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Abstract

The images taken through glass often capture a target

transmitted scene as well as undesired reflected scenes. In

this paper, we propose a low-rank matrix completion algo-

rithm to remove reflection artifacts automatically from mul-

tiple glass images taken at slightly different camera loca-

tions. We assume that the transmitted scenes are more dom-

inant than the reflected scenes in typical glass images. We

first warp the multiple glass images to a reference image,

where the gradients are consistent in the transmission im-

ages while the gradients are varying across the reflection

images. Based on this observation, we compute a gradi-

ent reliability such that the pixels belonging to the salient

edges of the transmission image are assigned high reliabil-

ity. Then we suppress the gradients of the reflection images

and recover the gradients of the transmission images only,

by solving a low-rank matrix completion problem in gradi-

ent domain. We reconstruct an original transmission image

using the resulting optimal gradient map. Experimental re-

sults show that the proposed algorithm removes the reflec-

tion artifacts from glass images faithfully and outperforms

the existing algorithms on typical glass images.

1. Introduction

We often capture images of a target scene through glass.

For example, we take photographs of the products displayed

in the show window. The captured glass image includes the

target scene behind the glass as well as undesired reflected

scene in front of the glass, since light passes through and

is reflected on a pane of glass simultaneously. Reflection

removal is the process of removing such unwanted reflec-

tion artifacts from the glass images. Most existing methods

model the glass image as a linear combination of a transmis-

sion image and a reflection image and reconstruct the trans-

mission image only while suppressing the reflection image.

Several attempts have been made to remove reflection

from a single glass image by exploiting prior knowledge

or assumptions on the characteristics of glass images, such

as gradient sparsity [8], relative smoothness [11] or ghost-

ing cue [15]. Levin and Weiss [8] reconstructed an opti-

mal transmission image that minimizes a cost function de-

signed by using a distribution model of gradient in natural

images. Li and Brown [11] assumed that a reflection im-

age is smoother and thus exhibits thinner tails of gradient

distribution than a transmission image. However, this as-

sumption may not hold when strong light is reflected on a

pane of glass. Shih et al. [15] considered double-pane win-

dows and employed the shifted reflection images appeared

in both of the front and the back surfaces of the window.

However, this method may not work on glass images where

the ghosted reflection is not clearly observed.

On the other hands, multiple glass images were used for

reflection removal. A set of several glass images taken from

a fixed camera position were used [1, 6, 13, 14]. Polarized

glass images were obtained by using different angular fil-

ters, and the angle of incidence to the glass surface is com-

puted to estimate an optimal transmission image [6, 14].

Schechner et al. [13] also used multiple glass images fo-

cused on different distances for reflection removal. Agrawal

et al. [1] used two glass images taken with and without

flash, respectively, to recognize reflection artifacts. More-

over, multiple images taken from different camera positions

were also used [2, 3, 7, 10, 17, 18, 20]. Li and Brown [10]

warped a set of multiple glass images taken at slightly dif-

ferent camera locations into a reference image, and sepa-

rated the gradients between the transmission image and the

reflection images by analyzing the occurrence characteris-

tics of gradients across multiple images. Xue et al. [20]

estimated dense motion fields for both of the transmitted

and reflected scenes, respectively, and recovered an optimal

transmission image as well as a reflection image. Reflec-

tion removal using multiple glass images is more practical,

since it achieves better performance than that of using a sin-

gle glass image and it does not require strong constraints on

the characteristics of glass images.

In this paper, we propose a novel reflection removal al-

gorithm using a set of multiple glass images. We first warp

input multiple glass images to a reference image to align
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Figure 1. Overview of the proposed algorithm. (a) Input multiple glass images. (b) Warped glass images to a reference image. (c)

Reliability map and (d) initial gradient map of the reference image. (e) Optimal gradient map for the transmission image. (f) Reconstructed

transmission image. (g) Removed reflection image.

the transmission images. We compute a gradient reliabil-

ity at each pixel such that a pixel with large gradient mag-

nitude from reflection images is assigned a low reliability.

We divide the gradient map of the reference image into lo-

cal patches, and for a given patch, we search for the similar

gradient patches from the other warped images. Then we

recover the gradients of high reliability associated with the

transmission image, while suppressing the gradients of low

reliability coming from the reflection image by completing

a given gradient patch with the similar patches based on a

low-rank matrix completion framework. Finally, the result-

ing optimal gradient map is used to reconstruct an origi-

nal color image for target transmitted scene. Note that the

existing methods of reflection removal design cost func-

tions depending on the gradient values at specified pixels

selected by user assistance [8] or determined by gradient

occurrence [10], and obtain transmission images by solv-

ing optimization problems based on the gradient sparsity

assumption. Hence these approaches cannot sufficiently re-

solve the ambiguity of gradient values at undetermined pix-

els especially in textured regions. However, the proposed

algorithm faithfully recovers the gradients of transmission

image by exploiting similar gradients from the other views

based on low-rank matrix completion. Experimental re-

sults show that the proposed algorithm reconstructs origi-

nal transmission images from glass images faithfully while

suppressing undesired reflection artifacts effectively.

The remaining of this paper is organized as follows. Sec-

tion 2 explains the proposed algorithm. Section 3 shows the

experimental results. Section 4 concludes the paper.

2. Proposed Algorithm

We propose a reflection removal algorithm using multi-

ple glass images. We also model a glass image as a linear

combination of a transmission image and a reflection im-

age, such that the pixel value Ik(p) of the k-th glass image

Ik is given by

Ik(p) = Tk(p) +Rk(p), k = 0, 1, ...,K − 1, (1)

where Tk and Rk denote the transmission image and the

reflection image in Ik, respectively, and K is the number

of multiple glass images. We regard reflection removal as

a problem of gradient completion for transmission image,

and solve this problem by adopting low-rank matrix com-

pletion in gradient domain. Fig. 1 shows the overall process

of the proposed algorithm. Input multiple glass images are

first warped to a reference image. The reliability map is

computed on the initial gradients in a reference glass im-

age where the edge pixels in reflection images are assigned

low reliability. Then we restore the gradients of transmis-

sion image and suppress the gradients of reflection image

by using low-rank matrix completion in gradient domain.

Finally, the resulting transmission gradients are used to re-

construct an original transmission image.

2.1. Multiple Image Warping

We assume that a set of multiple glass images are cap-

tured at slightly different camera locations toward a target

scene behind glass. It means that the multiple glass im-

ages have similar transmission images to one another while

reflection images are varying across the multiple glass im-

ages. We also assume that the transmitted scene dominates

glass images compared to the reflected scenes. Therefore,

when we warp the multiple glass images into a same image

domain, the computed warping transform mainly depends

on the features of the transmission images.

Based on this property, as did in [10], we first warp

the multiple glass images to a reference image using SIFT-

flow [12]. Let Îk, T̂k and R̂k denote the warped images of

Ik, Tk and Rk, respectively. Since the warping is estimated

by dominant transmitted scene, T̂k’s are well matched to
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Figure 2. The gradient map with the minimum magnitudes. (a)

Warped glass images. (b) The gradient map with the minimum

magnitudes. (c) The color image reconstructed from (b). The val-

ues of the gradient map are amplified for visualization purpose.

one another while R̂k’s are largely different from one an-

other. Thus we have the following relationship:

Îk(p) = T̂k(p) + R̂k(p) ≃ T (p) + R̂k(p) (2)

where T denotes the true transmitted image in the reference

glass image.

2.2. Gradient Characteristics of Glass Images

We investigate the characteristics of gradients in the

warped glass images. In practice, we filter the gradient

maps by using the Gaussian filter with standard deviation

of 1 to alleviate the effect of noisy gradients and the errors

in warping transform. Also, the proposed algorithm pro-

cesses the x and y directional gradient maps independently.

For simpler notation, we hence use ∇ to represent either the

x directional derivative or the y directional derivative.

From (2), we have

∇Îk(p) ≃ ∇T (p) +∇R̂k(p) (3)

which means that the gradients of transmission images are

consistent while that of reflection images are varying across

the warped glass images. Moreover, according to the prop-

erty of sparse gradient in natural images [8], we can as-

sume that salient edges belonging to the transmission im-

age and the reflection image rarely appear at the same pixel

locations simultaneously. In other words, at a given pixel

p with large |∇Îk(p)|, either |∇T (p)| ≫ |∇R̂k(p)| or

|∇T (p)| ≪ |∇R̂k(p)| holds. Therefore, we approximate

the magnitude of gradient as

|∇Îk(p)| ≃ |∇T (p)|+ |∇R̂k(p)|. (4)

We observe the magnitude of gradient across multiple

warped images. From (4), when p lies on a salient edge of

the transmission image, it is highly probable that multiple

warped images have a consistent large value of |∇T (p)| and

negligible small |∇R̂k(p)|’s at p. However, when p lies

on a salient edge of one of the reflection images, |∇T (p)|
becomes relatively small in all images and |∇R̂k(p)|’s are

also small except the one image.

We define Gmin as the map of gradient with the minimum

magnitude among the warped glass images such that

Gmin(p) = argmin
∇Îk(p)

{

|∇Îk(p)|
}

. (5)

Based on the observed characteristics of gradients in typical

glass images, Gmin is close to ∇T which is derived from the

true transmission image.

Fig. 2 shows Gmin obtained from a set of warped glass

images. The red boxes indicate the photographer’s hands re-

flected on a pane of glass. Fig. 2(a) shows that the reflected

scenes are varying across the multiple images, but the trans-

mitted scene is consistent in the multiple images. Also, as

shown in the red box in Fig. 2(b), Gmin rarely highlights the

salient edges associated with the reflected scenes. Hence

we regard Gmin as an estimate of the gradient map for the

desired transmission image. Fig. 2(c) shows a color image

reconstructed from Gmin by using [16], where we see that the

undesired reflection artifacts are successfully removed, but

the salient contours and textures of the transmission image

are also blurred.

2.3. Gradient Reliability

To estimate the gradient map for the transmission image

more reliably, we compute a reliability map Πk for each

warped glass image Îk, such that the pixels having large

gradient magnitudes associated with the reflection images

are assigned low reliability values, and high values other-

wise. In practice, we define

Πk(p) = exp

(

−α
δ(p)

σδ

)

(6)

where δ(p) = |∇Îk(p)| − |Gmin(p)|, and σδ is the standard

deviation of δ(p)’s in ∇Îk. α is empirically set to 3.

Specifically, when p comes from a homogeneous region

having relatively small |∇Îk(p)|, then Πk(p)’s have high
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Figure 3. Gradient reliability maps. (a) Two warped glass images

and (b) their gradient reliability maps.

reliability values for all the multiple images since all of

the |∇Îk(p)|’s are similarly small. Also, when p lies on

a salient edge of the transmission image T , |∇Îk(p)|’s have

almost same large values across the multiple images and

thus Πk(p)’s become close to 1 for all the multiple images.

On the contrary, when p comes from a salient edge in one

of the multiple reflection images, |∇Îk(p)| becomes large

in only one image while |Gmin(p)| is relatively small, which

results in a low reliability of Πk(p). In this work, we com-

pute a gradient reliability map for each color channel, re-

spectively, and take the average reliability map for the three

color channels.

Fig. 3 shows two warped glass images and their corre-

sponding reliability maps where red and blue colors de-

pict high and low reliability values, respectively. We ob-

serve that the homogeneous regions and the salient edges of

the transmission image are assigned high reliability values,

while the edges of the reflection images are assigned low

values, for example the silhouette of the person in the first

image and the pattern on the sidewalk in the second image.

Note that, some pixels located on the salient edges of the

transmission image have relatively low reliability values in

one image, but the corresponding pixels in another image

usually have high reliability values.

2.4. Gradient Completion for Transmission Image

We estimate the gradient map associated with only the

transmission image by suppressing the gradients of low re-

liability derived from the reflection images. We formulate

this gradient estimation as a low-rank matrix completion

problem in gradient domain, called gradient completion.

Low-rank matrix completion has been used in many ap-

plications such as image classification [21], restoration [4],

saliency detection [9] and deraining [5]. However, to the

best of our knowledge, this is the first attempt to apply

the low-rank matrix completion technique to image gradi-

ent domain for reflection removal.

Based on the assumptions and observations on typical

glass images, we see that the warped glass images exhibit

a consistent and dominant gradient map of the transmission

image while exhibiting varying gradient maps of the reflec-

tion images. It means that a pixel on a strong reflection edge

in one image has a low reliability value, but it should have

high reliability values in the other images. Therefore, we

can recover optimal transmission gradients at the pixels on

the reflection edges in one image by using the transmission

gradients from the other images. In particular, we perform

the gradient completion in a patch-wise manner. We first

divide an initial gradient map of a reference glass image

into local patches. Then we suppress the gradients associ-

ated with the reflection image by completing each gradient

patch using the similar patches selected from the gradient

maps of the other warped glass images.

Without loss of generality, let us take the first image Î0
among K glass images as a reference image to be recovered.

Let g be the column vector of a local patch of the gradient

map ∇Î0. We search for 2(K − 1) most similar patches

to g from the other K − 1 gradient maps ∇Îk’s for k =
1, 2, ...,K − 1. We define a distance d(gi, gj) between two

gradient patches gi and gj as a sum of weighted squared dif-

ferences between the corresponding gradient values, given

by

d(gi, gj) =
∥

∥wij ◦ (gi − gj)
∥

∥

2
(7)

where ◦ is the element-wise multiplication. wij is a weight

vector associated with a pair of gi and gj which is computed

by using the corresponding reliability values.

wij =
1

Zij

(πi ◦ πj) (8)

where π is a column vector of the reliability values of gra-

dients in the patch g, and Zij is a normalizing factor which

makes the sum of all elements in wij becomes 1. Note that

the distance d(gi, gj) compares the gradients mainly at the

pixels in reflection-free areas, and less considers the edges

in the reflection images, according to their reliability.

Then we construct a matrix G composed of the target

patch g and the 2(K − 1) most similar patches gi’s, given

by

G =
[

g, g1, g2, ..., g2(K−1)

]

. (9)

Note that Îk’s are matched to one another by warping. Thus

we find the patches gi’s, most similar to a target patch g

in ∇Î0, only within the 5 pixel distance from the matched

locations in the other gradient maps ∇Îk’s, respectively. We

also generate a matrix Π using the corresponding reliability

values to G, given by

Π =
[

π,π1,π2, ...,π2(K−1)

]

. (10)
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(c) (d)

Figure 4. Gradient completion. (a) An input reference glass image.

The completed gradient maps for the transmission image at the (b)

1st, (c) 2nd, and (d) 10th iterations, respectively. The values of

gradient maps are amplified for visualization purpose.

Then we apply a low-rank matrix completion scheme to

recover a complete gradient matrix X from G, which is as-

sociated with the transmission image. We adopt the two

constraints. First constraint is given by

Π ◦ X = Π ◦ G (11)

which encourages the resulting matrix X preserves the orig-

inal gradients in G at the pixels in the reflection-free areas

with high reliability values. Second constraint is given by

|(1 −Π) ◦ X| ≤ |(1 −Π) ◦ G| (12)

where 1 is the matrix of all 1 elements, and ≤ and | · | denote

the element-wise inequality and the element-wise absolute

value operator, respectively. It means that the magnitude of

the recovered gradient should be equal to or less than that of

the original gradient, from (4). Consequently, we formulate

a low-rank matrix completion problem as

minimize ‖X‖∗ (13)

subject to Π ◦ X = Π ◦ G,

|(1 −Π) ◦ X| ≤ |(1 −Π) ◦ G|,

where ‖X‖∗ is the nuclear norm of X.

To obtain an optimal solution to (13), we apply the ex-

pectation maximization (EM) algorithm [5, 19] in an iter-

ative manner. An initial X(0) is set to Π ◦ G to suppress

the gradients with low reliability. At the t-th iteration, a

low-rank estimate Y(t) is obtained by thresholding the sin-

gular values of X(t) with a threshold of 0.7. Then we re-

place the elements in Y not satisfying the constraint in (12)

with that of G. We update the solution matrix as X(t+1) =
Π ◦ G + (1 −Π) ◦ Y(t) considering the constraint in (11).

The iteration stops when

∥

∥

∥
Y(t+1) − Y(t)

∥

∥

∥

F
< 0.01, where

‖·‖F is the Frobenius norm, or when the number of itera-

tions exceeds 10. Hence we obtain a resulting gradient map

Gcomp,0 completed from the initial gradient map of the refer-

ence image. In a same way, we can also obtain a completed

gradient map Gcomp,k by applying the low-rank matrix com-

pletion algorithm to the k-th warped glass image.

Note that the local patches partially overlap one another

by half of the patch size, and thus more than one completed

gradients are computed at each pixel. We take the gradient

of the largest magnitude to exploit the information of orig-

inal image. Also, the gradient completion process is per-

formed on each color channel, respectively. Fig. 4 shows

the results of gradient completion on an input glass image

shown in Fig. 4(a) where the photographer’s body is a re-

flection artifact. Figs. 4(b), (c) and (d) visualize the esti-

mated gradient maps for the transmission image at the first,

second, and 10th iterations, respectively. We see that, at

the first iteration, the gradients of the reflection image are

successfully removed, but the gradients of the transmission

image are also suppressed. However, as iteratively complet-

ing the low-rank matrix X, the resulting gradient map high-

lights most of the salient edges in the transmission image

faithfully as shown in Fig. 4(d).

2.5. Reconstruction of Transmission Image

Finally, we obtain an optimal gradient map Gopt for the

transmission image by selecting the gradient of the largest

magnitude at each pixel among the completed gradient

maps Gcomp,k’s, such that

Gopt(p) = argmax
Gcomp,k(p)

{|Gcomp,k(p)|} . (14)

Then we reconstruct a color image for the transmitted scene

from Gopt using [16], where we initialize the color values

at the boundary pixels as the minimum colors among the

multiple warped images.

3. Experimental Results

We evaluate the performance of the proposed algorithm

using 32 test sets of glass images: 12 test sets are provided

in [10], 2 test sets are provided in [20], and 18 test sets are

newly captured. Each test set is composed of from three to

seven glass images taken at slightly different camera loca-

tions. We use a patch size of 32 × 32 for gradient comple-

tion. In this paper, we show the reflection removal results

on 12 test sets of glass images, and that of the remaining

sets are provided in the supplementary material.

Fig. 5 shows the performance of the proposed reflection

removal algorithm. Figs. 5(a) and (b) show the reference

glass images. The initial gradient maps shown in Fig. 5(c)

include the salient edges of the transmission images as well

as the reflection images together, however, the resulting op-

timal gradient maps preserve the edges of the transmission
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(a) (b) (c) (d) (e) (f) (g)

Figure 5. Reflection removal results of the proposed algorithm. (a) Reference glass images. (b) Reference glass images and (c) the initial

gradient maps in zoomed-in areas. (d) The completed optimal gradient maps and (e) the reconstructed transmission images in zoomed-in

areas. (f) The reconstructed transmission images and (g) the suppressed reflection images.

(a) (b) (c) (d)

Figure 6. Comparison of the reflection removal algorithms. (a) Reference glass images. (b) The reconstructed transmission images by

using (b) [11], (c) [10] and (d) the proposed algorithm, respectively.

images only and suppress the edges of the reflection im-

ages as shown in Fig. 5(d). Figs. 5(e) and (f) represent

the reconstructed color images for the transmitted scenes,

and Fig. 5(g) shows the removed reflection images. We see

that the proposed algorithm faithfully reconstructs the target

transmitted scenes, for example, the bag and the suitcase,
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Figure 7. More comparison of the reflection removal algorithms. (a) Reference glass images. (b) The reconstructed transmission images

by using (b) [11], (c) [10] and (d) the proposed algorithm, respectively.
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and effectively suppresses the unwanted reflected scenes,

for example, the photographer.

We compare the results of the proposed algorithm with

that of the two existing methods: [10] and [11]. We use

the source codes for [10] and [11] provided in the authors’

website1. While [10] uses multiple glass images, [11] uses

a single glass image for reflection removal. Fig. 6 com-

pares the reconstructed transmission images from the ref-

erence glass images on two test sets containing complex

patterns and textures. The reflection artifacts still exist in

the single image based method as shown in Fig. 6(b). As

shown in Fig. 6(c), [10] yields more plausible results than

that of [11]. However, it fails to preserve the original tex-

tures in the transmitted scenes accurately, since the gradi-

ents in textured regions are estimated by solving an opti-

mization problem based on the gradient sparsity assump-

tion. In contrary, the proposed algorithm adopts low-rank

matrix completion and recovers the gradients of the trans-

mitted scene in textured regions using the similar gradients

searched from the multiple images, and therefore provides

more faithful transmission images as shown in Fig. 6(d).

Fig. 7 also compares the reflection removal algorithms

on more test sets of glass images, where we observe similar

results. As shown in the first to third rows, [10] yields com-

parable results to that of the proposed algorithm. However,

[10] sometimes changes the original colors of the transmit-

ted scenes significantly and fails to correctly separate the

gradients between transmission images and reflection im-

ages, as shown in the last two rows. On the contrary, the

proposed algorithm provides desired transmission images

reliably in most test images. However, the proposed al-

gorithm and the existing technique [10] fail to recover the

transmission image faithfully for the neck of the mannequin

as shown in the third row of Fig. 7, since the SIFT-flow pro-

vides locally misaligned images. Consequently, the experi-

mental results demonstrate that the proposed algorithm out-

performs the existing methods qualitatively and is a more

promising tool for reflection removal.

In addition, Fig. 8 provides the comparative results of

the proposed algorithm and Xue et al.’s method [20]. Since

the source code of [20] is not publicly available, we use the

two datasets and the results of [20] which are uploaded in

the authors’ website2. Note that [20] estimates dense mo-

tion fields for not only the transmission image but the re-

flection image, respectively, while the proposed algorithm

warps multiple glass images by using the features of trans-

mission images mainly based on the assumption that the

transmitted scenes are much more dominant than the re-

flected scenes in typical glass images. Both of the proposed

algorithm and [20] achieve good results on the glass im-

age in Fig. 8(a) which satisfies our assumption. However,

1http://yu-li.github.io
2https://sites.google.com/site/obstructionfreephotography

(a) (b)

Figure 8. Comparison of the reflection removal results on the two

datasets in [20]. From top to bottom, reference glass images, the

reconstructed transmission images by using [20] and the proposed

algorithm, respectively.

the proposed algorithm fails to work on the glass image in

Fig. 8(b), where the reflection image of the check shirt is

comparably dominant to the transmission image.

4. Conclusion

In this paper, we adopted a low-rank matrix comple-

tion technique for reflection removal of multiple glass im-

ages. We first warp the multiple glass images to a refer-

ence image under the assumption that transmitted scenes

exhibit more dominant features than reflected scenes in typ-

ical glass images. We design gradient reliability of pixels

by using the characteristics that the warped transmission

images are consistent while the warped reflection images

are varying across the multiple glass images. Then we per-

form the low-rank matrix completion in gradient domain to

recover the gradients of the transmission image while sup-

pressing the gradients of the reflection images. The result-

ing optimal gradients are used to reconstruct a transmission

image. Experimental results demonstrate the proposed al-

gorithm yields a faithful result of reflection removal and

outperforms the existing algorithms on typical glass images

with dominant transmitted scenes. Future research includes

the extension of the low-rank matrix completion concept for

reflection removal using a single glass image.
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