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Abstract

Deep convolutional neural networks (DCNNs) have

shown remarkable performance in image classification

tasks in recent years. Generally, deep neural network ar-

chitectures are stacks consisting of a large number of con-

volutional layers, and they perform downsampling along

the spatial dimension via pooling to reduce memory us-

age. Concurrently, the feature map dimension (i.e., the num-

ber of channels) is sharply increased at downsampling lo-

cations, which is essential to ensure effective performance

because it increases the diversity of high-level attributes.

This also applies to residual networks and is very closely

related to their performance. In this research, instead of

sharply increasing the feature map dimension at units that

perform downsampling, we gradually increase the feature

map dimension at all units to involve as many locations as

possible. This design, which is discussed in depth together

with our new insights, has proven to be an effective means

of improving generalization ability. Furthermore, we pro-

pose a novel residual unit capable of further improving the

classification accuracy with our new network architecture.

Experiments on benchmark CIFAR-10, CIFAR-100, and Im-

ageNet datasets have shown that our network architecture

has superior generalization ability compared to the original

residual networks.

Code is available at https://github.com/jhkim89/PyramidNet

1. Introduction

The emergence of deep convolutional neural networks

(DCNNs) has greatly contributed to advancements in solv-

ing complex tasks [13, 23, 2, 3, 19] in computer vision

with significantly improved performance. Since the pro-

posal of LeNet [16], which introduced the use of deep neu-

ral network architectures for computer vision tasks, the ad-

vanced architecture AlexNet [13] was selected as the win-

ner of the 2012 ImageNet competition [22] by a large mar-

gin over traditional methods. Subsequently, ZF-net [35],

∗These two authors contributed equally.

VGG [25], GoogleNet [31], Residual Networks [7, 8], and

Inception Residual Networks [30] were successively pro-

posed to demonstrate advances in network architectures.

In particular, Residual Networks (ResNets) [7, 8] leverage

the concept of shortcut connections [29] inside a proposed

residual unit for residual learning, to make it possible to

train much deeper network architectures. Deeper network

architectures are known for their superior performance, and

these network architectures commonly have deeply stacked

convolutional filters with nonlinearity [25, 31].

With respect to feature map dimension, the conventional

method of stacking several convolutional filters is to in-

crease the dimension while decreasing the size of feature

maps by increasing the strides of the filters or poolings.

This is the widely adopted method of controlling the size

of feature maps, because extracting the diversified high-

level attributes with the increased feature map dimension

is very effective for classification tasks. Architectures such

as those of AlexNet [13] and VGG [25] utilize this method

of increasing the feature map dimension to construct their

network architectures. The most successful deep neural net-

work, ResNets [7, 8], which was introduced by He et al. [7],

also follows this approach for filter stacking.

According to the research of Veit et al. [33], ResNets

are considered to behave as ensembles of relatively shallow

networks. These researchers showed that the deletion of an

individual residual unit from ResNets, i.e., such that only a

shortcut connection remains, does not significantly affect

the overall performance, proving that deleting a residual

unit is equivalent to deleting some shallow networks in the

ensemble networks. Contrary to this, deleting a single layer

in plain network architectures such as a VGG-network [25]

damages the network by causing additional severe errors.

However, in the case of ResNets, it was found that delet-

ing the building blocks in a residual unit with downsam-

pling, where the feature map dimension is doubled, still in-

creases the classification error by a significant margin. In-

terestingly, when the residual net is trained using a stochas-

tic depth [10], it was found that deleting the blocks with

downsampling does not degrade the classification perfor-

mance, as shown in Figure 8 in [33]. One may think that
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Figure 1. Schematic illustration of (a) basic residual units [7], (b) bottleneck residual units [7], (c) wide residual units [34], (d) our pyramidal

residual units, and (e) our pyramidal bottleneck residual units.

this phenomenon is related to the overall improvement in

the classification performance enabled by stochastic depth.

Motivated by the ensemble interpretation of residual net-

works in Veit et al. [33] and the results with stochastic

depth [10], we devised another method to handle the phe-

nomenon associated with deleting the downsampling unit.

In the proposed method, the feature map dimensions are in-

creased at all layers to distribute the burden concentrated at

locations of residual units affected by downsampling, such

that it is equally distributed across all units. It was found

that using the proposed new network architecture, deleting

the units with downsampling does not degrade the perfor-

mance significantly. In our paper, we refer to this network

architecture as a deep “pyramidal” network and a “pyrami-

dal” residual network with a residual-type network archi-

tecture. This reflects the fact that the shape of the network

architecture can be compared to that of a pyramid. That is,

the number of channels gradually increases as a function

of the depth at which the layer occurs, which is similar to a

pyramid structure of which the shape gradually widens from

the top downwards. This structure is illustrated in compar-

ison to other network architectures in Figure 1. The key

contributions are summarized as follows:

• A deep pyramidal residual network (PyramidNet) is in-

troduced. The key idea is to concentrate on the feature

map dimension by increasing it gradually instead of by

increasing it sharply at each residual unit with down-

sampling. In addition, our network architecture works

as a mixture of both plain and residual networks by

using zero-padded identity-mapping shortcut connec-

tions when increasing the feature map dimension.

• A novel residual unit is also proposed, which can fur-

ther improve the performance of ResNet-based archi-

tectures (compared with state-of-the-art network archi-

tectures).

The remainder of this paper is organized as follows. Sec-

tion 2 presents our PyramidNets and introduces a novel

residual unit that can further improve ResNet. Section 3

closely analyzes our PyramidNets via several discussions.

Section 4 presents experimental results and comparisons

with several state-of-the-art deep network architectures.

Section 5 concludes our paper with suggestions for future

works.

2. Network Architecture

In this section, we introduce the network architectures of

our PyramidNets. The major difference between Pyramid-

Nets and other network architectures is that the dimension

of channels gradually increases, instead of maintaining the

dimension until a residual unit with downsampling appears.

A schematic illustration is shown in Figure 1 (d) to facilitate

understanding of our network architecture.

2.1. Feature Map Dimension Configuration

Most deep CNN architectures [7, 8, 13, 25, 31, 35] uti-

lize an approach whereby feature map dimensions are in-

creased by a large margin when the size of the feature map

decreases, and feature map dimensions are not increased

until they encounter a layer with downsampling. In the case

of the original ResNet for CIFAR datasets [12], the number

of feature map dimensions Dk of the k-th residual unit that

belongs to the n-th group can be described as follows:

Dk =

{

16, if n(k) = 1,

16 · 2n(k)−2, if n(k) ≥ 2,
(1)

in which n(k) ∈ {1, 2, 3, 4} denotes the index of the group

to which the k-th residual unit belongs. The residual units

that belong to the same group have an equal feature map

size, and the n-th group contains Nn residual units. In the

first group, there is only one convolutional layer that con-

verts an RGB image into multiple feature maps. For the

n-th group, after Nn residual units have passed, the feature

size is downsampled by half and the number of dimensions

is doubled. We propose a method of increasing the feature
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(a) (b) (c)

Figure 2. Visual illustrations of (a) additive PyramidNet, (b) mul-

tiplicative PyramidNet, and (c) a comparison of (a) and (b).

map dimension as follows:

Dk =

{

16, if k = 1,

⌊Dk−1 + α/N⌋, if 2 ≤ k ≤ N + 1,
(2)

in which N denotes the total number of residual units, de-

fined as N =
∑4

n=2 Nn. The dimension is increased by a

step factor of α/N , and the output dimension of the final

unit of each group becomes 16 + (n − 1)α/3 with same

number of residual units in each group. The details of our

network architecture are presented in Table 1.

The above equations are based on an addition-based

widening step factor α for increasing dimensions. However,

of course, multiplication-based widening (i.e., the process

of multiplying by a factor to increase the channel dimen-

sion geometrically) presents another possibility for creating

a pyramid-like structure. Then, eq.(2) can be transformed

as follows:

Dk =

{

16, if k = 1,

⌊Dk−1 · α
1

N ⌋, if 2 ≤ k ≤ N + 1.
(3)

The main difference between additive and multiplicative

PyramidNets is that the feature map dimension of an ad-

ditive network gradually increases linearly, whereas the di-

mension of a multiplicative network increases geometri-

cally. That is, the dimension slowly increases in input-side

layers and sharply increases in output-side layers. This pro-

cess is similar to that of the original deep network architec-

tures such as VGG [25] and ResNet [7]. The visual illustra-

tions of additive and multiplicative PyramidNets are shown

in Figure 2. In this paper, we compare the performance of

both of these dimension-increasing approaches by compar-

ing an additive PyramidNet (eq. (2)) and a multiplicative

PyramidNet (eq. (3)) in section 4.

2.2. Building Block

The building block (i.e., the convolutional filter stacks

with ReLUs and BN layers) in a residual unit is the core

of ResNet-based architectures. It is obvious that in order

to maximize the capability of the network architecture, de-

signing a good building block is essential. As shown in

Group Output size Building Block

conv 1 32×32 [3 × 3, 16]

conv 2 32×32

[

3 × 3, ⌊16 + α(k − 1)/N⌋
3 × 3, ⌊16 + α(k − 1)/N⌋

]

×N2

conv 3 16×16

[

3 × 3, ⌊16 + α(k − 1)/N⌋
3 × 3, ⌊16 + α(k − 1)/N⌋

]

×N3

conv 4 8×8

[

3 × 3, ⌊16 + α(k − 1)/N⌋
3 × 3, ⌊16 + α(k − 1)/N⌋

]

×N4

avg pool 1×1 [8× 8, 16 + α]

Table 1. Structure of our PyramidNet for benchmarking with

CIFAR-10 and CIFAR-100 datasets. α denotes the widening fac-

tor, and Nn signifies the number of blocks in a group. Downsam-

pling is performed at conv3 1 and conv4 1 with a stride of 2.

Figure 6, the layers can be stacked in various manners to

construct a single building block. We found the building

block shown in Figure 6 (d) to be the most promising, and

therefore we included this structure as building block in our

PyramidNets. The discussion of this matter is continued in

the following section.

In terms of shortcut connections, many researchers ei-

ther use those based on identity mapping, or those employ-

ing convolution-based projection. However, as the feature

map dimension of PyramidNet is increased at every unit,

we can only consider two options: zero-padded identity-

mapping shortcuts, and projection shortcuts conducted by

1×1 convolutions. However, as mentioned in the work of

He et al. [8], the 1×1 convolutional shortcut produces a

poor result when there are too many residual units, i.e., this

shortcut is unsuitable for very deep network architectures.

Therefore, we select zero-padded identity-mapping short-

cuts for all residual units. Further discussions about the

zero-padded shortcut are provided in the following section.

3. Discussions

In this section, we present an in-depth study of the ar-

chitecture of our PyramidNet, together with the proposed

novel residual units. The experiments we include here sup-

port the study and confirm that insights obtained from our

network architecture can further improve the performance

of existing ResNet-based architectures.

3.1. Effect of PyramidNet

According to the work of Veit et al. [33], ResNets can be

viewed as ensembles of relatively shallow networks, sup-

ported by the observation that deleting an individual build-

ing block in a residual unit of ResNets incurs minor classi-

fication loss, whereas removing layers from plain networks

such as VGG [25] severely reduces the classification rate.

However, in both original and pre-activation ResNets [7, 8],

another noteworthy aspect is that deleting the units with

downsampling (and doubling the feature dimension) still

degrades performance by a large margin [33]. Meanwhile,
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Figure 3. Performance comparison between the pre-activation

ResNet [8] and our PyramidNet, using CIFAR datasets. Dashed

and solid lines denote the training loss and test error, respectively.

when a stochastic depth [10] is applied, this phenomenon

is not observed, and the performance is also improved, ac-

cording to the experiment of Veit et al. [33]. The objective

of our PyramidNet is to resolve this phenomenon differ-

ently, by attempting to gradually increase the feature map

dimension instead of doubling it at one of the residual units

and to evenly distribute the burden of increasing the feature

maps. We observed that our PyramidNet indeed resolves

this phenomenon and at the same time improves overall per-

formance. We further analyze the effect of our PyramidNet

by comparing it against the pre-activation ResNet, with the

following experimental results. First, we compare the train-

ing and test error curves of our PyramidNet with those of

the pre-activation ResNet [8] in Figure 3. The standard pre-

activation ResNet with 110 layers is used for comparison.

For our PyramidNet, we used a depth of 110 layers with a

widening factor of α = 48; it had the same number of pa-

rameters (1.7M) as the pre-activation ResNet to allow for a

fair comparison. The results indicate that our PyramidNet

has superior test accuracy, thereby confirming its greater

ability to generalize compared to existing deep networks.

Second, we verify the ensemble effect of our Pyramid-

Nets by evaluating the performance after deleting individ-

ual units, similar to the experiment of Veit et al. [33]. The

results are shown in Figure 4. As mentioned by Veit et

al. [33], removing individual units only causes a slight

performance loss, compared with a plain network such as

the VGG [25]. However, in the case of the pre-activation

ResNet, removing the blocks subjected to downsampling

tends to affect the classification accuracy by a relatively

large margin, whereas this does not occur with our Pyra-

midNets. Furthermore, the mean average error differences

between the baseline result and the result obtained when

individual units were deleted from both the pre-activation

ResNet and our PyramidNet were 0.72% and 0.54%, re-

Figure 4. Test error curves to study the extent to which residual

units contribute to the performance in different network architec-

tures by deleting their individual units. The dashed and solid lines

denote the test errors that occur when no units are deleted, and

when an individual unit is deleted, respectively. Bold vertical lines

denote the location of residual units through downsampling.

spectively. This result shows that the ensemble effect of

our PyramidNet becomes stronger than the original ResNet,

such that generalization ability is improved.

3.2. Zero­padded Shortcut Connection

ResNets and pre-activation ResNets [7, 8] were stud-

ied several types of shortcuts, such as an identity-mapping

shortcut or projection shortcut. The experimental results

in [8] showed that the identity-mapping shortcut is a much

more appropriate choice than other shortcuts. Because an

identity-mapping shortcut does not have parameters, it has a

lower possibility of overfitting compared to the other types

of shortcuts; this ensures improved generalization ability.

Moreover, it can purely pass through the gradient accord-

ing to the identity mapping, and therefore it provides more

stability in the training stage.

In the case of our PyramidNet, identity mapping alone

cannot be used for a shortcut because the feature map di-

mension differs among individual residual units. Therefore,

only a zero-padded shortcut or projection shortcut can be

used for all the residual units. However, as discussed in [8],

a projection shortcut can hamper information propagation

and lead to optimization problems, especially for very deep

networks. On the other hand, we found that the zero-padded

shortcut does not lead to the overfitting problem because no

additional parameters exist, and surprisingly, it shows sig-

nificant generalization ability compared to other shortcuts.

We now examine the effect of the zero-padded identity-

mapping shortcut on the k-th residual unit that belongs to

the n-th group with the reshaped vector xl
k of the l-th fea-

ture map:

xl
k =

{

F(k,l)(x
l
k−1) + xl

k−1, if 1 ≤ l ≤ Dk−1

F(k,l)(x
l
k−1), if Dk−1 < l ≤ Dk

(4)

where F(k,l)(·) denotes the l-th residual function of the k-

th residual unit and Dk represents the pre-defined channel
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(a) (b)

Figure 5. Structure of residual unit (a) with zero-padded identity-

mapping shortcut, (b) unraveled view of (a) showing that the zero-

padded identity-mapping shortcut constitutes a mixture of a resid-

ual network with a shortcut connection and a plain network.

dimensions of the k-th residual unit. From eq.(4), zero-

padded elements of the identity-mapping shortcut for in-

creasing dimension let xl
k contain the outputs of both resid-

ual networks and plain networks. Therefore, we could con-

jecture that each zero-padded identity-mapping shortcut can

provide a mixture of the residual network and plain net-

work, as shown in Figure 5. Furthermore, our Pyramid-

Net increases the channel dimension at every residual unit,

and the mixture effect of the residual network and plain net-

work increases markedly. Figure 4 supports the conclusion

that the test error of PyramidNet does not oscillate as much

as that of the pre-activation ResNet. Finally, we investigate

several types of shortcuts including proposed zero-padded

identity-mapping shortcut in Table 2.

3.3. A New Building Block

To maximize the capability of the network, it is natural

to ask the following question: “Can we design a better

building block by altering the stacked elements inside

the building block in more principled way?”. The first

building block types were proposed in the original paper on

ResNets [7], and another type of building block was subse-

quently proposed in the paper on pre-activation ResNets [8],

to answer the question. Moreover, pre-activation ResNets

attempted to solve the backward gradient flowing problem

[8] by redesigning residual modules; this proved to be suc-

cessful in trials. However, although the pre-activation resid-

ual unit was discovered with empirically improved perfor-

mance, further investigation over the possible combinations

is not yet performed, leaving a potential room for improve-

ment. We next attempt to answer the question from two

points of view by considering Rectified Linear Units (Re-

LUs) [20] and Batch Normalization (BN) [11] layers.

3.3.1 ReLUs in a Building Block

Including ReLUs [20] in the building blocks of residual

units is essential for nonlinearity; however, we found empir-

ically that the performance can vary depending on the loca-

Shortcut Types CIFAR-10 CIFAR-100

(a) Identity mapping with projection shortcut 5.03 23.48

(b) Projection with zero-padded shortcut 6.84 31.29

(c) Only projection shortcut 6.98 31.62

(d) Identity mapping with zero-padded shortcut 4.70 22.77

Table 2. Top-1 errors (%) on CIFAR datasets using our Pyramid-

Net with several combinations of shortcut connections.

tions and the number of ReLUs. This could be discussed

with original ResNets [7], for which it was shown that

the performance increases as the network becomes deeper;

however, if the depth exceeds 1,000 layers, overfitting still

occurs and the result is less accurate than that generated by

shallower ResNets.

First, we note that using ReLUs after the addition of

residual units adversely affects performance:

xl
k = ReLU (F(k ,l)(x

l

k−1
) + xl

k−1
), (5)

where the ReLUs seem to have the function of filtering non-

negative elements. Gross and Wilber [5] found that simply

removing ReLUs from the original ResNet [7] after each

addition with the shortcut connection leads to small perfor-

mance improvements. This could be understood by consid-

ering that, after addition, ReLUs provide non-negative in-

put to the subsequent residual units, and therefore the short-

cut connection is always non-negative and the convolutional

layers would take responsibility for producing negative out-

put before addition; this may decrease the overall capability

of the network architecture as analyzed in [8]. The pre-

activation ResNets proposed by He et al. [8] also overcame

this issue with pre-activated residual units that place BN

layers and ReLUs before (instead of after) the convolutional

layers:

xl
k = F(k,l)(x

l
k−1) + xl

k−1, (6)

where ReLUs are removed after addition to create an iden-

tity path. Consequently, the overall performance has in-

creased by a large margin without overfitting, even at depths

exceeding 1,000 layers. Furthermore, Shen et al. [24] pro-

posed a weighted residual network architecture, which lo-

cates a ReLU inside a residual unit (instead of locating

ReLU after addition) to create an identity path, and showed

that this structure also does not overfit even at depths of

more than 1,000 layers.

Second, we found that the use of a large number of Re-

LUs in the blocks of each residual unit may negatively af-

fect performance. Removing the first ReLU in the blocks

of each residual unit, as shown in Figure 6 (b) and (d), was

found to enhance performance compared with the blocks

shown in Figure 6 (a) and (c). Experimentally, we found

that removal of the first ReLU in the stack is preferable and

that the other ReLU should remain to ensure nonlinearity.

Removing the second ReLU in Figure 6 (a) changes the
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(a) (b) (c) (d)

Figure 6. Various types of basic and bottleneck residual units. “BatchNorm” denotes a Batch Normalization (BN) layer. (a) original

pre-activation ResNets [8], (b) pre-activation ResNets removing the first ReLU, (c) pre-activation ResNets with a BN layer after the final

convolutional layer, and (d) pre-activation ResNets removing the fist ReLU with a BN layer after the final convolutional layer.

blocks to BN-ReLU-conv-BN-conv, and it is clear that, in

these blocks, the convolutional layers are successively lo-

cated without ReLUs to weaken their representation pow-

ers of each other. However, when we remove the first

ReLU, the blocks are changed to BN-conv-BN-ReLU-conv,

in which case the two convolutional layers are separated by

the second ReLU, thereby guaranteeing nonlinearity. The

results in Table 3 confirm that removing the first ReLU as

in (b) and (d) in Figure 6, enhances the performance. Con-

sequently, provided that an appropriate number of ReLUs

are used to guarantee the nonlinearity of the feature space

manifold, the remaining ReLUs could be removed to im-

prove network performance.

3.3.2 BN Layers in a Building Block

The main role of a BN layer is to normalize the activations

for fast convergence and to improve performance. The ex-

perimental results of the four structures provided in Table 3

show that the BN layer can be used to maximize the capabil-

ity of a single residual unit. A BN layer conducts an affine

transformation with the following equation:

y = γx+ β, (7)

where γ and β are learned for every activation in feature

maps. We experimentally found that the learned γ and β
could closely approximate 0. This implies that if the learned

γ and β are both close to 0, then the corresponding acti-

vation is considered not to be useful. Weighted ResNets

[24], in which the learnable weights occur at the end of

their building blocks, are also similarly learned to determine

whether the corresponding residual unit is useful. Thus, the

BN layers at the end of each residual unit are a generalized

version including [24] to enable decisions to be made as to

whether each residual unit is helpful. Therefore, the degrees

ResNet Architecture CIFAR-10 CIFAR-100

(a) Pre-activation [8] 5.82 25.06

(b) Removing the first ReLU 5.31 24.55

(c) BN after the final conv 5.74 24.54

(d) (b) + (c) 5.29 23.74

PyramidNet Architecture CIFAR-10 CIFAR-100

(a) Pre-activation [8] 5.15 24.40

(b) Removing the first ReLU 4.81 23.43

(c) BN after the final conv 4.96 23.89

(d) (b) + (c) 4.62 23.31

PyramidNet (bottleneck) Architecture CIFAR-10 CIFAR-100

(a) Pre-activation [8] 4.61 21.10

(b) Removing the first ReLU 4.45 20.40

(c) BN after the final conv 4.56 20.44

(d) (b) + (c) 4.26 20.32

Table 3. Top-1 errors (%) on CIFAR datasets for several build-

ing block combinations of ReLUs and BN layers shown in Fig-

ure 6 (a)–(d), using ResNet [8] (with original feature map dimen-

sion configuration) and our PyramidNet.

of freedom obtained by involving γ and β from the BN lay-

ers could improve the capability of the network architecture.

The results in Table 3 support the conclusion that adding a

BN layer at the end of each building block, as in type (c)

and (d) in Figure 6, improves the performance. Note that

the aforementioned network removing the first ReLU is also

improved by adding a BN layer after the final convolutional

layer. Furthermore, the results in Table 3 show that both

PyramidNet and a new building block improve the perfor-

mance significantly.

4. Experimental Results

We evaluate and compare the performance of our algo-

rithm with that of existing algorithms [7, 8, 18, 24, 34] using

representative benchmark datasets: CIFAR-10 and CIFAR-

100 [12]. CIFAR-10 and CIFAR-100 each contain 32×32-

pixel color images, consists of 50,000 training images and

10,000 testing images. But in case of CIFAR-10, it includes
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Network # of Params Output Feat. Dim. Depth CIFAR-10 CIFAR-100

NiN [18] - - - 8.81 35.68
All-CNN [27] - - - 7.25 33.71
DSN [17] - - - 7.97 34.57
FitNet [21] - - - 8.39 35.04
Highway [29] - - - 7.72 32.39
Fractional Max-pooling [4] - - - 4.50 27.62
ELU [29] - - - 6.55 24.28

ResNet [7] 1.7M 64 110 6.43 25.16
ResNet [7] 10.2M 64 1001 - 27.82
ResNet [7] 19.4M 64 1202 7.93 -

Pre-activation ResNet [8] 1.7M 64 164 5.46 24.33
Pre-activation ResNet [8] 10.2M 64 1001 4.62 22.71

Stochastic Depth [10] 1.7M 64 110 5.23 24.58
Stochastic Depth [10] 10.2M 64 1202 4.91 -

FractalNet [14] 38.6M 1,024 21 4.60 23.73

SwapOut v2 (width×4) [26] 7.4M 256 32 4.76 22.72

Wide ResNet (width×4) [34] 8.7M 256 40 4.97 22.89
Wide ResNet (width×10) [34] 36.5M 640 28 4.17 20.50

Weighted ResNet [24] 19.1M 64 1192 5.10 -

DenseNet [9] 27.2M 2,320 100 3.74 19.25

PyramidNet (α = 48) 1.7M 64 110 4.58±0.06 23.12±0.04
PyramidNet (α = 84) 3.8M 100 110 4.26±0.23 20.66±0.40
PyramidNet (α = 270) 28.3M 286 110 3.73±0.04 18.25±0.10
PyramidNet (bottleneck, α = 270) 27.0M 1,144 164 3.48±0.20 17.01±0.39

Table 4. Top-1 error rates (%) on CIFAR datasets. All the results of PyramidNets are produced with additive PyramidNets, and α denotes

the widening factor. “Output Feat. Dim.” denotes the feature dimension of just before the last softmax classifier.

10 classes, and CIFAR-100 includes 100 classes. The stan-

dard data augmentation, horizontal flipping, and translation

by 4 pixels are adopted in our experiments, following the

common practice [18]. The results achieved by Pyramid-

Nets are based on the proposed residual unit: placing a BN

layer after the final convolutional layer, and removing the

first ReLU as in Figure 6 (d). Our code is built on the Torch

open source deep learning framework [1].

4.1. Training Settings

Our PyramidNets are trained using backpropagation [15]

by Stochastic Gradient Descent (SGD) with Nesterov mo-

mentum for 300 epochs using CIFAR-10 and CIFAR-100

datasets. The initial learning rate is set to 0.1 for CIFAR-10

and 0.5 for CIFAR-100, and is decayed by a factor of 0.1 at

150 and 225 epochs, respectively. The filter parameters are

initialized by “msra” [6]. We use a weight decay of 0.0001,

a dampening of 0, a momentum of 0.9, and a batch size of

128.

4.2. Performance Evaluation

In our work, we mainly use the top-1 error rate for evalu-

ating our network architecture. Additive PyramidNets with

both basic and pyramidal bottleneck residual units are used.

The error rates are provided in Table 4 for ours and the state-

of-the-art models. The experimental results show that our

network has superior generalization ability, in terms of the

Figure 7. Comparison of test error curves with error bars of addi-

tive PyramidNet and multiplicative PyramidNet, according to the

different number of parameters.

number of parameters, showing the best results compared

with other models.

Figure 7 compares additive and multiplicative Pyramid-

Nets. When the number of parameters is low, both additive

and multiplicative PyramidNets show similar performance,

because these two network architectures do not have signif-

icant structural differences. As the number of parameters

increases, they start to show a more marked difference in

terms of the feature map dimension configuration. Because

the feature map dimension increases linearly in the case of

additive PyramidNets, the feature map dimensions of the

input-side layers tend to be larger, and those of the output-

side layers tend to be smaller, compared with multiplicative

PyramidNets as illustrated in Figure 2.

Previous works [7, 25] typically set multiplicative scal-

ing of feature map dimension for downsampling modules,
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Network # of Params Output Feat. Dim. Augmentation Train Crop Test Crop Top-1 Top-5

ResNet-152 [7] 60.0M 2,048 scale 224×224 224×224 23.0 6.7

Pre-ResNet-152† [8] 60.0M 2,048 scale+asp ratio 224×224 224×224 22.2 6.2

Pre-ResNet-200† [8] 64.5M 2,048 scale+asp ratio 224×224 224×224 21.7 5.8
WRN-50-2-bottleneck [34] 68.9M 2,048 scale+asp ratio 224×224 224×224 21.9 6.0
PyramidNet-200 (α = 300) 62.1M 1,456 scale+asp ratio 224×224 224×224 20.5 5.3
PyramidNet-200 (α = 300)∗ 62.1M 1,456 scale+asp ratio 224×224 224×224 20.5 5.4
PyramidNet-200 (α = 450)∗ 116.4M 2,056 scale+asp ratio 224×224 224×224 20.1 5.4

ResNet-200 [7] 64.5M 2,048 scale 224×224 320×320 21.8 6.0
Pre-ResNet-200 [8] 64.5M 2,048 scale+asp ratio 224×224 320×320 20.1 4.8
Inception-v3 [32] - 2,048 scale+asp ratio 299×299 299×299 21.2 5.6
Inception-ResNet-v1 [30] - 1,792 scale+asp ratio 299×299 299×299 21.3 5.5
Inception-v4 [30] - 1,536 scale+asp ratio 299×299 299×299 20.0 5.0
Inception-ResNet-v2 [30] - 1,792 scale+asp ratio 299×299 299×299 19.9 4.9
PyramidNet-200 (α = 300) 62.1M 1,456 scale+asp ratio 224×224 320×320 19.6 4.8
PyramidNet-200 (α = 300)∗ 62.1M 1,456 scale+asp ratio 224×224 320×320 19.5 4.8
PyramidNet-200 (α = 450)∗ 116.4M 2,056 scale+asp ratio 224×224 320×320 19.2 4.7

Table 5. Comparisons of single-model, single-crop error (%) on the ILSVRC 2012 validation set. All the results of PyramidNets are

produced with additive PyramidNets. “asp ratio” means the aspect ratio applied for data augmention, and “Output feat. dim.” denotes the

feature dimension of just after the last global pooling layer. ∗ denotes the models which applied dropout method, and † denotes the results

obtained from https://github.com/facebook/fb.resnet.torch.

which is implemented to give a larger degree of freedom to

the classification part by increasing the feature map dimen-

sion of the output-side layers. However, for our Pyramid-

Net, the results in Figure 7 implies that increasing the model

capacity of the input-side layers would lead to a better per-

formance improvement than using a conventional way of

multiplicative scaling of feature map dimension.

We also note that, although the use of regularization

methods such as dropout [28] or stochastic depth [10] could

further improve the performance of our model, we did not

involve those methods to ensure a fair comparison with

other models.

4.3. ImageNet

1,000-class ImageNet dataset [22] used for ILSVRC

contains more than one million training images and 50,000

validation images. We use additive PyramidNets with the

pyramidal bottleneck residual units, deleting the first ReLU

and adding a BN layer at the last layer as described in Sec-

tion 3.3 and shown in Figure 6 (d) for further performance

improvement.

We train our models for 120 epochs with a batch size of

128, and the initial learning rate is set to 0.05, divided by 10

at 60, 90 and 105 epochs. We use the same weight decay,

momentum, and initialization settings as those of CIFAR

datasets. We train our model by using a standard data aug-

mentation with scale jittering and aspect ratio as suggested

in Szegedy et al. [31]. Table 5 shows the results of our

PyramidNets in ImageNet dataset compared with the state-

of-the-art models. The experimental results show that our

PyramidNet with α = 300 has a top-1 error rate of 20.5%,

which is 1.2% lower than the pre-activation ResNet-200 [8]

which has a similar number of parameters but higher out-

put feature dimension than our model. We also notice that

increasing α with an appropriate regularization method can

further improve the performance.

For comparison with the Inception-ResNet [30] that uses

a testing crop with 299 × 299 size, we test our model on a

320× 320 crop, by the same reason with the work of He et

al. [8]. Our PyramidNet with α = 300 shows a top-1 error

rate of 19.6%, which outperforms both the pre-activation

ResNet [8] and the Inception-ResNet-v2 [30] models.

5. Conclusion

The main idea of the novel deep network architecture

described in this paper involves increasing the feature map

dimension gradually, in order to construct so-called Pyra-

midNets along with the concept of ResNets. We also devel-

oped a novel residual unit, which includes a new building

block for a residual unit with a zero-padded shortcut; this

design leads to significantly improved generalization abil-

ity. In tests using CIFAR-10, CIFAR-100, and ImageNet-

1k datasets, our PyramidNets outperform all previous state-

of-the-art deep network architectures. Furthermore, the in-

sights in this paper could be utilized by any network archi-

tecture, to improve their capacity for better performance.

In future work, we will develop methods of optimizing pa-

rameters such as feature map dimensions in more principled

ways with proper cost functions that give insight into the na-

ture of residual networks.
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