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Abstract

Gaussian Processes (GPs) are effective Bayesian predic-

tors. We here show for the first time that instance labels

of a GP classifier can be inferred in the multiple instance

learning (MIL) setting using variational Bayes. We achieve

this via a new construction of the bag likelihood that as-

sumes a large value if the instance predictions obey the MIL

constraints and a small value otherwise. This construction

lets us derive the update rules for the variational parame-

ters analytically, assuring both scalable learning and fast

convergence. We observe this model to improve the state

of the art in instance label prediction from bag-level su-

pervision in the 20 Newsgroups benchmark, as well as in

Barrett’s cancer tumor localization from histopathology tis-

sue microarray images. Furthermore, we introduce a novel

pipeline for weakly supervised object detection naturally

complemented with our model, which improves the state of

the art on the PASCAL VOC 2007 and 2012 data sets. Last

but not least, the performance of our model can be further

boosted up using mixed supervision: a combination of weak

(bag) and strong (instance) labels.

1. Introduction

Recent years have seen a tremendous increase in our

ability to collect ever larger data sets automatically at ever

decreasing costs. This has further widened the gulf between

our data collection and labeling capacities. Weakly super-

vised learning has emerged as an active area of machine

learning to bridge this gap. It targets learning effective pre-

dictors from minimal annotator effort. Among the many

weakly supervised learning approaches, multiple instance

learning (MIL) [1] stands out as an excellent match to com-

puter vision. MIL assumes that the training data is parti-

tioned into groups of instances, called bags, and labels are

available only at the level of entire groups. A bag is given a

∗The main part of this work has been done while the author was with

Heidelberg Collaboratory for Image Processing (HCI), Heidelberg Univer-

sity.

positive label if at least one of its instances contain the target

pattern, and a negative label if none of its instances contain

it. The difficulty of this setting arises from the fact that the

labels of individual instances in positive bags are not known

at training time. The MIL model, hence, needs to account

for this missing information. MIL has been shown to be

greatly beneficial in image categorization [3, 7, 27].

Gaussian Processes (GPs) [33] are commanding much

attention of the machine learning community due to their

high potential in supervised learning. They are able to fit

complex non-linear decision boundaries thanks to their in-

herent kernelization. The high expressive power of GPs can

also be understood from their proven equivalence to a mul-

tilayer perceptron with infinitely many hidden neurons [32].

The probabilistic nature of GPs allows them to handle un-

certainty in a principled manner [10].

MIL is a supervised learning task with missing instance

labels. The uncertainty in these latent variables makes GP

modeling a natural fit. Even so, there has only been limited

work on GP-based approaches to MIL models to date. Kim

and Torre [23] were the first to use GPs in the MIL setting,

by applying the softmax approximation to a Bernoulli like-

lihood and performing inference using Laplace’s method.

This approach suffers from two limitations: i) it does not

scale to large data sets due to the inversion of one Hessian

matrix per bag in each iteration, ii) the learned posterior is

not accurate since both softmax and Laplace’s method are

not tight approximations of the true modeling assumptions.

Recent work by Kandemir et al. [21] alleviates these issues

by relaxing the MIL assumption (by allowing a fraction of

positive predictions in negative bags) and performing vari-

ational inference. Although this approach yields a very ac-

curate bag-level predictor, it cannot predict instance labels

as the MIL assumption is violated during training.

We introduce the first adaptation of GPs to MIL that

affords variational inference and instance label prediction.

Furthermore, our construction allows learning the varia-

tional parameters by closed-form updates, resulting in fast

convergence. We achieve this tractability by a new bag-

level likelihood formulation that ensures consistency be-
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tween instance-level and bag-level predictions of the model.

We further extend this model to a large-margin setting,

which forces the immediate neighborhood of the decision

boundary to remain sparse. We observe this extension to

perform better in tasks with high overlap between classes.

Our model improves the state of the art in three applica-

tions: (i) categorization of postings in the 20 Newsgroups

data set, a standard benchmark for instance label predic-

tion with MIL, (ii) detection of Barrett’s cancer tumors from

histopathology tissue microarrays, and (iii) object detection

from natural images in the PASCAL VOC 2007 and 2012

data sets. We outperform existing approaches in PASCAL

VOC thanks to a novel processing pipeline where our GP-

based MIL model takes its place naturally. The source code

of our model is publicly available1.

2. Related Work

Among existing GP-based models [21, 23], none has tar-

geted the instance label prediction problem. However, there

does exist a whole range of alternative approaches. Liu et

al. [30] use a k-nearest-neighbour based approach, referred

to as the voting framework (VF/VFr). Li et al. [28] and

Wang et al. [44] use different SVM based models. Kan-

demir and Hamprecht [20] combine a MIL likelihood with

two Dirichlet Process mixture models, one per class (DP-

MIL). Kotzias et al. [24] introduce the Group-Instance Cost

Function (GICF), a special objective function to encour-

age smoothness between the instance labels and a method

that relies on convolutional neural networks (CNNs) for text

data to get higher level features for the instances.

Object detection (predicting the object type and locat-

ing its bounding box) can be interpreted as a MIL problem

when existence of the target pattern is known only at the

image level. Treating each image as a bag and patches ex-

tracted from that image as its instances fits exactly into the

MIL setup. In the fully-supervised setting, object detection

has seen huge improvements in recent years with the work

by Girshick et al. [12, 13] on using CNNs to create higher

order features for region proposals. These region proposals

are typically generated by off-the-shelf algorithms, such as

Selective Search [42], EdgeBoxes [49], Binarized normed

gradients [6] or AttractioNet [11]. More recent work treats

the region proposal generation as an integral part of the

pipeline that can be trained end-to-end [34, 35].

There has been a growing interest in weakly supervised

object detecion in the recent years. The seminal work of

Cinbis et al. [7] get region proposals from selective search,

compute CNN and Fisher vectors on top of them, and use

a multi-fold MIL approach for final prediction. Wang et

al. [43] use probabilistic Latent Semantic Analysis to learn

latent categories for their region proposals, which they ob-

1https://github.com/manuelhaussmann/vgpmil

tain again via selective search and represent by higher order

CNN features from a pretrained network. Bilen et al.’s WS-

DDN [3] follows the fast R-CNN approach more closely,

modifying its architecture to two streams, one for detection,

the other for classification. Kantorov et al. [22] extend this

two-stream approach by exploiting the context around re-

gion proposals. Following the observation that weakly su-

pervised localization algorithms often have more difficulty

with smaller objects than larger ones, Shi and Ferrari [37]

use a curriculum learning [2] approach that iteratively sorts

its proposed objects by size and learned weights. Similarly

to our approach, they rely on a neural network mostly to

generate high level features and train a classifier—in their

case an SVM—on the output. Li et al. [27] also split the

training process into two steps, focusing first on image level

classification and then adapting their net progressively to

detection. We discuss how our suggested pipeline relates

to the existing weakly supervised detection approaches in

Section 3.3.

2.1. Notation

The data set D = {(xn, yn)}Nn=1, consisting of N
instances xn ∈ R

d and their unobserved binary labels

yn ∈ {0, 1}, is partitioned into B non-overlapping bags,

with label Tb ∈ {0, 1} for each bag b. We denote with

{yi}b := {yi|i ∈ Bag b} the instance labels in bag b. The

MIL assumption is then that Tb = max{yi}b, i.e. the bag

label is positive if at least one instance label is positive and

zero otherwise. {yi}b−n is the collection of all labels in

bag b except for instance label yn.

N (·|µ,Σ) and Ber(·|π) denote the Normal and

Bernoulli distribution, respectively. ⟨X⟩p(X) is the expec-

tation of X with respect to distribution p(X) shortened

to ⟨X⟩. The Gram matrix between two data sets X =
{x1, ..., xN} ∈ RN×d and Z = {z1, ..., zM} ∈ RM×d

is denoted as KXZ ∈ RN×M , with (KXZ)ij = k(xi, zj).
We use the RBF kernel function k(xi, zj) = exp(−(xi −
zj)

⊤(xi−zj)/2l2) throughout the experiments and keep the

length-scale l fixed to
√
d. Finally, diag(·) returns a square

diagonal matrix with the values of the input vector on the

diagonal (or the diagonal values for a matrix input).

3. Variational Bayes for Gaussian Processes

under MIL

For a given data set X = {x1, ..., xN} and correspond-

ing labels y = {y1, ..., yN}, GP classification [33] is given

by

f |X ∼ N (f |0,KXX), (1)

y|f ∼
N
∏

n=1

Ber(yn|σ(fn)). (2)
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Figure 1: Plate diagram for VGPMIL. Observed variables

are represented by grey circles and latent variables by white

circles. Dashed arrows and circles show the additional in-

teractions introduced by the LM-VGPMIL extension.

This model places a GP prior over the decision margins f ,

squeezes them by a logistic sigmoid function2 to the unit in-

terval, and feeds the outcome to a Bernoulli mass function

as the mean parameter. The sign of f determines the class

and its magnitude how confident the prediction is. This

full GP model is limited to small data sets due to the ne-

cessity of inverting the kernel matrix KXX at the cost of

O(N3). This cost is alleviated by sparsifying the GP fol-

lowing the fully independent training conditional (FITC)

approximation [39], which introduces a set of inducing

points Z = {z1, ..., zM} and corresponding output u, mir-

roring the relation between X and f , so that u and f are

jointly normal distributed

f |X,Z, u ∼ N (f |KXZK
−1
ZZu,K), u|Z ∼ N (0,KZZ),

where K := diag(KXX −KXZK
−1
ZZKZX). FITC reduces

the cost toO(M2N), where M ≪ N is a design parameter.

In the MIL setting, we have only bag-level labels. GP-

MIL of Kim and Torre [23] adapts the GP classifier to this

setting by p(Tb|{fi}b) = Ber(Tb|σ(max{fi}b)). Approxi-

mating the indifferentiable max with softmax: max{fi}b ≈
log (

∑

i exp(fi)), they propose

f |X ∼ N (f |0,KXX),

T |f ∼
B
∏

b=1

1
/(

1 +
(

∑

i∈Bag b

efi
)−Tb

)

.

They infer this model using Laplace’s method, which un-

fortunately involves calculating and inverting an N × N
Hessian matrix in each iteration. Even though this ma-

trix is block-diagonal, it consists of Nb × Nb non-zero

blocks for each bag of size Nb, limiting scalability. Further-

more, the prediction performance suffers from two coarse

2σ(a) = 1/(1 + e−a)

approximations: i) softmax, which diverges from the exact

max when the values are evenly distributed, ii) Laplace’s

method, which approximates a potentially multimodal pos-

terior with a single mode.

We take an alternative approach and directly represent

the (latent) binary instance labels. One of our core con-

tributions is the following parametrization of the bag label

likelihood

p(Tb|{yi}b) =
(

H
H+1

)Gb
(

1
H+1

)1−Gb

= HGb

H+1 , (3)

with Gb := Tb max{yi}b + (1 − Tb)(1 − max{yi}b) and

a positive constant H . Gb equals one if the MIL constraint

(Tb = max{yi}b) is fulfilled and zero otherwise. To those

states Equation 3 assigns a high probability and acts as a

noisy version of the MIL assumption, with the level of noise

being controlled by H , becoming exact as H approaches in-

finity. A reasonably large H (e.g. 100) works well in prac-

tice. Sparsifying the GP prior for scalability, the model is

u|Z ∼ N (u|0,KZZ), (4)

f |X,Z, u ∼ N
(

f |KXZK
−1
ZZu,K

)

, (5)

y|f ∼
N
∏

n=1

Ber
(

yn|σ(fn)
)

, (6)

T |y ∼
B
∏

b=1

HGb

H + 1
, (7)

the plate diagram of which is illustrated in Figure 1. We

refer to this model as Variational Gaussian Process Multi-

ple Instance Learning (VGPMIL). We will show in the next

subsection that this model can be trained efficiently with

closed form updates using variational inference, avoiding

the necessity of gradient descent and hence the need for tun-

ing a learning rate.

3.1. Inference

Using variational inference, we aim to approximate the

intractable posterior p(y, f, u|T,X) by a variational distri-

bution Q = q(u)p(f |u)∏n q(yn) (with simplified notation

q(yn) := qn(yn)). That is, we introduce variational distri-

butions over u and the instance labels yn. Consequently,

the inference problem is reformulated as the following op-

timization problem

argmin
Q

KL
(

Q||p(y, f, u|T,X,Z)
)

. (8)

This KL divergence can be rearranged as

log p(T |X) = KL
(

Q||p(y, f, u|T,X,Z)
)

+ ⟨log p(y, f, u, T |X)⟩ − ⟨logQ⟩,

where the last two terms are jointly known as the evidence

lower bound (ELBO). Since KL(q||p) ≥ 0, ∀q and the
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marginal likelihood p(T |X) forms an upper bound that is

independent of Q, minimizing the KL divergence is equiv-

alent to maximizing the ELBO. This minimization can be

achieved by updating each of the factors of Q to its opti-

mum, keeping the others fixed. One can show that (see e.g.

[4] for details) the optimal update for a factor q̃ of Q is3

log q̃ ← ⟨log p(T, y, f, u)⟩Q\q̃ + const, (9)

where ⟨·⟩Q\q̃ refers to the expectation of log p with respect

to the variational distribution Q except for q̃, the current

factor being updated, and the constant term can be deter-

mined by calculating the normalizing constant for q̃. In our

case this translates to finding updates for q(u) and q(yn).
Note that the factorization of the variational distribution is

the only assumption we make regarding these factors. The

actual distributional forms they eventually take are fully de-

termined by the update rules.

We handle the intractable combination of the Bernoulli

mass and the sigmoid function in its mean parameter in

Equation 6 with the Jaakkola bound [17]

σ(x) ≥ σ(ξ) exp

(

x− ξ

2
− λ(ξ)(x2 − ξ2)

)

, (10)

where λ(ξ) = 1
2ξ

(

σ(ξ)− 1
2

)

. This bound has been used for

variational inference of GPs for the first time by Kandemir

et al. [21] and gives us

Ber(yn|σ(fn)) ≥ exp
(

− fn+ξn
2 − λ(ξn)(f

2
n − ξ2n)

)

exp(ynfn)σ(ξn),

introducing a new variational parameter ξn for each yn.

Updating q(u). Equation 9 gives us q(u) = N (u|m,S)

with S ←
(

K−1
ZZKZXΛKXZK

−1
ZZ +K−1

ZZ

)−1
(11)

m← SK−1
ZZKZX

(

⟨y⟩ − 1
2

)

(12)

where Λ := 2diag
(

(λ(ξ1), ..., λ(ξN ))
)

. The update for the

variational parameters is ξ2n ← ⟨f2
n⟩, i.e.

ξ2n ← KxnZK
−1
ZZ(mm⊤ + S)K−1

ZZKZxn
+Knn,

where Knn refers to the variance of p(f |u) in Equation 5.

Updating q(yn). For the updates for the variational dis-

tributions of the instance labels, we need to deal with the

max{yi}b operator, which is neither differentiable nor does

it allow analytical updates. In order to update an individual

instance yn, we decompose the max as

max{yi}b = yn +max{yi}b−n − yn max{yi}b−n, (13)

3We omit the conditioning on X,Z from the notation.

which holds since yi ∈ {0, 1}. Following Equation 9 again,

we get the update rule q(yn) = Ber(yn|πn) with4

πn ← σ
(

⟨fn⟩+ logH ·
(

2Tb + ⟨max{yi}b−n⟩

− 2Tb⟨max{yi}b−n⟩ − 1
)

)

, (14)

where ⟨fn⟩ = ⟨fn⟩p(f |u)q(u) = KxnZK
−1
ZZm. The first

term in the sigmoid contains the information of the current

instance given by the sparse GP, while the second consists

of two factors. The first applies a penalty of logH , the size

and sign of which is controlled by the second factor, that

checks the MIL constraint. Consider the two possible cases

Tb = 1 : πn ← σ
(

⟨fn⟩+ logH ·
(

1− ⟨max{yi}b−n⟩
)

)

,

Tb = 0 : πn ← σ
(

⟨fn⟩+ logH ·
(

⟨max{yi}b−n⟩ − 1
)

)

.

By approximating ⟨max{yi}b−n⟩ with max{⟨yi⟩}b−n, the

model picks the largest expected value of the instance la-

bels in bag b if yn were not part of that bag. For a positive

bag, if the model predicts existence of at least one positive

instance in this bag, it will drag the second term towards

zero, indicating that the MIL constraint is fulfilled. Hence,

the expected label for yn depends only on its local evidence

⟨fn⟩. If, however, the other instances are all predicted to

be negative, the model uses the global (bag-level) evidence

and logH will push instance yn strongly towards the posi-

tive side, overwhelming local evidence. On the other hand,

for a negative bag, max{⟨yi⟩}b−n will be close to zero, giv-

ing logH a negative sign. This time the model forces πn

towards zero and to once more satisfy the MIL constraint.

Mixed strong/weak supervision. A nice property of our

model is that it can directly combine weak and strong super-

vision by simply fixing the corresponding variational dis-

tributions for these instances. As it is already known for

negative bags that all their instances are negative, full su-

pervision is always given for negative bag instances in the

MIL setting. However, as shown in Equation 14, full su-

pervision is helpful for positive bags. Furthermore, mixed

supervision is a more ecologically valid scenario for many

real-world applications, as we can always support a weakly

supervised data set by a small portion of fully supervised

observations with acceptable additional effort. A plausible

MIL model should benefit maximally from this support.

3.2. The large margin version

Although GPs are flexible learners, they have an inher-

ent regularization mechanism making the model immune

to overfitting [36]. Nevertheless, extremely high clutter

4See the Supplement for detailed derivations of the update rules and the

decomposition in Equation 13.
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of classes in challenging applications could destabilize the

model and confuse it by the noisy variations around the de-

cision margin. To overcome this, we introduce further mar-

gin control similarly to that of SVMs. It forces the model

to favour solutions that keeps the close neighborhood of

the margin as empty as possible. We achieve this by re-

placing the simple Bernoulli distribution for instance labels

yn|fn ∼ Ber(yn|σ(fn)) (Equation 6) by

gn|fn ∼ Ber
(

gn|σ(C(|fn| − V ))
)

, (15)

yn|fn, gn ∼ Ber
(

yn|σ(fngn)
)

. (16)

The gating distribution introduced in Equation 15 deter-

mines how confident the prediction on yn is. The param-

eters V and C tune the degree of regularization we pre-

fer to employ on the margin. C determines how strongly

the model will penalize margin violations in a similar spirit

to the C parameter of SVMs, by regulating how close the

sigmoid becomes to a step function. By shifting the sig-

moid V controls the margin we wish to enforce. A shift

with V = 2 can be interpreted as requiring the model to be

88% sure of the instance prediction.5 Its output gn forces

the model in Equation 16 to refrain from making decisions

if a prediction is dangerously close to the decision bound-

ary. gn serves as a gatekeeper that decides whether to let

fn pass to Equation 16. If the model is certain enough,

Ber(yn|σ(fngn)) ≈ Ber(yn|σ(fn)) as in the main model,

otherwise Ber(yn|σ(fngn)) ≈ Ber(yn|0.5). This way, the

model forces uncertain probabilities towards the decision

boundary, discarding them from the active set, as a pre-

diction on the decision boundary is effectively ignored in

a probabilistic model. This creates a large margin around

the boundary. After the modifications discussed above, the

large-margin variant of our model becomes (see Figure 1)

u ∼ N (u|0,KZZ), (17)

f |u ∼ N (f |KXZK
−1
ZZu,K), (18)

g|f ∼
N
∏

n=1

Ber
(

gn|σ(C(|fn| − V ))
)

, (19)

y|f, g ∼
N
∏

n=1

Ber
(

yn|σ(fngn)
)

, (20)

T |y ∼
B
∏

b=1

HGb

H + 1
, (21)

which we refer to as the Large-Margin VGPMIL (LM-

VGPMIL). We enforce large margins only during training.

We predict the instance labels on test bags for both of our

models identically to the basic GP classifier.

Given the structural similarity to the VGPMIL model,

it can be learned with closed-form updates via variational

5Visualizations of C and V ’s effect can be found in the Supplement.
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Figure 2: Visualization of the difference between LM-

VGPMIL and the standard VGPMIL. Histogram of the ex-

pected instance labels for both models after training on the

Barrett’s cancer data set. While VGPMIL has a bimodal

structure with two clusters around zero and one, the LM-

VGPMIL has a trimodal structure, pushing uncertain in-

stances towards 0.5, hence effectively eliminating them.

inference as well. Our variational distribution in this case

is given by Q = q(u)p(f |u)∏n q(yn)q(gn). The update

rules for each q(·) are given in the Supplement6. Fig-

ure 2 shows the large margin effect for the Barrett’s cancer

data set discussed later in the experiments, where the LM-

VGPMIL improves two percentage points on the VGPMIL.

While there exist prior approaches to Bayesian large-

margin learning [15, 26], ours is the first one to apply this

idea to the MIL setting, which we believe to be valuable for

the computer vision community.

3.3. Object detection with VGPMIL

Apart from its methodological novelty, our VGPMIL can

serve as an essential building block of a weakly supervised

object detection pipeline, which consists of three standard

modules: (i) a region proposal generator, (ii) a feature ex-

tractor, and (iii) a classifier (See Figure 3). For the fully

supervised setting, R-CNN [13] achieved a drastic improve-

ment in prediction performance using CNNs as feature ex-

tractors. The follow-up work [12, 18] brought additional

improvements by joining the latter two modules (and com-

bining computations). An end-to-end trained version of R-

CNN [35] outperformed all its predecessors.

The recent trend in weakly supervised object detection

follows adaptations of the same three-module pipeline. Cin-

bis et al. [7] cascade modules as separate processing steps,

6To retain closed-form updates, we need to use the approximation

|fn| ≈ (2⟨yn⟩ − 1)fn. The factor (2⟨yn⟩ − 1)—the expected instance

label rescaled to [−1, 1]—ensures the positivity of the whole expression

as the signs of the two factors should agree. This introduces mutual depen-

dence between g and y, resulting in a directed cyclic graphical model [40].

Variational inference applied to this setting is analogous to loopy belief

propagation. Hence, variational parameter updates no longer guarantee a

non-decreasing ELBO. However, our experimental results show that this

does not harm performance in practice.
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Figure 3: General weakly supervised detection pipeline and how different methods fit into it. Colored boxes group the

end-to-end trained parts of the pipeline, while colored arrows indicate disjoint processing steps.

representing the weakly-supervised counterpart of the plain

R-CNN. Bilen et al. [3] achieve better results by joining

feature extraction and MIL classification via a CNN, while

keeping region proposal generation separate.

A main weakness of off-the-shelf region proposal gen-

erators is that the priority score they assign to proposals

does not retrieve target patterns with high recall. Bilen et al.

solve this issue by an internal scoring mechanism and train-

ing a committee of CNNs. Li et al. [27] assign a heuristic

score to region proposals and train one single CNN inter-

changeably, which lets them achieve similar performance

levels with much less computational effort.

From prior work, we deduce three observations: i) end-

to-end training improves performance, ii) scoring region

proposals with high recall is of critical importance, iii) all

three weakly supervised object detection methods build one

module on a CNN pretrained on supervised external data.

We merge all these three lessons learned and construct a

pipeline orthogonal to previous work. We perform region

proposal generation and feature extraction jointly and re-

cruit a pretrained CNN for this task. This translates pre-

cisely to feeding images into the region proposal network

part of a Faster R-CNN trained on another data set and us-

ing the feature map of the fully-connected layer assigned

to each region proposal as its feature vector. Finally, we

feed these feature vectors into a powerful and scalable MIL

predictor for final detection. Our VGPMIL serves as such

a predictor. It is powerful because it can learn as complex

decision boundaries as a multilayer perceptron with infinite

number of neurons [32]. It is scalable because its update

rules scale linearly with the training set size. Figure 3 visu-

alizes how our approach differs from two seminal works in

the way it composes the modules.

4. Experiments

We evaluate our models in three settings: (i) the

20 Newsgroups data set introduced by [48], (ii) the Barrett’s

cancer data set introduced by [19], (iii) the PASCAL VOC

Method mAP

GPMIL [20] 0.40

VF [30] 0.59

VFr [30] 0.67

DPMIL [20] 0.70

GICF [24] 0.71

VGPMIL (ours) 0.65

VGPMIL & kPCA (ours) 0.72

LM-VGPMIL (ours) 0.73

Table 1: Instance label prediction scores on the 20 News-

groups data set. See Supplement for more detailed results.

2007 & 2012 data sets [9] with the goal of object detection.

The third setting is meant to illustrate how our model can be

an essential part in a pipeline that solves a mainstream com-

puter vision application with unprecedented success. We

chose the 20 Newsgroups data set as a standard benchmark

for instance label prediction with MIL. The Barrett’s cancer

data set is an interesting medical image analysis application

showing evidence that our findings can generalize across

application fields.

4.1. 20 Newsgroups data set

We evaluate our model on the 20 Newsgroups corpus as

introduced in [48]. It contains 20 data sets, each consist-

ing of 100 bags (50 positive and 50 negative). Each bag

contains around 40 instances of posts from 20 different top-

ics. Each instance is one post represented by the 200 top

TF-IDF features. Despite not being a computer vision ap-

plication, this data set is informative since it is curated to

test the extreme case in MIL where positive bags contain

very few (≈ 3%) positive instances. Consequently, it has

been widely used as a standard benchmark for weakly su-

pervised instance predictors.

Following previous work [20, 24, 30], we report results
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Method Accuracy (in %) F-Score

GPMIL [20] 65.8 0.54

DPMIL [20] 71.8 0.74

VGPMIL (ours) 75.1 0.76

LM-VGPMIL (ours) 77.3 0.77

Table 2: Performance scores for localization of Barrett’s

cancer tumors from histopathology tissue microarrays.

on ten times 10-fold cross validation using the readily avail-

able splits. We report the results in Table 1. As the classes in

this data set are poorly separated, LM-VGPMIL can show

its strength over VGPMIL. This can be seen from the fact

that VGPMIL comes much closer to the performance of

LM-VGPMIL when the input is preprocessed with Kernel

PCA, as done in [20]. Yet, LM-VGPMIL is still one per-

centage point ahead, benefiting from end-to-end learning of

the non-linear class separation and classification stages.

4.2. Barrett’s cancer data set

The second testbed for our model is localization of Bar-

rett’s cancer from histopathology tissue microarray images.

This is an interesting application field for weakly supervised

learning methods, since annotations for histopathology im-

ages can only be provided by expert pathologists. Because

such annotations are extremely expensive, any tool to alle-

viate the pathologist’s effort would be greatly valuable for

the field. We pursue our experiments on the data set kindly

supplied by the authors of [20], which consists of 210 tis-

sue slides (143 cancerous, 67 healthy) containing 14353

pixel patches/instances7, each represented by a 738 dimen-

sional feature vector8. We choose the inducing point count

M = 50 and initialize them to k-means centroids, follow-

ing prior art [16, 21]. We split the training instances based

on their bag labels and apply k-means to both classes sep-

arately, choosing k = 25. We construct the inducing point

set by concatenating the centroids found for both classes.

Table 2 reports the average accuracies and F1-Scores af-

ter four-fold cross-validation repeated five times. Both ver-

sions of our model perform markedly better than both the

baseline GPMIL and the previous state of the art DPMIL,

with the large-margin version of the model improving an-

other two percentage points on VGPMIL.

4.3. PASCAL VOC

The PASCAL VOC 2007 data set consists of 9963 im-

ages containing objects from 20 classes split into a train-

ing/validation (trainval) set of 5011 images and a test set of

4952 images, with VOC 2012 being roughly twice as large.

7They report 14303 instances due probably to a typographical error.
8See [19] for a detailed description of the features.

Method
VOC 2007 VOC 2012

mAP CorLoc mAP CorLoc

Cinbis et al. [7] 30.2 54.2 – –

Teh et al. [41] 34.5 64.6 – –

Kantorov et al. [22] 36.3 55.1 35.3 54.8

Shi and Ferrari [37] 37.2 64.7 – –

Bilen and Vedaldi [3] 39.3 58.0 – –

Li et al. [27] 39.5 52.4 – –

VGPMIL (ours) 46.1 66.0 34.6 58.3

LM-VGPMIL (ours) 43.1 62.5 37.8 60.8

Table 3: Performance scores on PASCAL VOC data sets.

mAP is reported on the test set, CorLoc on the trainval set.

See Supplement for more detailed results.

For simplicity, we train a separate model for each of the

classes following a one-versus-all approach9. We use the

region proposal network part of a Faster R-CNN as both the

region proposal generator and feature extractor. The net-

work architecture is based on the VGG-16 [38] and is pre-

trained on the MS-COCO data set [29] using a Caffe based

implementation10.

We treat each image as a bag and the top-ranking 50 re-

gion proposals for each region as the instances, giving us

for example on the PASCAL VOC 2007 data set 250550
training instances and 247600 test instances. We reduce the

input dimensionality from 4096 to 500 via principal com-

ponent analysis (PCA). Similarly to the previous experi-

ments, we use a set of 50 inducing points fitted via k-means

for the VGPMIL variants and keep them fixed throughout

training. We train our models for 20 iterations and ap-

ply non-maximum suppression on the predictions. We set

C = 2 and V = 2 for LM-VGPMIL as prior guesses. Fit-

ting these values to data with cross validation or gradient

descent could only improve the results further. We report

our results in Table 3 along with a comparison to the state

of the art. Following earlier work, we report both Correct

Localization (CorLoc) [8] on the trainval split and mean av-

erage precision (mAP) on the test split.

4.3.1 Mixed supervision

Our model extends easily to mixed supervision: Part of the

data is fully supervised and the (usually larger) rest con-

tains only image level labels. This is a relatively less stud-

ied setup for mainstream computer vision tasks, one rare

exception being Cinbis et al. [7]. One pitfall of the MIL

9VGPMIL can also be easily extended for the multiclass case, e.g. by

replacing the Bernoulli distribution in (6) with a multinomial distribution,

lower bounding it with the bound on the softmax introduced by [5]. How-

ever, we have observed this not to improve the results in PASCAL VOC

2007. Hence we report only the simpler binary output version.
10https://github.com/rbgirshick/py-faster-rcnn
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Figure 4: Object detection results for mixed supervision.

The plot shows the change of detection performance on

PASCAL VOC 2007 as the percentage of fully supervised

bags (i.e. instance-level supervision) increases, while the

others are still only weakly labeled at bag level. The scores

for Cinbis et al. [7] are estimated from their Figure 9.

setup is that a model is never exposed to a precise exam-

ple of the target pattern, which is prone to ambiguities (e.g.

are we searching for an aeroplane or a wing?). Even a tiny

amount of full supervision could solve this problem with ig-

norable annotation overhead. Furthermore, full supervision

allows us to group inducing points into more discriminative

groups. As Figure 4 shows, a small portion of strong super-

vision is sufficient to boost up performance.

4.4. Discussion

Both VGPMIL and LM-VGPMIL improve the state of

the art in three data sets and LM-VGPMIL also on PASCAL

VOC 2012. While LM-VGPMIL reaches highest perfor-

mance scores in 20 Newsgroups, Barrett’s cancer and VOC

2012 data sets, it lags three percentage points behind VGP-

MIL in VOC 2007. We speculate that this is due to the struc-

ture of the data. In VOC 2007, the pretrained deep neural

net we used for joint region proposal generation and feature

extraction is apparently able to achieve a high level of class

separation. Hence, regularizing the margin further does not

bring any benefit in this particular case. In contrast, the ad-

ditional parameters introduced into LM-VGPMIL lead to a

performance drop. On the other hand, the Barrett’s can-

cer and 20 Newsgroups data sets exhibit a high level of

class clutter, calling for models with robust predictions at

regions nearby the decision boundary. The same holds true

for the larger VOC 2012 data. In these cases, LM-VGPMIL

improves on the plain VGPMIL. Consequently, VGPMIL

catches up with LM-VGPMIL when the input data is pre-

processed with Kernel PCA, which performs dimensional-

ity reduction on the Hilbert space, leveraging class separa-

tion. We provide t-SNE [31] visualizations of Barrett’s can-

cer and PASCAL VOC 2007 data sets in the Supplement

Figure 1 to illustrate the difference between the levels of

class clutter in these two applications.

Our object detection pipeline improves the state of the art

in the PASCAL VOC data sets due to two reasons: i) better

region proposals represented with more expressive features

thanks to the deep network of [35] which is trained on ex-

ternal data to perform region proposal generation and ob-

ject detection jointly, ii) a powerful MIL algorithm that can

benefit maximally from the output of this network. Unfortu-

nately, it is not trivial to measure individual contributions of

these two factors to performance, since existing MIL classi-

fiers are either tailored to a pipeline taking raw region pro-

posals as input [3, 7, 27] or do not scale up to hundreds

of thousands of data points [1, 14, 23] or are not able to

predict instance labels [21, 25, 45]. To evaluate the influ-

ence of the proposal quality, we trained the model by Li et

al. [27], using their public implementation and default pa-

rameters, on our generated region proposals for VOC 2007.

This gave a performance of 31.9 mAP on the test set, indi-

cating that the proposals alone are not sufficient. Since ex-

isting MIL classifiers cannot evaluate both the influence of

the regions and their features jointly, we adapted the DMIL

model by [47] to allow for instance prediction to replace the

(LM-)VGPMIL part of the pipeline. This approach achieves

36.7 mAP, which puts it in the performance range of recent

methods, yet clearly below ours. This indicates that while

the CNN part of the pipeline is very powerful, a strong MIL

method as the second part is still necessary for state of the

art results.

By virtue of closed-form update rules, both VGPMIL

and LM-VGPMIL can be trained without requiring to fine

tune a learning rate. Furthermore, they both follow steep

learning curves and converge to their eventual prediction

scores within 20 iterations (See Supplement Figure 2).

5. Conclusion

We made GPMIL efficiently and scalably trainable by

variational inference with closed-form updates. We re-

ported experiments on three different applications where

our model improves the state of the art. We also demon-

strated that our model extends naturally to the mixed super-

vision setting, allowing the model to profit simultaneously

from bag-level and instance-level annotations.

Our model achieves a performance jump on the PASCAL

VOC detection tasks thanks to the end-to-end pretrained re-

gion proposal generator and feature extractor, also to its ef-

fective combination with our proposed VGPMIL model. In-

spired by how performance evolved from plain R-CNN to

Faster R-CNN, an interesting future direction is end-to-end

training of VGPMIL together with the preceding blocks.

This can be achieved using the recent Deep Kernel Learn-

ing [46] approach if its scalability bottleneck across input

dimensionality can be resolved.
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