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Abstract

We propose the residual expansion (RE) algorithm: a

global (or near-global) optimization method for noncon-

vex least squares problems. Unlike most existing noncon-

vex optimization techniques, the RE algorithm is not based

on either stochastic or multi-point searches; therefore, it

can achieve fast global optimization. Moreover, the RE

algorithm is easy to implement and successful in high-

dimensional optimization. The RE algorithm exhibits excel-

lent empirical performance in terms of k-means clustering,

point-set registration, optimized product quantization, and

blind image deblurring.

1. Introduction

Many problems in computer vision and machine learning

can be formulated as optimization problems. If we can for-

mulate a problem as a convex optimization, we can solve it

by convex optimization techniques such as gradient-based

methods. However, most optimization problems are non-

convex and often have many local minima. In these cases,

convex optimization techniques can find only local minima.

Global optimization of nonconvex problems is an NP-

hard problem in most cases. Therefore, heuristic methods

are often used to find a global (or near-global) optimum.

There are two major approaches: good initialization and

stochastic optimization. The former is fast and effective if

we can obtain a good initial guess [2]; however, many opti-

mization problems do not provide this. The latter is random

search or multiple-point search, which is represented by

simulated annealing (SA) [13], particle swarm optimization

(PSO) [12], and genetic algorithms (GA) [19]. Although

these methods are effective with low-dimensional optimiza-

tion problems, it is difficult to obtain good solutions with

high-dimensional ones. Moreover, these approaches often

require excessive computation time to obtain a good solu-

tion.

In this paper, we propose a fast and effective opti-

(a) The global optimum result. (b) The local minimum result.

Fig 1: K-means clustering results with different RE con-

vergence. Gray circles denote original data points and red,

blue, and green circles denote α-expanded data points from

each cluster center. Fig. 1(a) shows α RE convergence with

α = 1; however, Fig. 1(b) does not show this. In this case,

the solution with a larger RE constant achieves the global

optimum. The details of RE convergence and the RE con-

stant are described in Section 3.

mization method for nonconvex least squares (LS) prob-

lems such as k-means clustering and point-set registration.

First, we propose a novel measure of convergence called

RE convergence: this represents how far we can expand

data points along their residual directions under conver-

gence. Fig. 1 shows k-means results and expanded data

points. Fig. 1(a) depicts convergence on expanded data

while Fig. 1(b) shows a case that is not converged. We pre-

sume that RE convergence is associated with global conver-

gence. In fact, we can prove that the solution that is stable

on a large expansion is the global optimum in the case of a

one-dimensional quartic minimization problem.

Additionally, we propose a heuristic algorithm to find a

solution that is stable on the large expansion, which we term

the residual expansion (RE) algorithm. This algorithm is

based on neither multiple-point search nor random search,

and thus fast computation can be achieved.

Our contribution is as follows:

1. We propose a novel concept of convergence, RE con-
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vergence. We show the relationship between RE con-

vergence and the global optimum.

2. We propose the RE algorithm, which can be applied

for any nonconvex LS problem. We show that the RE

algorithm is fast, effective, and easy to implement.

3. We show the RE algorithm’s excellent performance for

various nonconvex LS problems such as k-means clus-

tering, point-set registration, optimized product quan-

tization, and blind image deblurring.

2. Related works

2.1. Nonconvex least squares problems

We focus on nonconvex LS problems, of which many

exist. In this paper, we study the following four important

problems in computer vision and machine learning.

2.1.1 K-means clustering

K-means clustering is one of the most popular cluster-

ing methods with various applications such as quantiza-

tion [11], feature learning [8], and segmentation [1]. K-

means clustering assigns data vectors x1, . . . ,xn ∈ R
d to

the nearest representative clusters. The optimization prob-

lem can be formulated as

min
C,Z

1

2
‖X−CZ‖2F (1)

s.t. zij = {0, 1}, ‖zi‖1 = 1,

where X = [x1, . . . ,xn] ∈ R
d×n is a data matrix, C =

[c1, . . . , ck] ∈ R
d×k is a matrix of cluster centroids, and

Z = [z1, . . . , zn] ∈ R
k×n is an assignment matrix.

The most popular optimization method is Lloyd’s algo-

rithm [17], which has an update step (fix Z and update C)

and an assignment step (fix C and update Z). Hartigan’s

algorithm [10] achieves better clustering than Lloyd’s algo-

rithm because the set of local minima of Hartigan’s algo-

rithm is a subset of those of Lloyd’s algorithm [26, 25]. For

good initialization, k-means++ [2] is often used because of

its efficiency and effectiveness.

2.1.2 Point-set registration

Point-set registration is a fundamental problem in computer

vision. Here we consider a rigid 3D-point-set registration

problem: Given source point sets X = [x1, . . . ,xn] ∈
R

3×n and target point sets Y = [y1, . . . ,ym] ∈ R
3×m,

we estimate the best rigid transformation parameters.

In this paper, we consider the following optimization

problem with a point-to-point cost function:

min
R,t,Z

1

2
‖RX+ t1⊤ −YZ‖2F (2)

s.t. zij = {0, 1}, ‖zi‖1 = 1,R⊤R = I,

where R ∈ SO(3) is a rotation matrix, t ∈ R
3 is a transla-

tion vector, and Z = [z1, . . . , zn] ∈ R
k×n is an assignment

matrix. I is an identity matrix and 1 is a vector of all ones.

The iterative closest point (ICP) algorithm [3] is a well-

known alternating optimization method: it fixes Z and up-

dates R, t, and then fixes R, t and updates Z. To obtain

a global minimum, some studies adopt stochastic optimiza-

tion, such as GA [24], PSO [27], and SA [18]. Recently,

Yang et al. proposed Go-ICP [29], which guarantees global

optimality by using the branch-and-bound algorithm. How-

ever, it requires significant computation time.

2.1.3 Optimized product quantization

Optimized product quantization (OPQ) [9, 22], which is

an extension of product quantization (PQ), is an efficient

fast approximate nearest neighbor search method. The op-

timization problem in OPQ is described by

min
R,C,Z

1

2

N
∑

i=1

∥

∥

∥

∥

∥

∥

∥
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s.t. z
(m)
ij = {0, 1},

∥

∥

∥
z
(m)
i

∥

∥

∥

1
= 1,R⊤R = I,

where X,C,Z have the same meaning as in Section 2.1.1

and R is a rotation matrix.

The optimization problem of Eq. (3) can be solved by al-

ternating optimization of R, C, and Z [9, 22]. Ge et al. also

proposed a parametric optimization method that assumes

the data follows a parametric Gaussian distribution [9].

2.1.4 Blind image deblurring

Blind image deblurring has long been a challenging prob-

lem in computer vision. From a blurred image B ∈ R
h×w,

we estimate an original image I ∈ R
h×w and blur kernel

k ∈ R
k×k by minimizing the following cost function:

min
I,k

1

2
‖I⊗ k−B‖2F + γIRI(I) + γkRk(k), (4)

where RI(I) and Rk(k) are the regularization terms, and ⊗
denotes the convolution operator. For RI(I), L0-norm (or

approximately L0-norm) [28, 23], or L1/L2 functions [15]

are proposed to enforce the sharp edges of the original im-

age. For Rk(k), L2-norm [28, 23] or L1-norm [15] are of-

ten used. We refer to the paper [16] for a recent comparative

study of blind image deblurring.

We can minimize Eq. (4) by alternating optimization of

I and k. For fast and effective optimization, a coarse-to-fine

strategy [7, 15, 28, 23] is generally employed.

2.2. Nonconvex optimization techniques

Most nonconvex optimization techniques are based on

stochastic optimization, including GA [19], PSO [12], and
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SA [13]. These methods generally do not work well or

require significant computation time for high-dimensional

optimization problems. Several studies [4, 14, 18, 27, 24]

have employed these nonconvex optimization techniques to

our target problems described in Section 2.1; however, these

methods are not often used in practice.

Our approach is related to graduated nonconvexity

(GNC) [5], which first solves a simplified optimization

problem and then gradually transforms the problem into the

original nonconvex problem. The basic concept of gradu-

ated optimization methods is extinguishing local minima by

using a convexified objective function, and then gradually

changing the objective function to the original function. We

refer readers to [20] for a recent survey of graduated opti-

mization. In contrast to GNC, our approach is explicitly to

escape from poor local minima by using a largely expanded

objective function and then gradually transforming it into

the original function, as described in Section 4.

3. Residual expansion convergence

First, we describe RE convergence, which indicates how

we can expand data along their residual directions. RE con-

vergence is a measure of the depth of convergence, and our

proposed algorithm is based on this concept. We show a

relationship between the global optimum and RE conver-

gence.

We discuss a nonconvex least squares (LS) optimization

problem whose objective function is given by

E (θ) =
1

2
‖y − f (θ)‖22. (5)

Our definitions are as follows.

Definition 3.1 (Residual Expansion). Let θ
∗

be a local min-

imum point of Eq. (5). We define the α-expanded objective

function Eα(θ):

Eα (θ) =
1

2
‖ŷ − f (θ)‖22. (6)

where ŷ is constructed by expanding y in the residual di-

rection with a magnitude of α as

ŷ = y + α (y − f (θ∗)) , (7)

We call the operation that constructs the α-expanded objec-

tive function residual expansion (with α).

Definition 3.2 (α RE convergence). θ
∗

is called α RE con-

vergence if there exists a constant α ≥ 0 such that θ is still

a local optimum of Eα(θ). In particular, the maximum (or

supremum) constant is called the RE constant1.

Our hypothesis is that a solution with a larger α-RE con-

stant is closer to the global optimum solution. This hypoth-

esis holds in the case of quartic minimization, as presented

in section 3.1.1.

1If θ∗ is always a local minimum of Eα(θ
∗) under all α ≥ 0, we

define the RE constant as ∞.
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function.
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and its expanded objective

function.

Fig 2: Expanded objective functions Eα(θ) with different

local minima, θ∗1 and θ∗2 . Red broken lines denote different

α-expanded objective functions Eα(θ) with α1 < α2 < α3.

θ∗2 is still a local minimum of Eα3
(θ), while θ∗1 is not.

3.1. Unconstrained and differentiable problems

We consider one of the simplest cases: unconstrained

and differentiable LS problems. Given a local optimum θ
∗
,

we can obtain first- and second-order derivatives of the α-

expanded objective function Eα (θ) at θ∗ as

∇Eα (θ∗) = (1 + α)J⊤ (θ∗) (y − f (θ∗)) = 0, (8)

∇2Eα (θ∗) = J⊤ (θ∗)J (θ∗) + (1 + α)S (θ∗) . (9)

where J is a Jacobian matrix and S (θ∗) is

S (θ∗) =
∑

i

∇2fi(θ
∗) (yi − fi (θ

∗)). (10)

Eq. (8) means that θ
∗

is always a stationary point of Eα (θ).
Therefore, θ

∗
is a local minimum of Eα (θ) if and only if

∇2Eα (θ) is a positive semi-definite (PSD) matrix. If S is

not a PSD matrix, there is a α ≥ 0 which satisfies the fact

that ∇2Eα (θ) is not a PSD matrix.

Fig. 2 shows examples of α-expanded objective func-

tions. Residual expansion elevates the objective function

around θ
∗, and if α is sufficiently large then it ceases to be

a local minimum.

One-dimensional quartic minimization: Here we con-

sider a quartic minimization problem—in particular, one

that can be formulated as an LS problem:

E (θ) =
1

2

(

(

y1 − θ2
)2

+ (y2 − θ)
2
)

. (11)

We consider the case where Eq. (11) has two local minima

θ1 and θ2. The following theorem then holds:

Theorem 1. Let θ1 and θ2 be local minima points of

Eq. (11) with RE constants of α1 and α2, respectively. θ1 is

the global minimum point if α1 > α2 and θ2 is the global

minimum point otherwise.

Proof. Please refer to the supplementary materials.

3.2. General relationship between the α RE conver­
gence and the global optimum

It is not obvious when our hypothesis, i.e., that a solution

with a larger RE constant is closer to the global optimum, is

valid. Unfortunately, we can easily find a counterexample
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(a) K-means clustering result of a

poor local minimum.
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(b) K-means clustering result of a

global minimum.

Fig 3: Different k-means clustering results with k = 2. The

result (a) has an RE constant of α = ∞; however, this is a

poor local minimum. On the other hand, the result (b) has

finite RE constant; however, this is a global minimum.

� = ͳ � = ʹ � = ͵
Fig 4: Conceptual view of the RE algorithm. The algorithm

iterates parameter updating and residual expansion, which

elevates the objective function for the current solution.

in k-means clustering, as shown in Fig. 3. However, our

algorithm, which aims to find a solution with a large RE

constant, works well from an empirical perspective in many

nonconvex LS problems.

4. Residual expansion algorithm

In this section, we propose the RE algorithm, which aims

to find a solution with a large RE constant. Since it is diffi-

cult to find the solution with the largest RE constant exactly,

we employ a heuristic strategy.

The RE algorithm has two steps: parameter updating and

residual expansion. We show an intuitive illustration of the

algorithm in Fig. 4. For the residual expansion step, we

expand data along their residual direction. This results in

elevating the objective function around the current solution

as in Fig. 2. For the parameter-updating step, instead of

minimizing the original function Eq. (5), we minimize the

following expanded objective function in each iteration:

Et (θ) =
1

2
‖ŷ(t) − f (θ)‖22, (12)

where ŷ
(t)

is an expanded data vector:

ŷ
(t) = y + α(t)r(t), (13)

r(t) = p(t)(y − f(θ(t))) + (1− p(t))r(t−1). (14)

where α and 0 < p ≤ 1 are expansion and momentum

parameters, respectively. Note that, if p = 1, Eq. (12) is

an exactly α(t)-expanded objective function on θ
(t)

. The

momentum parameter is important for achieving good per-

formance and ensuring that the RE algorithm does not to

Algorithm 1 Residual expansion algorithm.

Input: Expansion parameter α(t) → 0, momentum p(t).

Initialize: t = 0, ŷ(0) = y, r(0) = 0

1: while not converged do

2: Update θ by Eq. (12) (or Eq. (26))

3: r(t+1) = p(t)
(

y − f
(

θ
(t+1)

))

+
(

1− p(t)
)

r(t)

4: ŷ
(t+1) = y + α(t)r(t+1)

5: t = t+ 1
6: end while

Output: θ

diverge, as described later.

The RE algorithm iterates through parameter updating

by minimizing Eq. (12) and residual expansions by Eq. (13)

and Eq. (14). We use a large α(0) initially to find a solution

with a large RE constant. Then we decrease α(t) gradually

to achieve convergence, analogous to a temperature param-

eter in SA. We summarize the RE algorithm in Alg. 1.

4.1. Parameter setting for convergence

The RE algorithm has two parameters, α and p, for each

iteration. We decrease α(t) to 0 for convergence. when

α = 0, there is no residual expansion and RE algorithm

is guaranteed to converge if the original LS problem has

a convergence-guaranteed algorithm. However, inadequate

parameters of α and p cause unstable optimization. We con-

sider the norm of r(t+1). We can obtain
∥

∥

∥
r(t+1)

∥

∥

∥

2

2
=

∥

∥

∥
p
(

y − f
(

θ
(t+1)

))

+ (1− p) r(t)
∥

∥

∥

2

2

∼ (1− p− αp)
2
∥

∥

∥
r(t)

∥

∥

∥

2

2
. (15)

We use f
(

θ
(t+1)

)

∼ ŷ
(t)

for the last approximation of

Eq. (15). Eq. (15) suggests (1− p− αp)
2
≤ 1 to make the

RE algorithm stable. A good way to determine these values

of α and p is described in Section 5.

4.2. Advantages of the RE algorithm

Our algorithm consists of two steps of parameter updat-

ing and residual expansion. Parameter updating is based

simply on a typical LS problem approach. Therefore, if

there is a source code which minimizes Eq. (5), for exam-

ple, by alternative optimization or gradient methods, then

we can implement our algorithm by adding a residual ex-

pansion step to the existing code, which can be done in a

few lines of code.

Moreover, the computational complexity of residual ex-

pansion is generally less than that of parameter updating.

Therefore, we can achieve faster optimization than most

nonconvex optimization techniques based on multi-point

search or random search, such as SA and GA.

As described in Section 2.2, GNC is a similar approach
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to ours; however GNC often does not apply for LS prob-

lems. Our algorithm can be applied for any nonconvex LS

problem provided that there is a method for finding a local

optimum, such as Lloyd’s algorithm for k-means clustering

and ICP algorithms for point-set registration.

5. Alternate direction method of multipliers for

least squares problems

In this section, we apply the alternate direction method

of multipliers (ADMM) [6] to solve Eq. (5). We show that

ADMM is a special case of the RE algorithm for LS prob-

lems. Moreover, ADMM suggests a modified RE algorithm

for regularized LS problems.

We introduce an auxiliary variable z = y − f (θ) and

rewrite Eq. (5) as a constrained optimization problem:

min
z,θ

1

2
‖z‖22 (16)

s.t. z = y − f (θ) .

We can construct the augmented Lagrangian function of

Eq. (16) as

Lt(θ,z,λ)=
1

2
‖z‖22+λ

⊤(z−y+f(θ))+
µ(t)

2
‖z−y+f(θ)‖22.

(17)

We take the alternating direction approach for solving

Eq. (17) and then obtain update rules as

θ
(t+1) = arg min

θ

Lt(θ, z
(t), λ(t)) (18)

z(t+1) = arg min
z

Lt(θ
(t+1), z,λ(t)) (19)

λ
(t+1) = λ

(t) + µ(t)
(

z(t+1) − y + f (θ)
(t+1)

)

(20)

5.1. Relation to the RE algorithm

We can simplify Eq. (18), Eq. (19) and Eq. (20) as

θ
(t+1)=arg min

θ

µ(t)

2

∥

∥

∥

∥

y+

(

1−µ(t)

µ(t)

)

z(t)−f(θ)

∥

∥

∥

∥

2

2

, (21)

z(t+1)=

(

1

1+µ(t)

)

z(t)+

(

µ(t)

1+µ(t)

)

(

y−f
(

θ
(t+1)

))

. (22)

Details of the derivation are described in the supplemen-

tary material. This is a special case of the RE algorithm of

Eq. (13) and Eq. (14) with

α(t) = (1− µ(t))/µ(t), (23)

p(t) = µ(t)/(1 + µ(t)). (24)

There are two main advantages to using ADMM. First,

we can choose only µ instead of parameters α and p in the

general RE algorithm. Eq. (23) and Eq. (24) always satisfy

(1−p−αp)2 < 1, which is a condition necessary for avoid-

ing divergence to infinity, as described in Section 4.1, and

this update achieves good performance in experiments. Sec-

ond, ADMM can treat regularized LS optimization prob-

lems, such as blind image deblurring (Eq. (4)). We will

Algorithm 2 RE algorithm based on ADMM.

Input: Penalty parameter µ(t) → 1.

Initialize: t = 0, ŷ(0) = y, r(0) = 0.

1: while not converged do

2: Update θ by Eq. (27).

3: r(t+1) =
(

µ(t)

1+µ(t)

)(

y − f
(

θ
(t+1)

))

+
(

1
1+µ(t)

)

r(t)

4: ŷ
(t+1) = y +

(

1−µ(t)

µ(t)

)

r(t+1)

5: t = t+ 1
6: end while

Output: θ

describe this in the next section.

5.2. Regularized least squares problems

We consider a regularized LS problem as follows:

E (θ) =
1

2
‖y − f (θ)‖22 + γR (θ) . (25)

When we apply the RE algorithm in a straightforward man-

ner, we can obtain the following objective function in each

iteration:

Et (θ) =
1

2
‖ŷ(t) − f (θ)‖22 + γR (θ) . (26)

In the case of ADMM, from Eq. (21), the objective function

is as follows:

Et (θ) =
µ(t)

2
‖ŷ(t) − f (θ)‖22 + γR (θ) . (27)

We can find that the difference between Eq. (26) and

Eq. (27) is simply the coefficient of the squared term. We

find that minimizing Eq. (27) achieves better performance

than minimizing Eq. (26). We summarize the RE algorithm

based on ADMM in Alg. 2.

6. Implementation details

We used the RE algorithm based on ADMM (Alg. 2) un-

less otherwise stated. In the update of θ (line 2 in Alg. 2),

we perform alternating optimization with a single iteration;

for example, with k-means clustering, the cluster centers

and assignments are updated only once. The four problems

we treat in this paper can be minimized by alternating opti-

mization.

For the parameter µ, we adapt µ(t+1) = min(ρµ(t), 1),
where ρ = exp(− log(µ(0))/T ) to satisfy µ(T ) = 1. There-

fore, we only need to determine the two parameters µ(0) and

T in our method.

7. Experimental results

We evaluate the performance of the RE algorithm on

four nonconvex LS problems: k-means clustering, 3D point

set registration, OPQ, and single blind image deblurring.

All experiments were executed on an Intel Core i5-4200U

CPU (1.60 GHz) with 8GB of RAM, and were implemented
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Table 1: Clustering results on synthetic data. Mean relative errors of the RE algorithm with different µ(0) and N are reported.

(a) Synthetic data A with k = 100.

µ(0) = 0.5 µ(0) = 0.2 µ(0) = 0.1 µ(0) = 0.01
T = 30 0.905 0.894 0.902 0.921

T = 100 0.854 0.856 0.862 0.876

T = 300 0.843 0.844 0.846 0.854

T = 1, 000 0.837 0.839 0.840 0.843

(b) Synthetic data B with k = 10.

µ(0) = 0.5 µ(0) = 0.2 µ(0) = 0.1 µ(0) = 0.01
T = 30 2.699 1.758 1.493 0.998

T = 100 2.784 1.209 0.789 0.630

T = 300 2.722 1.036 0.708 0.552

T = 1, 000 2.749 0.994 0.630 0.552

Table 2: Clustering results on synthetic data. The mean / min / max relative errors and the average elapsed time are reported.

(a) Synthetic data A with k = 100.

Relative error Elapsed

time [sec]Mean Min Max

Random seeding 1.246 1.102 1.473 0.058

k-means++ [2] 1.000 0.944 1.081 0.244

Hartigan’s algorithm [10] 0.925 0.881 0.981 0.359

RE

algorithm

(µ(0) = 0.1)

T = 30 0.902 0.875 0.942 0.258

T = 100 0.862 0.846 0.873 0.780

T = 300 0.846 0.836 0.856 2.29

T = 1, 000 0.840 0.831 0.850 7.61

(b) Synthetic data B with k = 10.

relative error elapsed

time [sec]mean min max

Random seeding 4.277 0.552 22.680 0.0194

k-means++ [2] 1.000 0.552 8.743 0.0271

Hartigan’s algorithm [10] 1.000 0.552 8.743 0.0429

RE

algorithm

(µ(0) = 0.1)

T = 30 1.493 0.552 6.777 0.0699

T = 100 0.789 0.552 2.500 0.176

T = 300 0.708 0.552 2.500 0.473

T = 1, 000 0.630 0.552 2.500 1.51

in MATLAB2 except for Go-ICP [29]. For Go-ICP and

its comparison experiment, we used the publicly available

code3 implemented in C++.

7.1. K­means clustering

We compared our method with k-means++ [2], which is

a good initialization method, and Hartigan’s algorithm [10].

For Hartigan’s algorithm, we first used Lloyd’s algo-

rithm [17] with k-means++ initialization for fast compu-

tation. We reported the total time of Lloyd’s algorithm

and Hartigan’s algorithm. For the other method, we used

Lloyd’s algorithm for optimization. We used random ini-

tialization for the RE algorithm. For error measurement,

we used the objective function value of Eq. (1) and reported

relative error from the value of k-means++ (therefore, the

relative error of k-means++ is always 1).

7.1.1 Synthetic data experiments

We start with two synthetic datasets as shown in Fig. 5. We

repeated each method 50 times from different initializations

and report the average relative errors. Table 1 shows the re-

sults of our method with different µ(0) and T . We found that

larger T achieved better performance. We also found that

smaller µ(0) achieved better performance in dataset B; how-

ever, larger µ(0) achieved better performance in dataset A.

This indicates that the best setting µ(0) is different for dif-

ferent data distributions. Intuitively, dataset B requires a

larger residual expansion (in other words, small µ(0)) to es-

cape from a poor local minimum, while dataset A requires

a smaller residual expansion.

2Our codes will be available if the paper is accepted.
3http://iitlab.bit.edu.cn/mcislab/˜yangjiaolong/go-icp/

(a) Synthetic dataset A. (b) Synthetic dataset B.

Fig 5: Synthetic data (1,000 two-dimensional points).

We show comparison results in Table 2. We repeated

each method 50 times from different initializations. K-

means++ worked well with dataset B. On the other hand,

Hartigan’s algorithm can improve the results of k-means++

in dataset A; however, this does not work in dataset B. The

RE algorithm worked best in both cases, even though it was

initialized by random seeding. Moreover, the RE algorithm

with T = 30 achieved comparable speed to k-means++ with

better performance for dataset A.

7.1.2 Real-world data experiments

We used two real-world datasets for comparison: the cloud

dataset4 and the COIL20 dataset [21]. We performed exper-

iments in the same manner as in Section 7.1.1.

Table 3 shows comparative results. In the cloud dataset,

k-means++ achieves faster and better clustering than ran-

dom seeding. The RE algorithm with T = 30 achieved

better clustering than k-means++ with about 1.8 times the

computational cost. The RE algorithm with T = 1000 per-

4https://archive.ics.uci.edu/ml/datasets/Cloud

5824



Table 3: Clustering results on real data. The mean / min / max of the relative error and the average elapsed time are reported.

(a) Cloud dataset (X ∈ R
10×1024) with k = 10.

Relative error Elapsed

time [sec]Mean Min Max

Random seeding 1.255 1.003 1.438 0.0444

k-means++ [2] 1.000 0.920 1.097 0.0395

Hartigan’s algorithm [10] 0.994 0.920 1.093 0.0593

RE

algorithm

(µ(0) = 0.1)

T = 30 0.980 0.920 1.031 0.0719

T = 100 0.941 0.920 0.986 0.183

T = 300 0.926 0.920 0.983 0.516

T = 1, 000 0.920 0.920 0.921 1.63

(b) COIL20 dataset (X ∈ R
1024×1440) with k = 20.

Relative error Elapsed

time [sec]Mean Min Max

Random seeding 0.999 0.953 1.076 2.22

k-means++ [2] 1.000 0.962 1.038 3.52

Hartigan’s algorithm [10] 0.990 0.960 1.021 8.07

RE

algorithm

(µ(0) = 0.1)

T = 30 0.951 0.939 0.977 4.37

T = 100 0.945 0.938 0.960 12.6

T = 300 0.942 0.938 0.950 36.6

T = 1, 000 0.941 0.938 0.956 119

Table 4: Point set registration results. We reported the num-

ber of successes with each different rotation angle. We also

reported the average elapsed time for all 150 point sets.

Number of successes Number of

iterationsφ = π/3 φ = 5π/12 φ = π/2
ICP algorithm 26 4 1 46.7

RE

algorithm

(µ(0) = 0.1)

T = 30 46 25 2 47.4

T = 100 49 31 5 110.1

T = 300 49 33 6 310.2

T = 1, 000 49 36 6 1008

(a) Source model (500 points). (b) Target model (313 points).

Fig 6: Point set models.

formed best, and found the near-global optimum in every

case. For the COIL20 dataset, although k-means++ and

Hartigan’s algorithm did not work well, the RE algorithm

significantly outperformed the other methods.

7.2. Point set registration

We compared the RE algorithm with the ICP algorithm

and Go-ICP [29]. Go-ICP is known as a method that can

achieve global optimization. We used the bunny model from

the Stanford3D dataset5, as in Fig. 6. For the target model,

we used a partial point set as in Fig. 6(b). In the experi-

ments, point sets were normalized within a cube of [−1, 1]3.

We made a rotation matrix Rgt from a random rotation

axis and the rotation angle φ. The target point set was con-

structed by this rotation matrix, and we added Gaussian

noise with a standard deviation of σ = 0.03. We performed

50 tests with different random rotation axes at each rotation

angle φ = π/3, 5π/12, π/2. For measurement of the error,

we used the objective value Eq. (2) and regarded the results

as successful if the objective error was less than 1 (this value

5http://graphics.stanford.edu/data/3Dscanrep/
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Fig 7: Point set registration results with φ = 5π/12. We

plotted the objective value and computation time over 50

trials. For the RE algorithm, we set T = 30. The average

computational times for the ICP algorithm, RE algorithm,

Go-ICP, and RE + Go-ICP were 0.0304, 0.0347, 0.551, and

0.231 seconds, respectively.

is approximately twice of the average objective value using

Go-ICP, as in Fig. 7).

We first show the comparison results between the RE al-

gorithm and the ICP algorithm as in Table 4. The RE al-

gorithm with T = 30 achieved a better success rate with

almost the same number of iterations as the ICP algorithm.

Using a large T can improve the results to a small extent.

We also compare our method to Go-ICP [29]. Go-ICP

has two steps: the ICP algorithm and the branch-and-bound

algorithm. We compared the original Go-ICP and RE +

Go-ICP, which has the two steps of ICP with the RE and

branch-and-bound algorithms. Fig. 7 plots all 50 results in

φ = 5π/12. Note that this comparison was implemented

entirely in C++. Go-ICP always found the global optimum

solution; however, it required significant computation. RE +

Go-ICP reduced computational cost while achieving global

optimization.

7.3. Optimized product quantization

We show that the RE algorithm is successful in OPQ

optimization problems. We compare our method with the

alternating optimization method [9, 22]. For a dataset,

we used SIFT 1M [11], which contains 100,000 128-

dimensional SIFT descriptors for training. We set the sub-

space number M = 8 and cluster number k = 256, which

are often used in the field of approximate nearest neighbor

search. For error measurement, we used the objective func-
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Table 5: Deblurring results. We reported PSNR values [dB] for each method. The best and second-best results are highlighted

in bold and italics, respectively.

Image #1 #2 #3 #4 #5

Kernel #1 #2 #3 #4 #1 #2 #3 #4 #1 #2 #3 #4 #1 #2 #3 #4 #1 #2 #3 #4

Pan et al. [23] 13.6 13.2 20.3 13.1 14.9 16.5 14.1 11.2 11.8 20.6 19.4 10.0 13.7 11.8 19.1 11.9 19.6 19.2 16.8 14.1

Alg. 1 20.2 20.2 21.3 16.4 17.0 16.9 15.8 7.4 20.9 18.8 20.4 6.5 23.6 20.4 19.7 12.5 21.3 18.2 17.5 9.4

Alg. 2 20.2 19.6 20.5 15.7 17.2 17.1 15.8 8.4 19.5 21.5 20.7 14.2 23.6 20.5 19.1 11.9 21.9 17.7 18.6 15.2

(a) Latent image. (b) Blurred image. (c) Result using [23]. (d) Result using Alg. 2.

Fig 9: An example of the results of deblurring (image #1, kernel #4).

tion value of Eq. (3). For our method, we set µ(0) = 0.5.

We plot the objective function value versus iteration

number in Fig. 8. We performed five repetitions using dif-

ferent initializations and report the average objective val-

ues obtained. Our method improved the objective function

value; moreover, it achieved rapid convergence in the cases

of T = 30 and T = 100. The RE algorithm elevates the ob-

jective function around the current solution; in other words,

it transforms the gradient for the current solution into a

steeper gradient, potentially causing rapid convergence.

7.4. Blind image deblurring

We evaluated our method with single blind image de-

blurring. There are many formulations for blind image de-

blurring. In this paper, we followed Pan et al.’s formula-

tion [23], which can be minimized by alternating optimiza-

tion. We compared three methods as follows: a coarse-to-

fine strategy [23] and RE algorithms based on Alg. 1 and

Alg. 2. We used the uniform blurred text images from the

dataset provided by Lai et al. [16], which contains five latent

images and four blurring kernels for a total of 20 blurred im-

ages. For all methods, we used the same objective function

parameters, such as the regularization coefficients. For our

method, we set µ(0) = 0.2 and T = 100.

We show the results in Table 5. Our method signifi-

cantly outperforms Pan’s method [23] and is successful for

a significantly blurred image, as in Fig. 9. We found that

Alg. 2 is superior to Alg. 1 in the cases of {image #3, kernel

#4} and {image #5, kernel #4}. Note that these results are

obtained by minimizing the same objective function, how-

ever using different optimization methods. Therefore our

method likely improves upon other methods which use dif-

ferent objective functions [15, 28].
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Fig 8: Objective value of Eq. (3) versus iteration number

of OPQ optimization. We report average results over five

different initializations.

8. Conclusion

We proposed the RE algorithm, which is a novel global

optimization algorithm for nonconvex LS problems. This

method is based on a novel measurement of global con-

vergence called RE convergence. We presented theoretical

analysis of RE convergence and empirical results showing

excellent performance of the RE algorithm for various opti-

mization problems.

There remain many open questions in both theoretical

and empirical aspects. We can guarantee that the solution

with the largest RE constant is the global optimum in lim-

ited cases. To which problems this applies remains un-

known. We plan to investigate the applicability of the RE al-

gorithm to other nonconvex optimization problems, includ-

ing non-LS problems.
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