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Abstract

We propose a novel superpixel-based multi-view convo-
lutional neural network for semantic image segmentation.
The proposed network produces a high quality segmentation
of a single image by leveraging information from additional
views of the same scene. Particularly in indoor videos such
as captured by robotic platforms or handheld and body-
worn RGBD cameras, nearby video frames provide diverse
viewpoints and additional context of objects and scenes. To
leverage such information, we first compute region corre-
spondences by optical flow and image boundary-based su-
perpixels. Given these region correspondences, we propose
a novel spatio-temporal pooling layer to aggregate infor-
mation over space and time. We evaluate our approach on
the NYU-Depth—V2 and the SUN3D datasets and compare
it to various state-of-the-art single-view and multi-view ap-
proaches. Besides a general improvement over the state-
of- the-art, we also show the benefits of making use of un-
labeled frames during training for multi-view as well as
single-view prediction.

1. Introduction

Consumer friendly and affordable combined image and
depth-sensors such as Kinect are nowadays commercially
deployed in scenarios such as gaming, personal 3D capture
and robotic platforms. Interpreting this raw data in terms
of a semantic segmentation is an important processing step
and hence has received significant attention. The goal is
typically formalized as predicting for each pixel in the im-
age plane the corresponding semantic class.

For many of the aforementioned scenarios, an image se-
quence is naturally collected and provides a substantially
richer source of information than a single image. Multiple
images of the same scene can provide different views that
change the observed context, appearance, scale and occlu-
sion patterns. The full sequence provides a richer observa-
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Figure 1: An image sequence can provide rich context and
appearance, as well as unoccluded objects for visual recog-
nition systems. Our Spatio-Temopral Data-Driven Pooling
(STD2P) approach integrates the multi-view information to
improve semantic image segmentation in challenging sce-
narios.

tion of the scene and propagating information across views
has the potential to significantly improve the accuracy of se-
mantic segmentations in more challenging views as shown
in Figure[T]

Hence, we propose a multi-view aggregation method by
a spatio-temporal data-driven pooling (STD2P) layer which
is a principled approach to incorporate multiple frames
into any convolutional network architecture. In contrast to
previous work on superpixel-based approaches 21,
we compute correspondences over time which allows for
knowledgeable and consistent prediction over space and
time.

As dense annotation of full training sequences is time
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consuming and not available in current datasets, a key fea-
ture of our approach is training from partially annotated se-
quences. Notably, our model leads to improved semantic
segmentations in the case of multi-view observation as well
as single-view observation at test time. The main contribu-
tions of our paper are:

e We propose a principled way to incorporate super-
pixels and multi-view information into state-of-the-
art convolutional networks for semantic segmentation.
Our method is able to exploit a variable number of
frames with partial annotation in training time.

e We show that training on sequences with partial anno-
tation improves semantic segmentation for multi-view
observation as well as single-view observation.

e We evaluate our method on the challenging semantic
segmentation datasets NYU-Depth-V2 and SUN3D.
There, it outperforms several baselines as well as the
state-of-the-art. In particular, we improve on difficult
classes not well captured by other methods.

2. Related work

2.1. Context modeling for fully convolutional net-
works

Fully convolutional networks (FCN) [26], built on deep
classification networks [[19, 134], carried their success for-
ward to semantic segmentation networks that are end-to-end
trainable. Context information plays an important role in
semantic segmentation [28]], so researchers tried to improve
the standard FCN by modeling or providing context in the
network. Liu e al. [24] added global context features to a
feature map by global pooling. Yu et al. [39] proposed di-
lation convolutions to aggregate wider context information.
In addition, graphical models are applied to model the re-
lationship of neuron activation [5} 140l 25| [22]]. Particularly,
Chen et al. [5] combined the strengths of conditional ran-
dom field (CRF) with CNN to refine the prediction, and thus
achieved more accurate results. Zheng et al. [40] formu-
lated CRFs as recurrent neural networks (RNN), and trained
the FCN and the CRF-RNN end-to-end. Recurrent neural
networks have also been used to replace graphical models
in learning context dependencies [3. [33} 121], which shows
benefits in complicated scenarios.

Recently, incorporating superpixels in convolutional net-
works has received much attention. Superpixels are able
to not only provide precise boundaries, but also to provide
adaptive receptive fields. For example, Dai et al. [§] de-
signed a convolutional feature masking layer for semantic
segmentation, which allows networks to extract features in
unstructured regions with the help of superpixels. Gadde et
al. [12] improved the semantic segmentation using super-
pixel convolutional networks with bilateral inception, which

can merge initial superpixels by parameters and generate
different levels of regions. Caesar et al. [4] proposed a
novel network with free-form ROI pooling which leverages
superpixels to generate adaptive pooling regions. Arnab et
al. [2]] modeled a CRF with superpixels as higher order
potentials, and achieved better results than previous CRF
based methods [5 40]. Both methods showed the merit
of providing superpixels to networks, which can generate
more accurate segmentations. Different from prior works
[12, 4], we introduce superpixels at the end of convolutional
networks instead of in the intermediate layers and also inte-
grate the response from multiple views with average pool-
ing, which has been used to replace the fully connected lay-
ers in classification [23]] and localization [41]] tasks success-
fully.

2.2. Semantic segmentation with videos

The aim of multi-view semantic segmentation is to em-
ploy the potentially richer information from diverse views
to improve over segmentations from a single view. Couprie
et al. [1] performed single image semantic segmentation
with learned features with color and depth information, and
applied a temporal smoothing in test time to improve the
performance of frame-by-frame estimations. Hermans et
al. [[16] used the Bayesian update strategy to fuse new clas-
sification results and a CRF model in 3D space to smooth
the segmentation. Stiickler ef al. [35] used random forests
to predict single view segmentations, and fused all views
to the final output by a simultaneous localization and map-
ping (SLAM) system. Kundu et al. [20] built a dense 3D
CRF model with correspondences from optical flow to re-
fine semantic segmentation from video. Recently, McCor-
mac et al. [27] proposed a CNN based semantic 3D map-
ping system for indoor scenes. They applied a SLAM sys-
tem to build correspondences, and mapped semantic labels
predicted from CNN to 3D point cloud data. Mustikovela
et al. [29] proposed to generate pseudo ground truth an-
notations for auxiliary data with a CRF based framework.
With the auxiliary data and their generated annotations, they
achieved a clear improvement. In contrast to the above
methods, instead of integrating multi-view information by
using graphical models, we utilize optical flow and image
superpixels to establish region correspondences, and design
a superpixel based multi-view network for semantic seg-
mentation.

3. Fully convolutional multi-view segmentation
with region correspondences

Our goal is a multi-view semantic segmentation scheme,
that integrates seamlessly into exciting deep architectures
and produces highly accurate semantic segmentation of a
single view. We further aim at facilitating training from
partially annotated input sequences, so that existing datasets
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Figure 2: Pipeline of the proposed method. Our multi-view
semantic segmentation network is built on top of a CNN. It
takes a RGBD sequence as input and computes the semantic
segmentation of a target frame with the help of unlabeled
frames. We use superpixels and optical flow to establish
region correspondences, and fuse the posterior from multi-
ple views with the proposed Spatio-Temporal Data-Driven
Pooling (STD2P).

can be used and the annotation effort stays moderate for new
datasets. To this end, we draw on prior work on high quality
non-semantic image segmentation and optical flow which is
input to our proposed Spatio-Temporal Data-Driven Pool-
ing (STD2P) layer.

Overview. As illustrated in Figure [2] our method starts
from an image sequence. We are interested in providing
an accurate semantic segmentation of one view in the se-
quence, called target frame, which can be located at any po-
sition in the image sequence. The two components that dis-
tinguish our approach from a standard fully convolutional
architecture for semantic segmentation are, first, the com-
putation of region correspondences and, second, the novel
spatio-temporal pooling layer that is based on these corre-
spondences.

We first compute the superpixel segmentation of each
frame and establish region correspondences using optical
flow. Then, the proposed data-driven pooling allows to ag-
gregate information first within superpixels and then along

their correspondences inside a CNN architecture. Thus, we
achieve a tight integration of the superpixel segmentation
and multi-view aggregation into a deep learning framework
for semantic segmentation.

3.1. Region correspondences

Motivated by the recent success of superpixel based ap-
proaches in deep learning architectures [12} 4] [T, 9] and the
reduced computational load, we decide for a region-based
approach. In the following, we motivate and detail our ap-
proach on establishing robust correspondences.

Motivation. One key idea of our approach is to map in-
formation from potentially unlabeled frames to the target
frame, as diverse view points can provide additional context
and resolve challenges in appearance and occlusion as illus-
trated in Figure[I] Hence, we do not want to assume visibil-
ity or correspondence of objects across all frames (e.g. the
nightstand in the target frame as shown in Figure2)). There-
fore, video supervoxel methods such as that force in-
terframe correspondences and do not offer any confidence
measure are not suitable. Instead, we establish the required
correspondences on a frame-wise region level.

Superpixels & optical flow. We compute RGBD super-
pixels [13]] in each frame to partition a RGBD image into
regions, and apply Epic flow between each pair of con-
secutive frames to link these regions. To take advantage
of the depth information, we utilize the RGBD version of
the structured edge detection [10] to generate boundary es-
timates. Then, Epic flow is computed in forward and back-
ward directions.

Robust spatio-temporal matching. Given the precom-
puted regions in the target frame and all unlabeled frames
as well as the optical flow between those frames, our goal is
to find highly reliable region correspondences. For any two
regions R, in the target frame f; and R, in an unlabeled
frame f,, we compute their matching score from their inter-
section over union (IoU). Let us assume w.l.o.g. that u < ¢.
Then, we warp R, from f, to R; in f; using forward opti-
cal flow. The IoU between R; and R; is denoted by IoU .

Similarly, we compute m +u With backward optical flow.
We regard R; and R, as a successful match if their match-
ing score meets min(/oUy,, 17} ) > 7. We keep the one
with the highest matching score if R, has several successful
matches. We show the statistics of region correspondences
on the NYUDv?2 dataset in Figure[3]

It shows that 87.17% of the regions are relatively small
(Iess than 2000 pixels) The plot on the right shows that those
small regions generally only find less than 10 matches in
a whole video. Contrariwise, even slightly bigger regions
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Figure 3: Statistics of region correspondences on the
NYUDv2 dataset. (left) Distribution of region sizes; (right)
Histogram of the average number of matches over region
sizes.

can be matched more easily and they cover large portions
of images. They usually have more than 40 matches in a
whole video, and thus provide adequate information for our
multi-view network.

3.2. Spatio-Temporal Data-Driven Pooling (STD2P)

Here, we describe our Spatio-Temporal Data-Driven
Pooling (STD2P) model that uses the spatio-temporal struc-
ture of the computed region correspondences to aggregate
information across views as illustrated in Figure 2] While
the proposed method is highly compatible with recent CNN
and FCN models, we build on a per frame model using [26].
In more detail, we refine the output of the deconvolution
layer with superpixels and aggregate the information from
multiple views by three layers: a spatial pooling layer, a
temporal pooling layer and a region-to-pixel layer.

Spatial pooling layer. The input to the spatial pooling
layer is a feature map I, € RNXCXHXW for N frames,
C channels with size H x W and a superpixel map S €
RN>HXW encoded with the region index. It generates the
output O, € RN*C*P where P is the maximum num-
ber of superpixels. The superpixel map S guides the for-
ward and backward propagation of the layer. Here, 2;; =
{(z,y)|S(i,z,y) = j} denotes a superpixel in the i-th
frame with region index j. Then, the forward propagation
of spatial average pooling can be formulated as

Os(isc,j) =

o > Lic,z,y) (1)
Y (z,y)€Q;;

for each channel index c of the ¢-th frame and region in-

dex j. We train our model using stochastic gradient de-

scent. The gradient of the input I5(i, ¢, z,y), where (z,y) €

€5, in our spatial pooling is calculated by back propaga-

tion [32],

OL B OL 00;(i, ¢, )
OL(i,c,x,y)  004(i,c,7) OLs(i,c,x,y)
1 oL
Q4] 005(is e, 5)°

(@)

Temporal pooling layer. Similarly, we formulate our
temporal pooling which fuses the information from N
frames I; € RN*Y*F which is the output of spatial pool-
ing layer, to one frame O; € R*". This layer also needs
superpixel information 2;;, which is the superpixel with in-
dex j of the i-th input frame. If Q;; # @, there exists
correspondence. The forward propagation can be expressed
as

1
Ot(C,j) = ? Z It(i7caj) (3)

Qi #D

for channel index ¢ and region index j, where K =
{i|; # @,1 < ¢ < N}, which is the number of matched
frames for j-th region. The gradient is calculated by

oL AL 904(c,j)
a[t(iv Caj) 8Ot(c?j) alt(% Cvj) (4)
1L
- K 004(c,j)

Region-to-pixel layer. To directly optimize a semantic
segmentation model with dense annotations, we map the re-
gion based feature map I, € RE*" to a dense pixel-level
prediction O, € RE*H*W This layer needs a superpixel
map on the target frame Sprger € RH*W to perform for-
ward and backward propagation. The forward propagation
is expressed as

Or(c,x,y) = L«(C,j), Slarget(xay) :] (5)
The gradient is computed by
oL Z oL 00,.(¢c,x,y)
A (c.5) 00, (c,z,y) 0OI(c,j)
S!argel(w)y):] (6)

oy oL
- 90, (¢, x,y)

Slarge! (1ay):j
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Figure 4: Visualization examples of the semantic segmentation on NYUDv2. Column 1 shows the RGB images and column
2 shows the ground truth (black represents the unlabeled pixels). Columns 3 to 6 show the results from CRF-RNN [40],
DeepLab-LFOV [6], BI(3000) [12] and E2S2 [4], respectively. Columns 7 to 9 show the results from FCN [26], single-view
superpixel and multi-view pixel baselines. The results from our whole system are shown in column 10. Best viewed in color.

Implementation details. We regard the frames with
groundtruth annotations as target frames. For each target
frame, we equidistantly sample up to 100 frames around it
with the static interval of 3 frames. Next, we compute the
superpixels [15] and Epic flow [31] with the default settings
provided in the corresponding source codes. The thresh-
old 7 for the computation of region correspondence is 0.4
(cf. section B.I). Finally, for each RGBD sequence, we
randomly sample 11 frames including the target frame to-
gether with their correspondence maps as the input for our
network. We use RGB images and HHA representations
of depth [13]] and train the network by stochastic gradient
descent with momentum term. Due to the memory lim-
itation, we first run FCN and cache the output pool4_rgb
and pool4_hha. Then, we finetune the layers after pool4
with a new network which is the copy of the higher lay-
ers in FCN. We use a minibatch size of 10, momentum
0.9, weight decay 0.0005 and fixed learning rate 1074,
We finetune our model by using cross entropy loss with
1000 iterations for all our models in the experiments. We
implement the proposed network using the Caffe frame-
work [17], and the source code is available at https:
//github.com/SSAW14/STD2P.

4. Experiments and analysis

We evaluate our approach on the 4-class [30], 13-
class [[7l, and 40-class [14]] tasks of the NYU-Depth-V2
(NYUDV2) dataset [30], and 33-class task of the SUN3D
dataset [38].

The NYUDv2 dataset contains 518 RGBD videos, which
have more than 400,000 images. Among them, there are
1449 densely labeled frames, which are split into 795 train-

ing images and 654 testing images. We follow the experi-
mental settings of [9] to test on 65 labeled frames. We com-
pare our models of different settings to previous state-of-
the-art multi-view methods as well as single-view methods,
which are summarized in Table [I] We report the results on
the labeled frames, using the same evaluation protocol and
metrics as [26]], pixel accuracy (Pixel Acc.), mean accuracy
(Mean Acc.), region intersection over union (Mean IoU),
and frequency weighted intersection over union (fw. loU).

Table 1: Configurations of competing methods

RGB RGBD
Single-View  [TIL[I8] (#3161 01121 15} 26} 36} 37 40]
Multi-View / 7

4.1. Results on NYUDv2 40-class task

Table evaluates performance of our method on
NYUDv2 40-class task and compares to state-of-the-art
methods and related approaches [26), 171, 5
[6l [12] [4]) IH We include 3 versions of our approach:

Qur superpixel model is trained on single frames without
additional unlabeled data, and tested using a single target
frame. It improves the baseline FCN on all four metrics by
at least 2 percentage points (pp), and it achieves in particular

!For [261[01 [15} 18] [L 1], we copy the performance from their paper. For
[4]), we run the code provided by the authors with RGB+HHA
images. Specifically, for [12], we also increase the maximum number of
superpixels from 1000 to 3000. The original coarse version and the fine
version are abbreviated as BI(1000) and BI(3000).
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Table 2: Performance of the 40-class semantic segmentation task on NYUDv2. We compare our method to various state-of-
the-art methods: [26, 115, [18l|11]] are also based on convolutional networks, [, 140, 6] are the models based on convolutional
networks and CREF, and [12} 4} 9] are region labeling methods, and thus related to ours. We mark the best performance in all
methods with BOLD font, and the second best one is written with UNDERLINE.

w
B g £ @ 5 . %
— = = = ) = =] < s = 9 ™ =
T £ % 3 £ § =T g £ & g 3 £ 1 &Z
Methods B = S ) S 3 8 kS z ) a, 151 ) S )
Mutex Constraints [0] ~ 65.6 792 519 667 410 557 365 203 332 326 446 536 491 108 9.1
RGBD R-CNN [I5] 68.0 813 449 650 479 479 299 203 326 181 403 513 420 113 35
Bayesian SegNet [18] - - - - - - - - - - - - - - -
Multi-Scale CNN [[11] - - - - - - - - - - - - - - -
CRF-RNN [40] 703 815 496 646 514 506 359 246 381 360 488 526 476 132 76
DeepLab [3] 679 8.0 531 668 578 578 434 194 455 415 493 583 478 155 73
DeepLab-LFOV [6] 702 852 553 689 605 59.8 445 254 478 426 479 577 524 207 9.1
BI (1000) [12] 62.8 668 442 477 358 359 109 183 215 359 415 309 474 128 85
BI (3000) [12] 617 681 452 506 389 403 262 209 360 344 408 316 483 93 79
E2S2 [4] 569 67.8 500 595 438 443 313 246 379 327 461 450 518 158 9.1
FCN [26] 699 794 503 660 475 532 328 221 390 361 505 542 458 119 86
Ours (superpixel) 709 834 526 685 541 560 404 255 384 409 515 548 473 113 75
Ours (superpixel+) 724 843 520 715 543 588 379 282 419 385 523 582 497 143 8.1
Ours (full model) 727 857 554 736 585 60.1 427 302 421 419 529 597 467 135 9.4
[=]
£ 2
- <
g 3 3 s g [ o0 ] 5 E £
g z & £ 55 = ) g8 E . 2
E 2 = = 3 o 5 5] : 5 z g ) <=
Methods 3 ] a g = S 8 2 E I 2 ] G 2 E
Mutex Constraints [9] ~ 47.6  27.6 425 302 327 126 567 89 216 192 280 286 229 16 10
RGBD R-CNN [13] 291 348 344 164 280 47 605 64 145 310 143 163 42 21 142
Bayesian SegNet [18] - - - - - - - - - - - - - - -
Multi-Scale CNN [[L1] - - - - - - - - - - - - - - -
CRF-RNN [40] 348 332 347 208 240 187 609 295 312 411 182 256 230 74 139
DeepLab [3] 329 343 402 237 150 202 551 221 306 494 218 321 64 58 148
DeepLab-LFOV [6] 360 369 414 325 160 178 584 205 451 480 210 415 94 80 143
BI (1000) [12] 293 203 217 130 182 141 447 109 215 304 188 223 177 55 124
BI (3000) [12] 308 229 195 139 161 137 425 213 166 309 149 233 178 33 99
E2S2 [4] 380 348 315 317 253 142 397 267 271 352 178 210 199 74 369
FCN [26]] 325 310 375 224 136 183 590 273 270 419 159 261 141 65 129
Ours (superpixel) 345 41,6 377 201 159 201 568 288 238 518 190 266 293 68 47
Ours (superpixel+) 429 359 408 277 319 193 556 282 383 469 176 312 110 65 282
Ours (full model) 407 441 420 345 356 222 559 298 417 525 211 344 155 78 292
=] Q = & 3 1) =)
. 5 E : £ &2 2 2 2
Methods g £ 2 & E E = 3 3 5 & = = Z
Mutex Constraints [0] 9.6 30.6 484 418 281 276 0 98 76 245 638 - 315 485
RGBD R-CNN [13] 02 272 551 375 348 382 02 71 61 231 603 - 286 470
Bayesian SegNet [18] - - - - - - - - - - 68.0 45.8 324 -
Multi-Scale CNN [L1] - - - - - - - - - - 65.6 451 341 514
CRF-RNN [40] 579 314 572 454 369 391 49 146 95 295 663 489 354 510
DeepLab [3] 553 377 579 477 400 447 66 180 129 338 687 469 368 525
DeepLab-LFOV [6] 670 418 697 468 401 451 2.1 207 124 335 703 496 394 547
BI (1000) [12] 459 158 565 322 247 171 01 122 67 219 577 378 271 419
BI (3000) [12] 447 158 538 321 228 190 0.1 123 53 232 589 393 277 430
E2S2 [4] 350 176 318 363 148 260 99 145 93 209 581 529 310 442
FCN [26] 576 301 613 448 321 392 48 152 77 300 654 461 340 495
Ours (superpixel) 66.1 374 561 463 345 267 58 127 123 306 685 487 360 529
Ours (superpixel+) 667 341 628 478 351 264 88 193 109 292 684 521 381 540
Ours (full model) 607 422 627 474 386 285 73 188 151 314 70.1 538 401 557
better performance than recently proposed methods based superpixel model on Mean Acc., Mean IoU and fw. IoU,
on superpixels and CNNJ[12} l4]. leading to more favorable performance than many state-of-

the-art methods [9, 115,118, 111140} 5} 12} 14]. This highlights

Our superpixel+ model leverages additional unlabeled the benefits of leveraging unlabeled data.

data in the training while it only uses the target frame for
test. It obtains 3.4pp, 2.1pp, 1.1pp improvements over the
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Table 3: Comparison of average and max spatio-temporal
data-driven pooling.

54.
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5
Max distance to target frame

Max distance to target frame

5

Spatial/Temporal Pixel Acc. Mean Acc.  MeanIoU  f.w. IoU
AVG / AVG 70.1 53.8 40.1 55.7
AVG / MAX 69.4 51.0 38.0 54.4
MAX / AVG 66.4 45.4 338 49.6
MAX / MAX 64.9 44.5 32.1 479
Our full model leverages additional unlabeled data both

in the training and test. It achieves a consistent im-
provement over the superpixel+ model and outperforms
all competitors in Mean Acc., Mean IoU and fw. IoU
by 0.9pp,0.7pp, 1.0pp respectively. Particularly strong
improvements are observed on challenging object classes
such as dresser(+7.2pp), door(+4.8pp), bed(+4.7pp) and
TV(+3.1pp).

Figure ] demonstrates that our method is able to produce
smooth predictions with accurate boundaries. We present
the most related methods, which either apply CRF [40) 6]
or incorporate superpixels [12, 4], in the columns 3 to 6
of this figure. According to the qualitative comparison to
these approaches, we can see the benefit of our method. It
captures small objects like chair legs, as well as large areas
like floormat and door. In addition, we also present FCN
and the superpixel model at the 7-th and 8-th column of
Figure d] The FCN is boosted by introducing superpixels
but not as precise as our full model using unlabeled data.

Average vs. max spatio-temporal data-driven pooling.
Our data-driven pooling aggregates the local information
from multiple observations within a segment and across
multiple views. Average pooling and max pooling are
canonical choices used in many deep neural network archi-
tectures. Here we test average pooling and max pooling
both in the spatial and temporal pooling layer, and show the
results in Table Bl All the models are trained with multi-
ple frames, and tested on multiple frames. Average pooling
turns out to perform best for spatial and temporal pooling.
This result confirms our design choice.

Region vs. pixel correspondences. We compare our full
model, which is built on the region correspondences, to the
model with pixel correspondences. It only uses the per-pixel
correspondences by optical flow and applies average pool-
ing to fuse the information from multiple view. The visual-
ization results of this baseline are presented in column 9 of
Figure[d] Obtaining accurate pixel correspondences is chal-
lenging because the optical flow is not perfect and the error
can accumulate over time. Consequently, the model with
pixel correspondences only improves slightly over the FCN
baseline, as it is also reflected in the numbers in Table (]
Establishing region correspondences with the proposed re-

Figure 5: The performance of multi-view prediction with
varying maximum distance. Green lines show the results of
using future and past views. Blue lines show the results of
only using past views.

Table 4: Comparison results with baselines on NYUDv2
40-class task

Methods Pixel Acc.  Mean Acc. Mean IoU  f.w. IoU
FCN [26] 65.4 46.1 34.0 49.5
Pixel Correspondence 66.2 459 34.6 50.2
Superpixel Correspondence 70.1 53.8 40.1 55.7

jection strategy described in section [3.1| seems indeed to be
favorable over pixel correspondences. Our full model shows
a significant improvement over the pixel-correspondence
baseline and FCN in all 4 measures.

Analysis of multi-view prediction. In our multi-view
model, we subsample frames from a whole video for com-
putational considerations. There is a trade-off between
close-by and distant frames to be made. If we select frames
far away from the target frames, they can provide more di-
verse views of an object, while matching is more challeng-
ing and potentially less accurate than for close-by frames.
Hence, we analyze the influence of the distance of selected
frames to target frames, and report the Mean Acc. and Mean
IoU in Figure 5] In results, providing wider views is help-
ful, as the performance is improved with the increase of max
distance. And selecting the data in the future, which is an-
other way to provide wider views, also contributes to the
improvements of performance.

4.2. Results on NYUDv2 4-class and 13-class tasks

To show the effectiveness of our multi-view seman-
tic segmentation approach, we compare our method to
previous state-of-the-art multi-view semantic segmentation
methods [[7, 116,35, 27] on the 4-class and 13-class tasks of
NYUDv?2 as shown in Table[5] Besides, we also present pre-
vious state-of-the-art single-view methods [11} 137, 136]. We
observe that our superpixel+ model already outperforms
all the multi-view competitors, and the proposed temporal
pooling scheme further boosts Pixel Acc. and Mean Acc.
by more than 1pp and then outperforms the state-of-the-art
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Figure 6: Qualititive results of the SUN3D dataset. For each example, the images are arranged from top to bottom, from left
to right as color image, groundtruth, CRF-RNN [40Q], DeepLab-LFOV [6], BI [[12], E2S2 [4], FCN [26] and ours.

Table 5: Performance of the 4-class (left) and 13-class
(right) semantic segmentation tasks on NYUDv2.

Methods Pixel Acc.  Mean Acc.  Pixel Acc.  Mean Acc.
Couprie et al. [7] 64.5 63.5 524 36.2
Hermans et al. 69.0 63.1 54.2 48.0
Stiickler et al. 70.6 66.8 - -
McCormac et al. [27] - - 69.9 63.6
Wang et al. - 65.3 - 422
Wang et al. - 74.7 - 52.7
Eigen et al. [11]] 83.2 82.0 75.4 66.9
Ours (superpixel+) 82.7 81.3 74.8 67.0
Ours (full model) 83.6 82.5 75.8 68.4

[11]. In particular, the recent proposed method by McCor-
mac et al. is also built on CNN, however, their perfor-
mance on 13-class task is about 5pp worse than ours.

4.3. Results on SUN3D 33-class task

Table [6] shows the results of our method and baselines
on the SUN3D dataset. We follow the experimental set-
tings of [9] to test all the methods [9, 51 (6l
on all 65 labeled frames in SUN3D, which are trained with
the NYUDv2 40-class annotations. After computing the 40-
class prediction, we map 7 unseen semantic classes into 33
classes. Specifically, floormat is merged to floor, dresser is
merged to other furni and five other classes are merged to
other props. Among all the methods, we achieve the best
Mean IoU score that our superpixel+ and full model are
1.2pp and 4.7pp better than [9] and [6] . For Pixel Acc.,
our method is comparable to the previous state of the art
[9). In addition, we observe that our superpixel+ model
boosts the baseline FCN by 3.7pp, 2.3pp, 3.3pp, 3.9pp on
the four metrics, and applying multi-view information fur-
ther improves 3.0pp, 0.4pp, 3.5pp, 3.7pp, respectively. Be-
sides, we achieve much better performance than DeepLab-

Table 6: Performance of the 33-class semantic segmentation
task on SUN3D. All 65 images are used as the test set.

Methods Pixel Acc. Mean Acc. Mean IoU f.w. IoU
Mutex Constraints [9] 65.7 - 28.2 51.0
CRF-RNN 59.8 - 25.5 433
DeepLab 60.9 30.7 24.0 44.1
DeepLab-LFOV 62.3 353 28.2 46.2
BI (1000) [12] 53.8 31.1 20.8 37.1
BI (3000) [12] 53.9 31.6 21.1 37.4
E2S2 56.7 47.7 27.2 433
FCN 58.8 38.5 26.1 439
Ours (superpixel+) 62.5 40.8 294 47.8
Ours (full model) 65.5 41.2 329 51.5

LFOV, which is comparable to our model on the NYUDv2
40-class task. This illustrates the generalization capability
of our model, even without finetuning on the new domain
or dataset.

5. Conclusion

We have presented a novel semantic segmentation ap-
proach using image sequences. We design a superpixel-
based multi-view semantic segmentation network with
spatio-temporal data-driven pooling which can receive mul-
tiple images and their correspondence as input. We prop-
agate the information from multiple views to the target
frame, and significantly improve the semantic segmentation
performance on the target frame. Besides, our method can
leverage large scale unlabeled images for training and test,
and we show that using unlabeled data also benefits single
image semantic segmentation.
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