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Abstract

This paper introduces a learning scheme to construct a

Hilbert space (i.e., a vector space along its inner product)

to address both unsupervised and semi-supervised domain

adaptation problems. This is achieved by learning projec-

tions from each domain to a latent space along the Maha-

lanobis metric of the latent space to simultaneously min-

imizing a notion of domain variance while maximizing a

measure of discriminatory power. In particular, we make

use of the Riemannian optimization techniques to match sta-

tistical properties (e.g., first and second order statistics) be-

tween samples projected into the latent space from differ-

ent domains. Upon availability of class labels, we further

deem samples sharing the same label to form more compact

clusters while pulling away samples coming from different

classes.We extensively evaluate and contrast our proposal

against state-of-the-art methods for the task of visual do-

main adaptation using both handcrafted and deep-net fea-

tures. Our experiments show that even with a simple near-

est neighbor classifier, the proposed method can outperform

several state-of-the-art methods benefiting from more in-

volved classification schemes.

1. Introduction

This paper presents a learning algorithm to address both

unsupervised [21, 16, 49] and semi-supervised [27, 14, 29]

domain adaptation problems. Our goal here is to learn a la-

tent space in which domain disparities are minimized. We

show such a space can be learned by first matching the sta-

tistical properties of the projected domains (e.g., covari-

ance matrices), and then adapting the Mahalanobis met-

ric of the latent space to the labeled data, i.e., minimiz-

ing the distances between pairs sharing the same class label

while pulling away samples with different class labels. We

develop a geometrical solution to jointly learn projections

onto the latent space and the Mahalanobis metric there by

making use of the concepts of Riemannian geometry.

Thanks to deep learning, we are witnessing rapid growth

in classification accuracy of the imaging techniques if sub-

stantial amount of labeled data is provided [35, 48, 25, 26].

However, harnessing the attained knowledge into a new ap-

plication with limited labeled data (or even without having

labels) is far beyond clear [33, 37, 19, 8, 51]. To make

things even more complicated, due to the inherit bias of

datasets [50, 47], straightforward use of large amount of

auxiliary data does not necessarily assure improved perfor-

mances. For example, the ImageNet [43] data is hardly use-

ful for an application designed to classify images captured

by a mobile phone camera. Domain Adaptation (DA) is the

science of reducing such undesired effects in transferring

knowledge from the available auxiliary resources to a new

problem.

The most natural solution to the problem of DA is by

identifying the structure of a common space that minimizes

a notion of domain mismatch. Once such a space is ob-

tained, one can design a classifier in it, hoping that the clas-

sifier will perform equally well across the domains as the

domain mismatched is minimized. Towards this end, sev-

eral studies assume that either 1. a subspace of the tar-

get1 domain is the right space to perform DA and learn

how the source domain should be mapped onto it [45, 29],

or 2. subspaces obtained from both source and target do-

mains are equally important for classification, hence trying

to either learn their evolution [22, 21] or similarity mea-

sure [46, 52, 14].

Objectively speaking, a common practice in many solu-

tions including the aforementioned methods, is to simplify

the learning problem by separating the two elements of it.

That is, the algorithm starts by fixing a space (e.g., source

subspace in [16, 29]), and learns how to transfer the knowl-

edge from domains accordingly. A curious mind may ask

why should we resort to a predefined and fixed space in the

first place.

In this paper, we propose a learning scheme that avoids

such a separation. That is, we do not assume that a space

or a transformation, apriori is known and fixed for DA. In

1In DA terminology target domain refers to the data directly related to

the task. Source domain data is used as the auxiliary data for knowledge

transferring.
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essence, we propose to learn the structure of a Hilbert space

(i.e., its metric) along the transformations required to map

the domains onto it jointly. This is achieved through the

following contributions,

(i) We propose to learn the structure of a latent space,

along its associated mappings from the source and tar-

get domains to address both problems of unsupervised

and semi-supervised DA.

(ii) Towards this end, we propose to maximize a notion of

discriminatory power in the latent space. At the same

time, we seek the latent space to minimize a notion

of statistical mismatch between the source and target

domains (see Fig. 1 for a conceptual diagram).

(iii) Given the complexity of the resulting problem, we pro-

vide a rigorous mathematical modeling of the problem.

In particular, we make use of the Riemannian geome-

try and optimization techniques on matrix manifolds to

solve our learning problem2.

(iv) We extensively evaluate and contrast our solution

against several baseline and state-of-the-art methods in

addressing both unsupervised and semi-supervised DA

problems.

2. Proposed Method

In this work, we are interested in learning an Invariant

Latent Space (ILS) to reduce the discrepancy between do-

mains. We first define our notations. Bold capital letters de-

note matrices (e.g., X) and bold lower-case letters denote

column vectors (e.g., x). In is the n × n identity matrix.

Sn
++ and St(n, p) denote the SPD and Stiefel manifolds,

respectively, and will be formally defined later. We show

the source and target domains by Xs ⊂ R
s and Xt ⊂ R

t.

The training samples from the source and target domains

are shown by {xs
i , y

s
i }

ns

i=1 and {xt
i}

nt

i=1, respectively. For

now, we assume only source data is labeled. Later, we dis-

cuss how the proposed learning framework can benefit form

the labeled target data.

Our idea in learning an ILS is to determine the trans-

formations R
s×p ∋ W s : Xs → H and R

t×p ∋ W t :
Xt → H from the source and target domains to a latent p-

dimensional space H ⊂ R
p. We furthermore want to equip

the latent space with a Mahalanobis metric, M ∈ Sp
++, to

reduce the discrepancy between projected source and tar-

get samples (see Fig. 1 for a conceptual diagram). To learn

W s, W t and M we propose to minimize a cost function

in the form

L = Ld + λLu . (1)

In Eq. 1, Ld is a measure of dissimilarity between labeled

samples. The term Lu quantifies a notion of statistical dif-

2Our implementation is available on https://sherath@

bitbucket.org/sherath/ils.git.

ference between the source and target samples in the la-

tent space. As such, minimizing L leads to learning a la-

tent space where not only the dissimilarity between labeled

samples is reduced but also the domains are matched from a

statistical point of view. The combination weight λ is envis-

aged to balance the two terms. The subscripts “d” and “u”

in Eq. 1 stand for “Discriminative” and “Unsupervised”.

The reason behind such naming will become clear shortly.

Below we detail out the form and properties of Ld and Lu.

2.1. Discriminative Loss

The purpose of having Ld in Eq. 1 is to equip the la-

tent space H with a metric to 1. minimize dissimilarities

between samples coming from the same class and 2. max-

imizing the dissimilarities between samples from different

classes.

Let Z = {zj}
n
j=1 be the set of labeled samples in H. In

unsupervised domain adaptation zj = W T
s x

s
j and n = ns.

In the case of semi-supervised domain adaptation,

Z =
{

W T
s x

s
j

}ns

j=1

⋃

{

W T
t x

t
j

}ntl

j=1
,

where we assume ntl labeled target samples are provided

(out of available nt samples). From the labeled samples

in H, we create Np pairs in the form (z1,k, z2,k), k =
1, 2, · · · , Np along their associated label yk ∈ {−1, 1}.

Here, yk = 1 iff label of z1,k is similar to that of z2,k

and −1 otherwise. That is the pair (z1,k, z2,k) is similar

if yk = 1 and dissimilar otherwise.

To learn the metric M , we deem the distances between

the similar pairs to be small while simultaneously making

the distances between the dissimilar pairs large. In particu-

lar, we define Ld as,

Ld =
1

Np

Np
∑

k=1

ℓβ
(

M , yk, z1,k − z2,k, 1
)

+ r(M), (2)

with

ℓβ
(

M , y,x, u
)

=
1

β
log

(

1 + exp
(

βy(xTMx− u)
)

)

.

(3)

Here, ℓβ is the generalized logistic function tailored with

large margin structure (see Fig. 2) having a margin of u3.

First note that the quadratic term in Eq. 3 (i.e., xTMx)

measures the Mahalanobis distance between z1,k and z2,k

if used according to Eq.2. Also note that ℓβ
(

·, ·,x, ·
)

=

ℓβ
(

·, ·,−x, ·
)

, hence how samples are order in the pairs is

not important.

To better understand the behavior of the function ℓβ , as-

sume the function is fed with a similar pair, i.e. yk = 1. For

3For now we keep the margin at u = 1 and later will use this to explain

the soft-margin extension.
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Figure 1. A conceptual diagram of our proposal. The marker shape represents the instance labels and color represents their original

domains. Both source and target domains are mapped to a latent space using the transformations W s and W t. The metric, M defined

in the latent space is learned to maximize the discriminative power of samples in it. Indicated by dashed ellipsoids are the domain

distributions. The statistical loss of our cost function aims to reduce such discrepancies within the latent space. Our learning scheme

identifies the transformations W s and W t and the metric M jointly. This figure is best viewed in color.

the sake of discussion, also assume β = 1. In this case,

ℓβ is decreased if the distance between z1,k and z2,k is re-

duced. For a dissimilar pair (i.e., yk = −1), the opposite

should happen to have a smaller objective. That is, the Ma-

halanobis distance between the samples of a pair should be

increased.

The function ℓβ
(

·, ·,x, ·
)

can be understood as a smooth

and differentiable form of the hinge-loss function. In fact,

ℓβ
(

·, ·,x, ·
)

asymptotically reaches the hinge-loss function

if β → ∞. The smooth behavior of ℓβ
(

·, ·,x, ·
)

is not only

welcomed in the optimization scheme but also avoids sam-

ples in the latent space to collapse into a single point.

Figure 2. The behavior of the proposed ℓβ( 3) with u = 1 for

various values of parameter β. Here, the horizontal axis is the

value of the Mahalanobis distance and the function is plotted for

y = +1. When β → ∞, the function approaches the hinge-loss.

An example of the soft-margin case (see Eq. 6), is also plotted for

β = 5 curve. The figure is best seen in color.

Along the general practice in metric learning, we reg-

ularize the metric M by r(M). The divergences derived

from the log det(·) function are familiar faces for regulariz-

ing Mahalanobis metrics in the litrature [13, 45].

Among possible choices, we make use of the Stein di-

vergence [11] in this work. Hence,

r(M) =
1

p
δs(M , Ip). (4)

Where,

δs(P ,Q) = log det
(P +Q

2

)

−
1

2
log det

(

PQ
)

, (5)

for P ,Q ∈ S++. Our motivation in using the Stein di-

vergence stems from its unique properties. Among others,

Stein divergence is symmetric, invariant to affine transfor-

mation and closely related to geodesic distances on the SPD

manifold [11, 24, 9].

Soft Margin Extension

For large values of β, the cost in Eq. 2 seeks the dis-

tances of similar pairs to be less than 1 while simultane-

ously it deems the distances of dissimilar pairs to exceed 1.

This hard-margin in the design of ℓβ
(

·, ·,x, ·
)

is not desir-

able. For example, with a large number of pairs, it is often

the case to have outliers. Forcing outliers to fit into the hard

margins can result in overfitting. As such, we propose a

soft-margin extension of Eq. 3. The soft-margins are imple-

mented by associating a non-negative slack variable ǫk to a

pair according to

Ld =
1

Np

Np
∑

k=1

ℓβ
(

M , yk, z1,k − z2,k, 1 + ykǫk
)

+

r(M) +
1

Np

√

∑

ǫ2k, (6)

where a regularizer on the slack variables is also envisaged.

2.2. Matching Statistical Properties

A form of incompatibility between domains is due to

their statistical discrepancies. Matching the first order
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statistics of two domains for the purpose of adaptation is

studied in [40, 2, 29]4. In our framework, matching do-

main averages can be achieved readily. In particular, let

x̄s
i = xs

i −ms and x̄t
j = xt

j −mt be the centered source

and target samples with ms and mt being the mean of

corresponding domains. It follows easily that the domain

means in the latent space are zero5 and hence matching is

achieved.

To go beyond first order statistics, we propose to match

the second order statistics (i.e., covariance matrices) as well.

The covariance of a domain reflects the relationships be-

tween its features. Hence, matching covariances of source

and target domains in effect improves the cross feature re-

lationships. We capture the mismatch between source and

target covariances in the latent space using the Lu loss in

Eq. 1. Given the fact that covariance matrices are points on

the SPD manifold, we make use of the Stein divergence to

measure their differences. This leads us to define Lu as

Lu =
1

p
δs(W

T
s ΣsW s,W

T
t ΣtW t), (7)

with Σs ∈ Ss
++ and Σt ∈ St

++ being the covariance matri-

ces of the source and target domains, respectively. We em-

phasize that matching the statistical properties as discussed

above is an unsupervised technique, enabling us to address

unsupervised DA.

2.3. Classification Protocol

Upon learning W s, W t, M , training samples from the

source and target (if available) domains are mapped to the

latent space using W sM
1
2 and W tM

1
2 , respectively. For

a query from the target domain xt
q , M

1
2W T

t x
t
q is its latent

space representation which is subsequently classified by a

nearest neighbor classifier.

3. Optimization

The objective of our algorithm is to learn the transfor-

mation parameters (W s and W t), the metric M and slack

variables ǫ1, ǫ2, ...ǫNp
(see Eq. 6 and Eq. 7). Inline with the

general practice of dimensionality reduction, we propose

to have orthogonality constraints on W s and W t. That

is W T
s W s = W T

t W t = Ip. We include an experiment

elaborating how orthogonality constraint improves the dis-

criminatory power of the proposed framework in the sup-

plementary material.

4 The use of Maximum Mean Discrepancy (MMD) [5] for domain

adaptation is a well-practiced idea in the literature (see for example [40,

2, 29]). Empirically, determining MMD boils down to computing the dis-

tance between domain averages when domain samples are lifted to a repro-

ducing kernel Hilbert space. Some studies claim matching the first order

statistics is a weaker form of domain adaptation through MMD. We do not

support this claim and hence do not see our solution as a domain adaptation

method by minimizing the MMD.
5We note that

∑
W

T
s x̄

s
i = W

T
s

∑
x̄
s
i = 0. This holds for the target

domain as well.

The problem depicted in Eq. 1 is indeed a non-convex

and constrained optimization problem. One may resort to

the method of Projected Gradient Descent (PGD) [7] to

minimize Eq. 1. In PGD, optimization is proceed by pro-

jecting the gradient-descent updates onto the set of con-

straints. For example, in our case, we can first update W s

by ignoring the orthogonality constraint on W s and then

project the result onto the set of orthogonal matrices us-

ing eigen-decomposition. As such, optimization can be per-

formed by alternatingly updating W s, W t, the metric M

and slack variables using PGD.

In PGD, to perform the projection, the set of constraints

needs to be closed though in practice one can resort to

open sets. For example, the set of SPD matrices is open

though one can project a symmetric matrix onto this set us-

ing eigen-decomposition.

Empirically, PGD showed an erratic and numerically un-

stable behavior in addressing our problem. This can be at-

tributed to the non-linear nature of Eq. 1, existence of open-

set constraints in the problem or perhaps the combination of

both. To alleviate the aforementioned difficulty, we propose

a more principle approach to minimize Eq. 1 by making

use of the Riemannian optimization technique. We take a

short detour and briefly describe the Riemannian optimiza-

tion methods below.

Optimization on Riemannian manifolds.

Consider a non-convex constrained problem in the form

minimize f(x)

s.t. x ∈ M , (8)

where M is a Riemannian manifold, i.e., informally, a

smooth surface that locally resembles a Euclidean space.

Optimization techniques on Riemannian manifolds (e.g.,

Conjugate Gradient) start with an initial solution x(0) ∈
M, and iteratively improve the solution by following the

geodesic identified by the gradient. For example, in the case

of Riemannian Gradient Descent Method (RGDM), the up-

dating rule reads

x(t+1) = τx(t)

(

− α grad f(x(t))
)

, (9)

with α > 0 being the algorithm’s step size. Here, τx(·) :
TxM → M, is called the retraction6 and moves the solu-

tion along the descent direction while assuring that the new

solution is on the manifold M, i.e., it is within the con-

straint set. TxM is the tangent space of M at x and can

be thought of as a vector space with its vectors being the

gradients of all functions defined on M.

6Strictly speaking and in contrast with the exponential map, a retrac-

tion only guarantees to pull a tangent vector on the geodesic locally, i.e.,

close to the origin of the tangent space. Retractions, however, are typically

easier to compute than the exponential map and have proven effective in

Riemannian optimization [1].
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Due to space limitation, we defer more details on Rie-

mannian optimization techniques to the supplementary. As

for now, it suffices to say that to perform optimization on the

Riemannian manifolds, the form of Riemannian gradient,

retraction and the gradient of the objective with respect to

its parameters (shown by ∇) are required. The constraints in

Eq.1 are orthogonality (transformations W s and W t) and

p.d. for metric M . The geometry of these constraints are

captured by the Stiefel [30, 23] and SPD [24, 10] manifolds,

formally defined as

Definition 1 (The Stiefel Manifold) The set of (n × p)-

dimensional matrices, p ≤ n, with orthonormal columns

endowed with the Frobenius inner product7 forms a com-

pact Riemannian manifold called the Stiefel manifold

St(p, n) [1].

St(p, n) , {W ∈ R
n×p : W TW = Ip} . (10)

Definition 2 (The SPD Manifold) The set of (p × p) di-

mensional real, SPD matrices endowed with the Affine In-

variant Riemannian Metric (AIRM) [42] forms the SPD

manifold Sp
++.

Sp
++ , {M ∈ R

p×p : vTMv > 0, ∀v ∈ R
p − {0p}}.

(11)

Updating W s, W t and M and slacks can be done al-

ternatively using Riemannian optimization. As mentioned

above, the ingredients for doing so are 1. the Riemannian

tools for the Stiefel and SPD manifolds along 2. the form

of gradients of the objective with respect to its parameters.

To do complete justice, in Table. 1 we provide the Riem-

manian metric, form of Riemannian gradient and retraction

for the Stiefel and SPD manifolds. In Table. 2, the gradi-

ent of Eq. 1 with respect to W s, W t and M and slacks

is provided. The detail of derivations can be found in the

supplementary material. A tiny note about the slacks worth

mentioning. To preserve the non-negativity constraint on

ǫk, we define ǫk = evk and optimize on vk instead. This in

turn makes optimization for the slacks unconstrained.

Remark 1 From a geometrical point of view, we can make

use of the product topology of the parameter space to avoid

alternative optimization. More specifically, the set

Mprod. = St(p, s)× St(p, t)× Sp
++ × R

Np , (12)

can be given the structure of a Riemannian manifold using

the concept of product topology [1].

Remark 2 In Fig. 3, we compare the convergence behav-

ior of PGD, alternating Riemannian optimization and opti-

mization using the product geometry. While optimization on

7Note that the literature is divided between this choice and another form

of Riemannian metric. See [15] for details.

Figure 3. Optimizing Eq. 1 using PGD (red curve), Riemannian

gradient descent using alternating approach (blue curve) and prod-

uct topology (green curve). Optimization using the product topol-

ogy converges faster but a lower cost can be attained using alter-

nating Riemannian optimization.

Mprod. convergences faster, the alternating method results

in a lower loss. This behavior resembles the difference be-

tween the stochastic gradient descent compared to its batch

counterpart.

Remark 3 The complexity of the optimization depends on

the number of labeled pairs. One can always resort to a

stochastic solution [39, 44, 4] by sampling from the set

of similar/dissimilar pairs if addressing a very large-scale

problem. In our experiments, we did not face any difficulty

optimizing with an i7 desktop machine with 32GB of mem-

ory.

4. Related Work

The literature on domain adaptation spans a very broad

range (see [41] for a recent survey). Our solution falls un-

der the category of domain adaptation by subspace learning

(DA-SL). As such, we confine our review only to methods

under the umbrella of DA-SL.

One notable example of constructing a latent space is the

work of Daumé III et al. [12]. In particular, the authors

propose to use two fixed and predefined transformations

to project source and target data to a common and higher-

dimensional space. As a requirement, the method only ac-

cepts domains with the same dimensionality and hence can-

not be directly used to adapt heterogeneous domains.

Goplan et al. observed that the geodesic connecting the

source and target subspaces conveys useful information

for DA and proposed the Sampling Geodesic Flow (SGF)

method [22]. The Geodesic Flow Kernel (GFK) is an im-

provement over the SGF technique where instead of sam-

pling a few points on the geodesic, the whole curve is

used for domain adaptation [21]. In both methods, the do-

main subspaces are fixed and obtained by Principal Com-

ponent Analysis (PCA) or Partial Least Square regression

(PLS) [34]. In contrast to our solution, in SGF and GFK

learning the domain subspaces is disjoint from the knowl-

edge transfer algorithm. In our experiments, we will see
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Table 1. Riemannian metric, gradient and retraction on St(p, n) and Sp
++. Here, uf(A) = A(AT

A)−1/2, which yields an orthogonal

matrix, sym(A) = 1

2
(A+A

T ) and expm(·) denotes the matrix exponential.

St(p, n) Sp
++

Matrix representation W ∈ R
n×p

M ∈ R
p×p

Riemannian metric gν(ξ, ς) = Tr(ξT ς) gS(ξ, ς) = Tr
(

M
−1ξM−1ς

)

Riemannian gradient ∇W (f)−W sym
(

W
T∇W (f)

)

Msym
(

∇M (f)
)

M

Retraction uf(W + ξ) M
1
2 expm(M−

1
2 ξM−

1
2 )M

1
2

Table 2. Gradients of soft-margin ℓβ and Lu w.r.t. the model

parameters and slack variables. Without less of generality we only

consider a labeled similar (yk = +1) pair xs
i and x

t
j . Here, r =

exp
(

β
(

(W T
s x

s
i −W

T
t x

t
i)

T
M(W T

s x
s
i −W

T
t x

t
i)− 1− evk

))

.

∇W s
ℓβ

2

Np
(1 + r−1)−1

x
s
i (x

s
i
T
W s − x

t
j
T
W t)M

∇M ℓβ
1

Np
(1 + r−1)−1(W T

s x
s
i −W

T
t x

t
j)(x

s
i
T
W s − x

t
j
T
W t)

∇vk
ℓβ

−1
Np

evk(1 + r−1)−1

∇W s
Lu

1
p
ΣsW s

(

2
{

W T
s ΣsW s +W T

t ΣtW t

}

−1
−
{

W
T
s ΣsW s

}−1)

that the subspaces determined by our method can even boost

the performance of GFK, showing the importance of joint

learning of domain subspaces and knowledge transferring.

In [38] dictionary learning is used for interpolating the in-

termediate subspaces.

Domain adaptation by fixing the subspace/representation

of one of the domains is a popular theme in many recent

works, as it simplifies the learning scheme. Examples are

the max-margin adaptation [27, 14], the metric/similarity

learning of [45] and its kernel extension [36], the landmark

approach of [29], the alignment technique of [16, 17], cor-

relation matching of [49] and methods that use maximum

mean discrepancy (MMD) [5] for DA [40, 2].

In contrast to the above methods, some studies opt

to learn the domain representation along the knowledge

transfer method jointly. Two representative works are the

HeMap [46] and manifold alignment [52]. The HeMap

learns two projections to minimize the instance discrepan-

cies [46]. The problem is however formulated such that

equal number of source and target instances is required to

perform the training. The manifold alignment algorithm

of [52] attempts to preserve the label structure in the la-

tent space. However, it is essential for the algorithm to have

access to labeled data in both source and target domains.

Our solution learns all transformations to the latent

space. We do not resort at subspace representations learned

disjointly to the DA framework. With this use of the latent

space, our algorithm is not limited for applications where

source and target data have similar dimensions or structure.

5. Experimental Evaluations

We run extensive experiments on both semi-supervised

and unsupervised settings, spanning from the handcrafted

features (SURF) to the current state-of-the-art deep-net fea-

tures (VGG-Net). For comparisons, we use the implemen-

tations made available by the original authors. Our method

is denoted by ILS.

5.1. Implementation Details

Since the number of dissimilar pairs is naturally larger

than the number of similar pairs, we randomly sample from

the different pairs to keep the sizes of these two sets equal.

We initialize the projection matrices Ws, Wt with PCA,

following the transductive protocol [21, 16, 27, 29]. For the

semi-supervised setting, we initialize M with the Maha-

lanobis metric learned on the similar pair covariances [31],

and for the unsupervised setting, we initialize it with the

identity matrix. For all our experiments we have λ = 1. We

include an experiment showing our solution’s robustness to

λ in the supplementary material. We use the toolbox pro-

vided by [6] for our implementations.

Remark 4 To have a simple way of determining β in Eq. 3,

we propose a heuristic which is shown to be effective in our

experiments. To this end, we propose to set β to the recipro-

cal of the standard deviation of the similar pair distances.

5.2. Semi­supervised Setting

In our semi-supervised experiments, we follow the

standard setup on the Office+Caltech10 dataset with the

train/test splits provided by [28]. The Office+Caltech10

dataset contains images collected from 4 different sources

and 10 object classes. The corresponding domains are

Amazon, Webcam, DSLR, and Caltech. We use a sub-

space of dimension 20 for DA-SL algorithms. We employ

SURF [3] for the handcrafted feature experiments. We ex-

tract VGG-Net features with the network model of [48] for

the deep-net feature experiments8. We compare our perfor-

mance with the following benchmarks:

1-NN-t and SVM-t : Basic Nearest Neighbor (1-NN) and

linear SVM classifiers trained only on the target domain.

HFA [14] : This method employs latent space learning

based on the max-margin framework. As in its original im-

plementation, we use the RBF kernel SVM for its evalua-

tion.

MMDT [27] : This method jointly learns a transformation

between the source and target domains along a linear SVM

for classification.

CDLS [29] : This is the cross-domain landmark search al-

gorithm. We use the parameter setting (δ = 0.5 in the nota-

tion of [29]) recommended by the authors.

8The same SURF and VGG-FC6 features are used for the unsupervised

experiments as well.
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Table 3 and Table 4 report the performances using the

handcrafted SURF and the VGG-FC6 layer features, re-

spectively. For the SURF features our solution achieves

the best performance in 7 out 12 cases, and for the VGG-

FC6 features, our solution tops in 9 sets. We notice the 1-

NN-t baseline performs the worst for both SURF and the

VGG-FC6 features. Hence, it is clear that the used fea-

tures do not favor the nearest neighbor classifier. We ob-

serve that Caltech and Amazon domains contain the largest

number of test instances. Although the performances of all

tested methods decrease on these domains, particularly on

Caltech, our method achieves the top rank in almost all do-

main transformations.

5.3. Unsupervised Setting

In the unsupervised domain adaptation problem, only la-

beled data from the source domain is available [16, 21].

We perform two sets of experiments for this setting. (1)

We evaluate the object recognition performance on the Of-

fice+Caltech10 dataset. Similar to the semi-supervised set-

tings, we use the SURF and VGG-FC6 features. Our re-

sults demonstrate that the learned transformations by our

method are superior domain representations. (2) We ana-

lyze our performance when the domain discrepancy is grad-

ually increased. This experiment is performed on the PIE-

Face dataset. We compare our method with the following

benchmarks:

1-NN-s and SVM-s : Basic 1-NN and linear SVM classi-

fiers trained only on the source domain.

GFK-PLS [21] : The geodesic flow kernel algorithm where

partial least squares (PLS) implementation is used to initial-

ize the source subspace. Results are evaluated on kernel-

NNs.

SA [16] : This is the subspace alignment algorithm. Results

are evaluated using 1-NN.

CORAL [49] : The correlation alignment algorithm that

uses a linear SVM on the similarity matrix formed by cor-

relation matching.

5.3.1 Office+Caltech10 (Unsupervised)

We follow the original protocol provided by [21] on Of-

fice+Caltech10 dataset. Note that several baselines, deter-

mine the best dimensionality per domain to achieve their

maximum accuracies on SURF features. We observed that

a dimensionality in the range [20,120] provides consistent

results for our solution using SURF features. For VGG fea-

tures we empirically found the dimensionality of 20 suits

best for the compared DA-SL algorithms.

Table. 5 and Table. 6 present the unsupervised setting

results using the SURF and VGG-FC6 features. For both

feature types, our solution yields the best performance in 8

domain transformations out of 12.

Figure 4. The accuracy gain on Office-Caltech dataset for

GFK [21] and SA [16] when their initial PCA subspaces are re-

placed with PLS and our Ws transformation matrices.

Learned Transformations as Subspace Representations:

We consider both GFK [21] and SA [16] as DA-SL algo-

rithms. Both these methods make use of PCA subspaces to

adapt the domains. Nevertheless, there is no strong reason

to assume the PCA subspaces favorably capture the domain

structure for transfer learning. Gong et al., [21] show that

their performance improves when employing PLS9 to define

the source subspace. However, this subspace learning is dis-

joint to their domain adaptation technique. We notice that, a

more suitable initialization would be to use a subspace rep-

resentation learned along with a domain adaptation frame-

work. We empirically show this by using our learned source

transformation matrix W s as the source subspace initializa-

tion for [21] and [16].

Figure 4 compares the accuracy gains over PCA spaces

by using PLS and our W s initialization. It is clear that the

highest classification accuracy gain is obtained by our W s

initialization. This proves that W s is capable to learn a

more favorable subspace representation for DA.

5.3.2 PIE-Multiview Faces

The PIE Multiview dataset includes face images of 67 in-

dividuals captured from different views, illumination con-

ditions, and expressions. In this experiment, we use the

views C27 (looking forward) as the source domain and C09
(looking down), and the views C05, C37, C02, C25 (look-

ing towards left in an increasing angle, see Fig. 5) as target

domains. We expect the face inclination angle to reflect the

complexity of transfer learning. We normalize the images to

32× 32 pixels and use the vectorized gray-scale images as

features. Empirically, we observed that the GFK [21] and

SA [16] reach better performances if the features are nor-

malized to have unit ℓ2 norm. We therefore use ℓ2 normal-

ized features in our evaluations. The dimensionality of the

subspaces for all the subspace based methods (i.e., [21, 16])

including ours is 100.

Table. 7 lists the classification accuracies with increasing

angle of inclination. Our solution attains best scores for 4

views and the second best for the C09. With the increasing

9Despite using labeled data, this method falls under the unsupervised

setting since it does not use the labeled target data.
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Table 3. Semi-supervised domain adaptation results using SURF features on Office+Caltech10 [21] dataset with the evaluation setup

of [27]. The best score (in bold blue), the second best (in blue).
A→W A→D A→C W→A W→D W→C D→A D→W D→C C→A C→W C→D

1-NN-t 34.5 33.6 19.7 29.5 35.9 18.9 27.1 33.4 18.6 29.2 33.5 34.1

SVM-t 63.7 57.2 32.2 46.0 56.5 29.7 45.3 62.1 32.0 45.1 60.2 56.3

HFA [14] 57.4 55.1 31.0 56.5 56.5 29.0 42.9 60.5 30.9 43.8 58.1 55.6

MMDT [27] 64.6 56.7 36.4 47.7 67.0 32.2 46.9 74.1 34.1 49.4 63.8 56.5

CDLS [29] 68.7 60.4 35.3 51.8 60.7 33.5 50.7 68.5 34.9 50.9 66.3 59.8

ILS (1-NN) 59.7 49.8 43.6 54.3 70.8 38.6 55.0 80.1 41.0 55.1 62.9 56.2

Table 4. Semi-supervised domain adaptation results using VGG-FC6 features on Office+Caltech10 [21] dataset with the evaluation setup

of [27]. The best (in bold blue), the second best (in blue).
A→W A→D A→C W→A W→D W→C D→A D→W D→C C→A C→W C→D

1-NN-t 81.0 79.1 67.8 76.1 77.9 65.2 77.1 81.7 65.6 78.3 80.2 77.7

SVM-t 89.1 88.2 77.3 86.5 87.7 76.3 87.3 88.3 76.3 87.5 87.8 84.9

HFA [14] 87.9 87.1 75.5 85.1 87.3 74.4 85.9 86.9 74.8 86.2 86.0 87.0

MMDT [27] 82.5 77.1 78.7 84.7 85.1 73.6 83.6 86.1 71.8 85.9 82.8 77.9

CDLS [29] 91.2 86.9 78.1 87.4 88.5 78.2 88.1 90.7 77.9 88.0 89.7 86.3

ILS (1-NN) 90.7 87.7 83.3 88.8 94.5 82.8 88.7 95.5 81.4 89.7 91.4 86.9

Table 5. Unsupervised domain adaptation results using SURF features on Office+Caltech10 [21] dataset with the evaluation setup

of [21].The best (in bold blue), the second best (in blue).
A→W A→D A→C W→A W→D W→C D→A D→W D→C C→A C→W C→D

1-NN-s 23.1 22.3 20.0 14.7 31.3 12.0 23.0 51.7 19.9 21.0 19.0 23.6

SVM-s 25.6 33.4 35.9 30.4 67.7 23.4 34.6 70.2 31.2 43.8 30.5 40.3

GFK-PLS [21] 35.7 35.1 37.9 35.5 71.2 29.3 36.2 79.1 32.7 40.4 35.8 41.1

SA [16] 38.6 37.6 35.3 37.4 80.3 32.3 38.0 83.6 32.4 39.0 36.8 39.6

CORAL [49] 38.7 38.3 40.3 37.8 84.9 34.6 38.1 85.9 34.2 47.2 39.2 40.7

ILS (1-NN) 40.6 41.0 37.1 38.6 72.4 32.6 38.9 79.1 36.9 48.6 42.0 44.1

Table 6. Unsupervised domain adaptation results using VGG-FC6 features on Office+Caltech10 [21] dataset with the evaluation setup

of [21].The best (in bold blue), the second best (in blue).
A→W A→D A→C W→A W→D W→C D→A D→W D→C C→A C→W C→D

1-NN-s 60.9 52.3 70.1 62.4 83.9 57.5 57.0 86.7 48.0 81.9 65.9 55.6

SVM-s 63.1 51.7 74.2 69.8 89.4 64.7 58.7 91.8 55.5 86.7 74.8 61.5

GFK-PLS [21] 74.1 63.5 77.7 77.9 92.9 71.3 69.9 92.4 64.0 86.2 76.5 66.5

SA [16] 76.0 64.9 77.1 76.6 90.4 70.7 69.0 90.5 62.3 83.9 76.0 66.2

CORAL [49] 74.8 67.1 79.0 81.2 92.6 75.2 75.8 94.6 64.7 89.4 77.6 67.6

ILS (1-NN) 82.4 72.5 78.9 85.9 87.4 77.0 79.2 94.2 66.5 87.6 84.4 73.0

Figure 5. Two instances of the PIE-Multiview face data. Here, the

view from C27 is used as the source domain. Remaining views

are considered to be the target for each transformation.

Table 7. PIE-Multiview results. The variation of performance w.r.t.

face orientations when frontal face images are considered as the

source domain.
camera pose→ C09 C05 C37 C25 C02

1-NN-s 92.5 55.7 28.5 14.8 11.0

SVM-s 87.8 65.0 35.8 15.7 16.7

GFK-PLS [21] 92.5 74.0 32.1 14.1 12.3

SA [16] 97.9 85.9 47.9 16.6 13.9

CORAL [49] 91.4 74.8 35.3 13.4 13.2

ILS (1-NN) 96.6 88.3 72.9 28.4 34.8

camera angle, the feature structure changes up to a certain

extent. In other words, the features become heterogeneous.

However, our algorithm boosts the accuracies even under

such challenging conditions.

Conclusion

In this paper, we proposed a solution for both semi-

supervised and unsupervised Domain Adaptation (DA)

problems. Our solution learns a latent space in which do-

main discrepancies are minimized. We showed that such a

latent space can be obtained by 1. minimizing a notion of

discriminatory power over the available labeled data while

simultaneously 2. matching statistical properties across the

domains. To determine the latent space, we modeled the

learning problem as a minimization problem on Rieman-

nian manifolds and solved it using optimization techniques

on matrix manifolds.

Empirically, we showed that the proposed method out-

performed state-of-the-art DA solutions in semi-supervised

and unsupervised settings. With the proposed framework

we see possibilities of extending our solution to large scale

datasets with stochastic optimization techniques, multiple

source DA and for domain generalization [20, 18]. In terms

of algorithmic extensions we look forward to use dictionary

learning [32] and higher order statistics matching.
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