. This idea is somewhat related to

bagging technique in random forests [4], but we need more

reliable methods well-suited for online visual tracking since

the size of training data is small and there are many redun-

dant examples due to temporal coherency.

In deep neural networks, there are a few techniques pro-

posed by the same motivation. Dropout [32] sets a sub-

set of activations in fully connected layers to zeros ran-

domly to regularize CNNs. This idea is generalized in [34],

where, instead of turning off activations, a subset of weights

are disregarded randomly. For the regularization of convo-

lutional layers, [33] introduces SpatialDropout technique,

which makes all the values in the randomly selected chan-

nels to zeros. This technique is successfully applied to joint

point estimation in human body. Wang et al. [37] point out

the potential drawback of SpatialDropout [33] and apply bi-

nary masks to the output of convolutional feature maps for

model regularization in visual tracking application.

CNNs with stochastic depth [19] is a novel and inter-

esting framework for regularization, where a subset of lay-

ers are randomly dropped and bypassed with identity func-

tions. Lee et al. [25] propose an efficient stochastic gradi-

ent descent approach for stochastic multiple choice learn-

ing, which minimizes the loss with respect to an oracle.

Although this algorithm is impractical due to the absence

of model selection technique, it conceptually demonstrates

that stochastic learning may be helpful for performance im-

provement of ensemble classifier.

3.2. BranchOut

Let D = {(xi,yi) | i = 1, . . . ,M} be a training dataset

for target appearance model update, where x
i is an image

patch and y
i = (yi+, y

i
−)

⊤ is the binary label of x
i, i.e.,

(1, 0)⊤ for positive and (0, 1)⊤ for negative. When we

train a CNN with multiple branches, e.g., CNN in Figure 1,

a subset of branches are selected randomly by a Bernoulli

distribution. Specifically, if we assume that there exist K

branches, a binary random variable αk (k = 1, . . . ,K) is

obtained by

αk ∼ Bernoulli(pk), (1)

where pk is the parameter of Bernoulli distribution corre-

sponding to the k-th branch. The binary variable αk in-

dicates whether the k-th branch is to be selected for up-

date. Note that our regularization is not performed per mini-

batch but per batch; this is because training set is small and

mostly redundant due to online learning restriction and tem-

poral coherency of videos. After going through the for-

ward pass of the multi-branch CNN parametrized by θk
(k = 1, . . . ,K), the aggregated loss corresponding to all

branches is given by

L = −

Mb
∑

i=1

K
∑

k=1

αk

⎡

⎣

∑

∗∈{+,−}

yi∗ F∗(x
i; θk)

⎤

⎦ , (2)

where Mb is mini-batch size, and F+(·; θk) and F−(·; θk)
denote the outputs of the nodes in SOFTMAX layer corre-

sponding to positive and negative labels, respectively.

The gradients for each mini-batch are computed by com-

puting the partial derivatives of all relevant branches, which

is formally given by

∂L

∂θk
= −

Mb
∑

i=1

K
∑

k=1

αk

∂

∂θk

⎡

⎣

∑

∗∈{+,−}

yi∗ F∗(x
i; θk)

⎤

⎦ . (3)

We only update the fully connected layers, and adopt only

one or two of them for training efficacy since it is difficult

to learn more than two fully connected layers online based

on a limited number of training data.

3.3. Discussion

We claim that BranchOut provides diverse models and

effective regularization. Suppose that the model at time t1,

denoted by Ft1(x
i; θk), evolves to Ft2(x

i; θk) at time t2. In

our online learning scenario, training datasets Dt changes

dynamically overtime but there are substantial overlap be-

tween temporally close datasets, such as Dt and Dt+1.

However, for simplicity at the moment, let us assume that

all the training datasets between t1 and t2 are identical, i.e.,

Dt1+1 = Dt1+2 = · · · = Dt2 , and compare the two models

learned by deterministic and stochastic approaches. Note

that the deterministic learning means that all the K models

are updated whenever model updates are triggered.

After |t2−t1| deterministic model updates with the same

training datasets, all the branches with the same architec-

ture are likely to converge to the almost same model since

they are updated with the same data for a substantial amount

of iterations. Contrary to the model, stochastic learning

with BranchOut is supposed to have at least several different

3358

models—underfitted models, near optimal models and over-

fitted models—depending on how many times each model

is involved in the updates.

If we consider more general cases that have gradually

changing training datasets, the diversity of stochastic learn-

ing approach is even more prominent compared to the de-

terministic one. One reason is that, even with substantial

overlap between training datasets at the time steps tempo-

rally close to each other, it can implicitly generate a va-

riety of combinations of training datasets after a certain

number of time steps. On the other hand, the negative im-

pact of noisy labels obtained from failed targets may be re-

duced by sharing the risk across multiple models. In terms

of computational complexity, BranchOut approach is obvi-

ously cheaper than naı̈ve updates of all branches.

4. Tracking Algorithm

This section describes our tracking algorithm based on

the CNN with multiple branches using BranchOut tech-

nique for stochastic ensemble.

4.1. CNN Initialization

The CNN integrated in our tracking algorithm has three

convolutional layers (CONV1-3), each of which is fol-

lowed by a rectified linear unit (RELU) layer and a max

pooling (MAXPOOL) layer as illustrated in Figure 1. The

three convolutional layers are initialized using VGG-M [5]

pretrained on ImageNet [31]. Suppose that there are K

separate branches connected to the last MAXPOOL layer

and each branch based on fully connected (FC) layers is

parametrized by θk (k = 1, . . . ,K). In our implementa-

tion, the number of branches is 10, and each of the branches

is composed of one or two FC layers. When two FC are em-

ployed, RELU and DROPOUT layers are located between the

two FC layers. All weights in all the FC layers are initialized

randomly using zero-mean Gaussian distributions.

At the first frame, we extract positive and negative train-

ing sets, denoted by S
+

1 and S
−
1 respectively, based on

ground-truth bounding box information, and train the FC

layers in the network using the standard stochastic gradient

descent method. All branches are trained with same training

examples, but they are shuffled independently so that each

branch has some degree of diversity at least.

4.2. Main Loop of Tracking

Once the initial model is constructed, we start to track

the target defined at the first frame. Given the input frame

at time t, we draw dense samples x
i
t (i = 1, . . . , N) from

a Gaussian distribution centered at the previous target state

in translation and scale dimension and compute the scores

from all branches. The target state is estimated by

x
∗
t = argmax

x
i

t

K
∑

k=1

F+(x
i
t; θk), (4)

where F+(x
i
t; θk) denotes the positive score of xi

t from the

final SOFTMAX layer of the k-th branch.

To improve localization accuracy, we adopt bounding

box regression [12] as suggested in [30]. We train the

bounding box regressor using 1000 training examples at the

first frame only and apply the model to all the subsequent

frames because learning a bounding box regressor is time

consuming and learned regression model using the exam-

ples from other frames may not be reliable due to absence

of ground-truths. The detailed implementation of bounding

box regressor is described in [12].

One of the critical factors in online learning is how to

construct training examples. If the score of the estimated

target is positive at frame t, we collect training examples for

future model updates. Since ground-truths are not available,

we generally rely on the estimated target locations. The

positive examples extracted from frame t, denoted by S
+
t ,

are composed of the bounding boxes with more than 0.7

IoU while examples in S
−
t have less than 0.3 IoU.

4.3. Model Update Strategy

The CNN maintaining target appearance models needs

to be adaptive to new training examples. We employ Bran-

chOut for online learning described in Section 3. Specif-

ically, given K branches with FC layers, our algorithm se-

lects a subset of branches randomly whenever model update

is required. We do not update any of convolutional layers

but fine-tune fully connected layers only. The model is op-

timized by stochastic gradient descent method.

There are two different situations to trigger model update

module. One is periodic update, which simply revises our

CNN-based model in a regular term, e.g., every 10 frame.

The other is when the positive classification score of the es-

timated target x∗
t in Eq. (4) is below 0.5. In both cases, we

train the CNN using the BranchOut technique with the train-

ing examples obtained from the recent τ successful frames

at which the estimated target scores are positive.

4.4. Implementation Details

We utilize the implementation of MDNet [30] as base-

line. To train the CNN, we extract 50 positive examples

and 200 negative examples based on IoU measure as de-

scribed in Section 4.2. However, at the first frame, since we

have to initialize FC layers from scratch, we extract much

more examples. In our implementation, |S+1 | = 500 and

|S−1 | = 5000. We store the training examples from the last

τ = 20 successful frames.

3359

Algorithm 1 Stochastic ensemble tracking by BranchOut

Require: CNN with K branches of FC layers parametrized

by Θ = {θ1, . . . , θK}, and initial target state x1

Ensure: Estimated target states x∗
t

1: Randomly initialize Θ = {θ1, . . . , θK}.

2: Train a bounding box regression model.

3: Draw positive samples S+1 and negative samples S−1 .

4: Update Θ using S
+

1 and S
−
1 .

5: T ← {1}.

6: repeat

7: Draw target candidate samples xi
t (i = 1, . . . , N).

8: Find the optimal target state x
∗
t by Eq. (4).

9: if Ft,+(x
∗
t) > 0.5 then

10: Draw training samples S+t and S
−
t .

11: T ← T ∪ {t}.

12: if |T| > τ then

13: T ← T \ {minv∈T v}.

14: end if

15: Adjust x∗
t using bounding box regression.

16: end if

17: if Ft,+(x
∗
t) < 0.5 or tmod10 = 0 then

18: Select Θ′ ⊆ Θ for model update using Eq. (1).

19: Update Θ′ using S
+

v∈T
and S

−
v∈T

by Eq. (3).

20: end if

21: until end of sequence

When searching for target in each frame, we draw N =
256 samples for observation. We enlarge search space

wildly if classification scores from CNN are below the pre-

defined threshold for more than 10 frames in a row. If target

appearance model update is required, a subset of branches

are selected based on αk from a Bernoulli distribution with

pk = 0.5. The size of a mini-batch is 128, which includes

36 positive examples and 92 negative examples. For on-

line learning, 30 iterations is performed with learning rate

0.0001 and the momentum and weight decay are set to 0.9

and 0.0005, respectively. Overall procedure of our algo-

rithm is presented in Algorithm 1.

5. Experiments

We show the performance of the BranchOut technique

with ensemble tracking application on two standard public

benchmarks—Object Tracking Benchmark (OTB100) [39]

and VOT2015 [22], and compare our algorithm with the

state-of-the-art trackers.

5.1. Evaluation on OTB

OTB100 [39] is a popular benchmark dataset, which

contains 100 fully annotated videos with substantial varia-

tions and challenges. Two evaluation metrics are employed

in our experiment: bounding box overlap ratio and center

location error in the one-pass evaluation (OPE) protocol.

External comparison Our algorithm, denoted by Bran-

chOut, is compared with another nine competitive track-

ing methods including C-COT [10], TCNN [29], Deep-

SRDCF [8], HCF [28], CNN-SVM [16], MUSTer [17],

FCNT [36], DSST [7] and SRDCF [9]. All methods ex-

cept MUSTer, DSST and SRDCF are based on the features

from convolutional neural networks.

Figure 2(a) illustrates the overall success and precision

plots based on bounding box overlap ratio and center lo-

cation error, respectively. It illustrates that BranchOut out-

performs the state-of-the-art trackers in both measures The

performance of BranchOut is as competitive as (or even bet-

ter than) MDNet [30], which requires pretraining process

with external tracking sequences to achieve the best perfor-

mance. Note that MDNet shows 0.678 and 0.909 in success

and precision plot, respectively, as shown in Table 2.

In addition to the standard visualization of tracker per-

formance, we also illustrate how each tracker performs on

more challenging subsets of video sequences. This infor-

mation would be useful to analyze tracker performance be-

cause the recent state-of-the-art trackers are almost equally

accurate in most of easy sequences and their results based

on all sequences in the dataset often fail to show perfor-

mance in more realistic situations. Hence, we construct two

subsets of OTB100 based on average accuracy of the 10

compared algorithms; the two subsets are composed of the

sequences that have lower average bounding box overlap ra-

tios than two predefined thresholds, 0.7 and 0.5. These two

subsets include 69 and 21 sequences, and can be regarded

as hard1 and very hard examples2. As illustrated in Fig-

ure 2(b) and 2(c), the gaps between our algorithm and the

others are more noticeable. Figure 3 presents success plots

for individual challenge attributes. As illustrated in the fig-

ure, BranchOut is robust to all challenges consistently.

Ablation experiment To verify the contribution of each

component in our algorithm, we implement and evaluate

several variations of our approach. The effectiveness of our

stochastic ensemble strategy is tested by comparing with

two options—a naı̈ve deterministic ensemble and a greedy

BranchOut ensemble.

In the naı̈ve ensemble approach, all branches are trained

using the same training examples whenever model update

1Hard sequences: basketball, biker, bird1, blurBody, blurOwl, board,

bolt2, bolt, box, car1, car24, carScale, clifBar, coke, couple, coupon,

crowds, diving, dog, dragonBaby, fleetface, football1, football, freeman1,

freeman3, freeman4, girl2, girl, gym, human2, human3, human4, human5,

human6, human7, human8, human9, ironman, jogging-1, jogging-2, jump,

jumping, kiteSurf, lemming, matrix, motorRolling, panda, redTeam, rubik,

shaking, singer1, singer2, skater2, skater, skating1, skating2-1, skating2-

2, skiing, soccer, subway, surfer, tiger1, tiger2, toy, trans, twinnings, vase,

walking2, walking
2Very hard sequences: biker, bird1, bolt2, clifBar, diving, dog, girl2,

gym, human3, human9, ironman, jump, matrix, motorRolling, panda, skat-

ing1, skating2-1, skating2-2, skiing, soccer, vase

3360

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

BranchOut [0.678]
C-COT [0.673]
TCNN [0.654]
DeepSRDCF [0.635]
SRDCF [0.591]
MUSTer [0.575]
HCF [0.562]
FCNT [0.557]
CNN-SVM [0.554]
DSST [0.513]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

BranchOut [0.631]
C-COT [0.617]
TCNN [0.606]
DeepSRDCF [0.567]
SRDCF [0.507]
HCF [0.494]
CNN-SVM [0.484]
FCNT [0.483]
MUSTer [0.481]
DSST [0.405]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

BranchOut [0.506]
C-COT [0.474]
TCNN [0.448]
HCF [0.373]
DeepSRDCF [0.370]
FCNT [0.351]
CNN-SVM [0.350]
SRDCF [0.261]
MUSTer [0.249]
DSST [0.232]

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE

BranchOut [0.917]
C-COT [0.903]
TCNN [0.884]
DeepSRDCF [0.851]
HCF [0.837]
CNN-SVM [0.814]
FCNT [0.795]
SRDCF [0.776]
MUSTer [0.774]
DSST [0.680]

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE

BranchOut [0.887]
C-COT [0.864]
TCNN [0.844]
DeepSRDCF [0.795]
HCF [0.779]
CNN-SVM [0.747]
FCNT [0.732]
SRDCF [0.693]
MUSTer [0.681]
DSST [0.571]

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision plots of OPE

BranchOut [0.803]
C-COT [0.756]
TCNN [0.699]
HCF [0.690]
DeepSRDCF [0.604]
FCNT [0.587]
CNN-SVM [0.570]
MUSTer [0.404]
SRDCF [0.395]
DSST [0.371]

(a) All sequences (b) Hard sequences (c) Very hard sequences

Figure 2. Tracking results in OTB100 dataset. (a) Comparisons with the state-of-the-art algorithms based on all 100 videos. (b) Compar-

isons with other competitive algorithms based on the sequences below average overlap ratio 0.7. (c) Comparisons with other competitive

algorithms based on the sequences below average overlap ratio 0.5. Note that the gaps between BranchOut and other methods get larger as

easier sequences are disregarded.

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - background clutter (31)

BranchOut [0.684]

C-COT [0.654]

TCNN [0.638]

DeepSRDCF [0.637]

HCF [0.592]

SRDCF [0.591]

MUSTer [0.589]

CNN-SVM [0.554]

DSST [0.530]

FCNT [0.527]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - fast motion (39)

C-COT [0.685]

BranchOut [0.668]

TCNN [0.662]

DeepSRDCF [0.636]

SRDCF [0.605]

HCF [0.576]

CNN-SVM [0.551]

FCNT [0.539]

MUSTer [0.537]

DSST [0.452]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - deformation (44)

BranchOut [0.653]

C-COT [0.622]

TCNN [0.622]

DeepSRDCF [0.572]

CNN-SVM [0.551]

SRDCF [0.551]

FCNT [0.544]

HCF [0.535]

MUSTer [0.528]

DSST [0.424]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - illumination variation (38)

BranchOut [0.702]

TCNN [0.687]

C-COT [0.686]

DeepSRDCF [0.630]

SRDCF [0.622]

MUSTer [0.607]

DSST [0.566]

HCF [0.545]

CNN-SVM [0.542]

FCNT [0.541]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - in-plane rotation (51)

BranchOut [0.672]

TCNN [0.653]

C-COT [0.631]

DeepSRDCF [0.596]

HCF [0.564]

FCNT [0.562]

MUSTer [0.557]

CNN-SVM [0.552]

SRDCF [0.550]

DSST [0.507]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - occlusion (49)

C-COT [0.680]

BranchOut [0.656]

TCNN [0.629]

DeepSRDCF [0.609]

SRDCF [0.567]

MUSTer [0.558]

HCF [0.530]

FCNT [0.526]

CNN-SVM [0.518]

DSST [0.459]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - out-of-plane rotation (63)

BranchOut [0.674]

C-COT [0.658]

TCNN [0.649]

DeepSRDCF [0.614]

FCNT [0.561]

SRDCF [0.556]

CNN-SVM [0.552]

MUSTer [0.541]

HCF [0.539]

DSST [0.475]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.2

0.4

0.6

0.8

1

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - scale variation (64)

BranchOut [0.670]

C-COT [0.659]

TCNN [0.646]

DeepSRDCF [0.613]

SRDCF [0.568]

MUSTer [0.515]

FCNT [0.509]

CNN-SVM [0.492]

HCF [0.487]

DSST [0.473]

Figure 3. Tracking results in OTB100 dataset for 8 challenge attributes: background clutter, fast motion, deformation, illumination varia-

tion, in-plane rotation, occlusion, out-of-plane rotation, and scale variation. BranchOut outperforms other algorithms in most cases.

module is triggered. This approach generates homogeneous

CNN models in all branches and may not be effective to

handle the variations imposed on target and background. On

the other hand, the greedy BranchOut specializes individual

branches by giving more chance to the ones with higher tar-

get scores. This strategy is motivated by stochastic multiple

choice learning [25], but it turns out that achieving better

performance is not straightforward and the strategy is prob-

ably too sensitive to parameter setting. The detailed results

are presented in Table 1. Compared to the other two ensem-

ble methods, our stochastic ensemble based on BranchOut

improves tracker performance.

3361

Table 1. Internal comparison results in OTB100 dataset. Among three ensemble learning options, our stochastic BranchOut technique

outperforms Naı̈ve ensemble and Greedy BranchOut methods. On the other hand, multi-level representations for BranchOut, denoted by

Multi-5-5, is helpful to improve performance compared to single-level representations such as Single-0-10 and Single-10-0. Fonts in bold

faces denote the best performance within the group of options.

All @0.7 @0.5

Success

(AUC)

Success

(mOR)

Precision

@20px

Success

(AUC)

Success

(mOR)

Precision

@20px

Success

(AUC)

Success

(mOR)

Precesion

@20px

BranchOut (with Multi5-5) 0.678 0.688 0.917 0.631 0.639 0.887 0.506 0.508 0.803

Learning

options

Naive 0.661 0.670 0.890 0.604 0.611 0.846 0.465 0.467 0.760

Greedy 0.658 0.668 0.887 0.602 0.610 0.844 0.456 0.458 0.745

Multi-level

representation

Single-10-0 0.667 0.677 0.901 0.615 0.622 0.864 0.498 0.500 0.780

Single-0-10 0.651 0.660 0.880 0.590 0.600 0.832 0.454 0.455 0.729

Table 2. The accuracy of MDNet ensemble with BranchOut. Our

ensemble tracking algorithm outperforms the original MDNet and

its naı̈ve ensemble results.

Tracker Success (AUC) Precision (@20px)

MDNet–BranchOut 0.683 0.919

MDNet [30] 0.678 0.909

MDNet–Naı̈ve 0.674 0.905

We evaluated the benefit of multi-level representations of

target, and constructed CNNs with 10 branches to test per-

formance of BranchOut technique with two kinds of single-

level representations. One is with one FC layer per branch

followed by the common CONV1-3 layers, and the other

is with two FC layers per branch. These options are de-

noted by Single-10-0 and Single-0-10, respectively, where

the numbers indicate the number of branches with two dif-

ferent depths in the FC layers. Note that our BranchOut is

based on Multi-5-5, which has 5 branches with one FC lay-

ers and another 5 branches with two FC layers. According

to our observation, more than two FC layers are not help-

ful in terms of accuracy and incur too much computational

cost because additional layers increase the number of pa-

rameters and need more iterations for convergence. The use

of multi-level representation does not improve performance

significantly, but Table 1 presents clearly visible benefit.

Each component in our tracking algorithm—stochastic

ensemble learning and mult-level representation—is helpful

to improve performance. This advantage is observed more

clearly in challenging sequences of the dataset as shown in

the columns corresponding to predefined average overlap

ratio threshold 0.7 and 0.5.

We employ BranchOut for ensemble of MDNet [30] to

present its generality. We create 5 branches with two FC

layers, and pretrain the network using multi-domain learn-

ing with BranchOut technique. For online tracking, we re-

initialize all the 5 branches randomly, and perform track-

ing by our BranchOut and the naı̈ve ensemble for compar-

ison. Table 2 illustrates the results; BranchOut turns out to

be helpful to improve MDNet-based ensemble tracking al-

gorithm (MDNet–BranchOut) while deterministic MDNet–

Naı̈ve suffers from lack of representation diversity.

Qualitative results We illustrate the qualitative evalua-

tion results in several challenging sequences in Figure 4,

which show how robust our tracking algorithm is to a va-

riety of realistic challenges. However, the proposed algo-

rithm sometimes fails. Figure 5 demonstrates that it suffers

from full occlusion in Bird1 sequence and significant ap-

pearance changes with large motion in Matrix sequence.

5.2. Evaluation on VOT2015

BranchOut is also evaluated on VOT2015 dataset [22],

which contains 60 sequences with substantial variations and

challenges. We follow the VOT challenge protocol to com-

pare tracking algorithms, where trackers are re-initialized

whenever a tracking failure is observed. Based on bound-

ing box overlap ratios wth ground-truths and the number

of re-initializations, accuracy and robustness of each track-

ing algorithm is computed for comparison, respectively. In

addition, VOT2015 reports the expected average overlap,

which is a combined measure of accuracy and robustness,

and ranks the trackers based on the measure.

Table 3 presents the results of VOT2015 dataset for

12 trackers including BranchOut (ours), DeepSRDCF [9],

EBT [40], SRDCF [9], LDP [22], C-COT [10], sPST [18],

SC-EBT [38], NSAMF [27], Struck [14], sPST [18] and

RAJSSC [22]. We obtain the results of the algorithm from

the official VOT Challenge website3 or the authors of the

corresponding papers. TCNN and BranchOut demonstrate

outstanding scores and ranks while the performance C-COT

in VOT2015 dataset is surprisingly low; it is probably be-

cause the algorithm is overfitted to other datasets.

6. Conclusion

We presented a novel visual tracking algorithm based on

stochastic ensemble learning based on a CNN with multi-

ple branches. Our ensemble tracking algorithm selects a

random subset of branches for model update to diversify

learned target appearance models. This technique, referred

to as BranchOut, is effective to regularize ensemble classi-

fiers and improve tracking accuracy consequently. We also

3http://www.votchallenge.net/

3362

BranchOut C-COT TCNN DeepSRDCF FCNT MUSTer

Figure 4. Qualitative comparisons of the proposed algorithm with several algorithms on some challenging sequences in OTB100: Board,

Diving, Human9, Jump, and Skating2-2.

Figure 5. Failure cases of our method in Bird1 and Matrix se-

quences. Green and red bounding boxes denote ground-truths and

our tracking results, respectively. BranchOut sometimes loses tar-

gets due to occlusion and significant appearance changes.

employed multi-level representations for effective target ap-

pearance modeling. The proposed algorithm showed out-

standing performance in the standard tracking benchmarks.

Acknowledgement

This work was performed while the first author was a

visiting researcher at Google, Venice, CA. This work was

Table 3. The experimental results in VOT2015 dataset. The first

and second best algorithms are highlighted in red and blue colors,

respectively. The algorithms are sorted in a decreasing order based

on expected overlap ratio.

Tracker
Accuracy Robustness Expected

Rank Score Rank Score Overlap

BranchOut 1.73 0.59 2.73 0.71 0.3384

TCNN [29] 1.57 0.59 4.05 0.74 0.3404

DeepSRDCF [8] 2.28 0.56 3.02 1.05 0.3181

EBT [40] 5.92 0.47 2.93 1.02 0.3130

C-COT [10] 2.92 0.54 3.02 0.82 0.3034

SiamFC-3s [2] 2.82 0.55 4.98 1.58 0.2915

SRDCF [9] 2.67 0.56 3.55 1.24 0.2877

LDP [22] 4.33 0.49 4.73 1.33 0.2785

sPST [18] 2.82 0.55 4.88 1.48 0.2767

NSAMF [27] 3.17 0.53 4.17 1.29 0.2536

Struck [14] 5.10 0.47 5.18 1.61 0.2458

RAJSSC [22] 2.10 0.57 5.22 1.63 0.2420

partly supported by the ICT R&D program of MSIP/IITP

[2014-0-00147, Machine Learning Center; 2014-0-00059,

DeepView; 2016-0-00563, Research on Adaptive Ma-

chine Learning Technology Development for Intelligent

Autonomous Digital Companion].

3363

References

[1] B. Babenko, M.-H. Yang, and S. Belongie. Robust ob-

ject tracking with online multiple instance learning. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

33(8):1619–1632, 2011. 2

[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. Torr. Fully-convolutional siamese networks for object

tracking. In arXiv:1606.09549, 2016. 8

[3] D. S. Bolme, J. R. Beveridge, B. Draper, and Y. M. Lui.

Visual object tracking using adaptive correlation filters. In

CVPR, 2010. 2

[4] L. Breiman. Random forests. Machine Learning, 45(1):5–

32, 2001. 2, 3

[5] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. In BMVC, 2014. 4

[6] W. Choi and S. Savarese. A unified framework for multi-

target tracking and collective activity recognition. In ECCV,

2012. 1

[7] M. Danelljan, G. Häger, F. Khan, and M. Felsberg. Accurate

scale estimation for robust visual tracking. In BMVC, 2014.

2, 5

[8] M. Danelljan, G. Häger, F. Khan, and M. Felsberg. Convolu-

tional features for correlation filter based visual tracking. In

ICCVW, 2015. 2, 5, 8

[9] M. Danelljan, G. Häger, F. Khan, and M. Felsberg. Learning

spatially regularized correlation filters for visual tracking. In

ICCV, 2015. 2, 5, 7, 8

[10] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg.

Beyond correlation filters: Learning continuous convolution

operators for visual tracking. In ECCV, 2016. 2, 5, 7, 8

[11] H. K. Galoogahi, T. Sim, and S. Lucey. Correlation filters

with limited boundaries. In CVPR, 2015. 2

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 4

[13] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking

via on-line boosting. In BMVC, 2006. 2

[14] S. Hare, A. Saffari, and P. H. Torr. Struck: Structured output

tracking with kernels. In ICCV, 2011. 2, 7, 8

[15] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

37(3):583–596, 2015. 2

[16] S. Hong, T. You, S. Kwak, and B. Han. Online tracking

by learning discriminative saliency map with convolutional

neural network. In ICML, 2015. 2, 5

[17] Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, and

D. Tao. MUlti-Store Tracker (MUSTer): a cognitive psychol-

ogy inspired approach to object tracking. In CVPR, 2015. 2,

5

[18] Y. Hua, K. Alahari, and C. Schmid. Online object tracking

with proposal selection. In ICCV, 2015. 7, 8

[19] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger. Deep

networks with stochastic depth. In ECCV, 2016. 3

[20] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-

detection. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 34(7):1409–1422, 2012. 2

[21] K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection

from video tubelets with convolutional neural networks. In

CVPR, 2016. 1

[22] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Čehovin,

G. Fernandez, T. Vojir, G. Häger, G. Nebehay, R. Pflugfelder,

et al. The visual object tracking VOT2015 challenge results.

In ICCVW, pages 564–586, 2015. 5, 7, 8

[23] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder,

G. Fernandez, G. Nebehay, F. Porikli, and L. C̆ehovin. A

novel performance evaluation methodology for single-target

trackers. In IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, volume 38, pages 2137–2155, 2016.

[24] S. Kwak, B. Han, and J. H. Han. Multi-agent event detection:

Localization and role assignment. In CVPR, 2013. 1

[25] S. Lee, S. Purushwalkam, M. Cogswell, V. Ranjan, D. Cran-

dall, and D. Batra. Stochastic multiple choice learning for

training diverse deep ensembles. In NIPS, 2016. 3, 6

[26] H. Li, Y. Li, and F. Porikli. Convolutional neural net bag-

ging for online visual tracking. Computer Vision and Image

Understanding, 153:120–129, 2016. 2

[27] Y. Li and J. Zhu. A scale adaptive kernel correlation filter

tracker with feature integration. In ECCVW, 2014. 7, 8

[28] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical

convolutional features for visual tracking. In ICCV, 2015. 2,

5

[29] H. Nam, M. Baek, and B. Han. Modeling and prop-

agating cnns in a tree structure for visual tracking. In

arXiv:1608.07242, 2016. 2, 5, 8

[30] H. Nam and B. Han. Learning multi-domain convolutional

neural networks for visual tracking. In CVPR, 2016. 2, 4, 5,

7

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet large scale visual

recognition challenge. International Journal of Computer

Vision, 115(3):211–252, 2015. 2, 4

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neu-

ral networks from overfitting. Journal of Machine Learning

Research, 15:1929–1958, 2014. 1, 3

[33] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler.

Efficient object localization using convolutional networks. In

CVPR, 2015. 3

[34] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Reg-

ularization of neural network using dropconnect. In ICML,

2013. 1, 3

[35] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu. Action recog-

nition by dense trajectories. In CVPR, 2011. 1

[36] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking

with fully convolutional networks. In ICCV, 2015. 2, 5

[37] L. Wang, W. Ouyang, X. Wang, and H. Lu. STCT: sequen-

tially training convolutional networks for visual tracking. In

CVPR, 2016. 2, 3

3364

[38] N. Wang and D.-Y. Yeung. Ensemble-based tracking: Aggre-

gating crowdsourced structured time series data. In ICML,

2014. 7

[39] Y. Wu, J. Lim, and M. Yang. Object tracking benchmark.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 37(9):1834–1848, 2015. 5

[40] G. Zhu, F. Porikli, and H. Li. Tracking randomly moving

objects on edge box proposals. arXiv:1507.08085, 2015. 7,

8

3365

