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Abstract

In this work, we introduce the challenging problem of

joint multi-person pose estimation and tracking of an un-

known number of persons in unconstrained videos. Existing

methods for multi-person pose estimation in images cannot

be applied directly to this problem, since it also requires to

solve the problem of person association over time in addi-

tion to the pose estimation for each person. We therefore

propose a novel method that jointly models multi-person

pose estimation and tracking in a single formulation. To

this end, we represent body joint detections in a video by a

spatio-temporal graph and solve an integer linear program

to partition the graph into sub-graphs that correspond to

plausible body pose trajectories for each person. The pro-

posed approach implicitly handles occlusion and trunca-

tion of persons. Since the problem has not been addressed

quantitatively in the literature, we introduce a challeng-

ing “Multi-Person PoseTrack” dataset, and also propose a

completely unconstrained evaluation protocol that does not

make any assumptions about the scale, size, location or the

number of persons. Finally, we evaluate the proposed ap-

proach and several baseline methods on our new dataset.

1. Introduction

Human pose estimation has long been motivated for its

applications in understanding human interactions, activity

recognition, video surveillance and sports video analytics.

The field of human pose estimation in images has pro-

gressed remarkably over the past few years. The methods

have advanced from pose estimation of single pre-localized

persons [30, 6, 40, 14, 16, 27, 5, 32] to the more challeng-

ing and realistic case of multiple, potentially overlapping

and truncated persons [12, 8, 30, 16, 17]. Many applica-

tions, such as mentioned before, however, aim to analyze

human body motion over time. While there exists a notable

number of works that track the pose of a single person in a

video [28, 9, 44, 33, 46, 20, 29, 7, 13, 18], multi-person hu-

man pose estimation in unconstrained videos has not been

addressed in the literature.

Figure 1: Example frames and annotations from the proposed

Multi-Person PoseTrack dataset.

In this work, we address the problem of tracking the

poses of multiple persons in an unconstrained setting. This

means that we have to deal with large pose and scale vari-

ations, fast motions, and a varying number of persons and

visible body parts due to occlusion or truncation. In contrast

to previous works, we aim to solve the association of each

person across the video and the pose estimation together.

To this end, we build upon the recent methods for multi-

person pose estimation in images [30, 16, 17] that build a

spatial graph based on joint proposals to estimate the pose

of multiple persons in an image. In particular, we cast the

problem as an optimization of a densely connected spatio-

temporal graph connecting body joint candidates spatially

as well as temporally. The optimization problem is formu-

lated as a constrained Integer Linear Program (ILP) whose

feasible solution partitions the graph into valid body pose

trajectories for any unknown number of persons. In this

way, we can handle occlusion, truncation, and temporal as-

sociation within a single formulation.

Since there exists no dataset that provides annotations

to quantitatively evaluate joint multi-person pose estima-

tion and tracking, we also propose a new challenging Multi-

Person PoseTrack dataset as a second contribution of the

paper. The dataset provides detailed and dense annotations

for multiple persons in each video, as shown in Fig. 1, and

introduces new challenges to the field of pose estimation in

videos. In order to evaluate the pose estimation and tracking

accuracy, we introduce a new protocol that also deals with

occluded body joints. We quantify the proposed method

in detail on the proposed dataset, and also report results

for several baseline methods. The source code, pre-trained

models and the dataset are publicly available.1

1http://pages.iai.uni-bonn.de/iqbal_umar/

PoseTrack/
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2. Related Work

Single person pose estimation in images has seen a re-

markable progress over the past few years [39, 30, 6, 40,

14, 16, 27, 5, 32]. However, all these approaches assume

that only a single person is visible in the image, and can-

not handle realistic cases where several people appear in

the scene, and interact with each other. In contrast to single

person pose estimation, multi-person pose estimation intro-

duces significantly more challenges, since the number of

persons in an image is not known a priori. Moreover, it is

natural that persons occlude each other during interactions,

and may also become partially truncated to various degrees.

Multi-person pose estimation has therefore gained much at-

tention recently [11, 37, 31, 43, 23, 12, 8, 3, 30, 16, 17].

Earlier methods in this direction follow a two-staged ap-

proach [31, 12, 8] by first detecting the persons in an image

followed by a human pose estimation technique for each

person individually. Such approaches are, however, applica-

ble only if people appear well separated and do not occlude

each other. Moreover, most single person pose estimation

methods always output a fixed number of body joints and

do not account for occlusion and truncation, which often is

the case in multi-person scenarios. Other approaches ad-

dress the problem using tree structured graphical models

[43, 37, 11, 23]. However, such models struggle to cope

with large pose variations, and are shown to be significantly

outperformed by more recent methods based on Convolu-

tional Neural Networks [30, 16]. For example, [30] jointly

estimate the pose of all persons visible in an image, while

also handling occlusion and truncation. The approach has

been further improved by stronger part detectors and effi-

cient approximations [16]. The approach in [17] also pro-

poses a simplification of [30] by tackling the problem lo-

cally for each person. However, it still relies on a separate

person detector.

Single person pose estimation in videos has also been

studied extensively in the literature [28, 9, 46, 33, 46, 20, 44,

29, 13, 18]. These approaches mainly aim to improve pose

estimation by utilizing temporal smoothing constraints [28,

9, 44, 33, 13] and/or optical flow information [46, 20, 29],

but they are not directly applicable to videos with multiple

potentially occluding persons.

In this work we focus on the challenging problem of joint

multi-person pose estimation and data association across

frames. While the problem has not been studied quantita-

tively in the literature2, there exist early works towards the

problem [19, 2]. These approaches, however, do not reason

jointly about pose estimation and tracking, but rather fo-

cus on multi-person tracking alone. The methods follow a

multi-staged strategy, i.e. they first estimate body part loca-

2Contemporaneously with this work, the problem has also been studied

in [15]

tions for each person separately and subsequently leverage

body part tracklets to facilitate person tracking. We on the

other hand propose to simultaneously estimate the pose of

multiple persons and track them over time. To this end, we

build upon the recent progress on multi-person pose estima-

tion in images [30, 16, 17] and propose a joint objective for

both problems.

Previous datasets used to benchmark pose estimation al-

gorithms in-the-wild are summarized in Tab. 1. While there

exists a number of datasets to evaluate single person pose

estimation methods in videos, such as e.g., J-HMDB [21]

and Penn-Action [45], none of the video datasets provides

annotations to benchmark multi-person pose estimation and

tracking at the same time. To allow for a quantitative eval-

uation of this problem, we therefore also introduce a new

“Multi-Person PoseTrack” dataset which provides pose an-

notations for multiple persons in each video to measure pose

estimation accuracy, and also provides a unique ID for each

of the annotated persons to benchmark multi-person pose

tracking. The proposed dataset introduces new challenges

to the field of human pose estimation and tracking since it

contains a large amount of appearance and pose variations,

body part occlusion and truncation, large scale variations,

fast camera and person movements, motion blur, and a suf-

ficiently large number of persons per video.

3. Multi-Person Pose Tracking

Our method jointly solves the problem of multi-person

pose estimation and tracking for all persons appearing in a

video together. We first generate a set of joint detection can-

didates in each video as illustrated in Fig. 2. From the detec-

tions, we build a graph consisting of spatial edges connect-

ing the detections within a frame and temporal edges con-

necting detections of the same joint type over frames. We

solve the problem using integer linear programming (ILP)

whose feasible solution provides the pose estimate for each

person in all video frames, and also performs person associ-

ation across frames. We first introduce the proposed method

and discuss the proposed dataset for evaluation in Sec. 4.

3.1. Spatio­Temporal Graph

Given a video sequence F containing an arbitrary num-

ber of persons, we generate a set of body joint detection

candidates D = {Df}f∈F where Df is the set for frame f .

Every detection d ∈ D at location x
f
d ∈ R

2 in frame f
belongs to a joint type j ∈ J = {1, . . . , J}. Additional de-

tails regarding the used detector will be provided in Sec. 3.4.

For multi-person pose tracking, we aim to identify the

joint hypotheses that belong to an individual person in the

entire video. This can be formulated by a graph structure

G = (D,E) where D is the set of nodes. The set of edges

E consists of two types of edges, namely spatial edges Es

and temporal edges Et. The spatial edges correspond to the
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Figure 2: Top: Body joint detection hypotheses shown for three frames. Middle: Spatio-temporal graph with spatial edges (blue) and

temporal edges for head (red) and neck (yellow). We only show a subset of the edges. Bottom: Estimated poses for all persons in the

video. Each color corresponds to a unique person identity.

union of edges of a fully connected graph for each frame,

i.e.

Es =
⋃

f∈F

Ef
s and Ef

s = {(d, d′) : d 6=d′ ∧ d, d′ ∈ Df}.

(1)

Note that these edges connect joint candidates indepen-

dently of the associated joint type j. The temporal edges

connect only joint hypotheses of the same joint type over

two different frames, i.e.

Et = {(d, d′) : j=j′ ∧ d ∈ Df ∧ d′ ∈ Df ′

∧ 1≤|f − f ′|≤τ ∧ f, f ′ ∈ F}. (2)

The temporal connections are not only modeled for neigh-

boring frames, i.e. |f − f ′| = 1, but we also take temporal

relations up to τ frames into account to handle short-term

occlusion and missing detections. The graph structure is

illustrated in Fig. 2.

3.2. Graph Partitioning

By removing edges and nodes from the graph

G = (D,E), we obtain several partitions of the spatio-

temporal graph and each partition corresponds to a tracked

pose of an individual person. In order to solve the graph

partitioning problem, we introduce the three binary vectors

v ∈ {0, 1}|D|, s ∈ {0, 1}|Es|, and t ∈ {0, 1}|Et|. Each

binary variable implies if a node or edge is removed, i.e.

vd=0 implies that the joint detection d is removed. Simi-

larly, s(df ,d′
f )=0 with (df , d

′
f ) ∈ Es implies that the spa-

tial edge between the joint hypothesis d and d′ in frame f

is removed while t(df ,d′

f′ )=0 with (df , d
′
f ′) ∈ Et implies

that the temporal edge between the joint hypothesis d in

frame f and d′ in frame f ′ is removed.

A partitioning is obtained by minimizing the cost func-

tion

argmin
v,s,t

(〈v, φ〉+ 〈s, ψs〉+ 〈t, ψt〉) (3)

〈v, φ〉 =
∑

d∈D

vdφ(d) (4)

〈s, ψs〉 =
∑

(df ,d′
f )∈Es

s(df ,d′
f )ψs(df , d

′
f ) (5)

〈t, ψt〉 =
∑

(df ,d′

f′ )∈Et

t(df ,d′

f′ )ψt(df , d
′
f ′). (6)

This means that we search for a graph partitioning such that

the cost of the remaining nodes and edges is minimal. The

cost for a node d is defined by the unary term:

φ(d) = log
1− pd
pd

(7)

where pd ∈ (0, 1) corresponds to the probability of the joint

hypothesis d. Note that φ(d) is negative when pd>0.5 and

detections with a high confidence are preferred since they

reduce the cost function (3). The cost for a spatial or tem-
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poral edge is defined similarly by

ψs(df , d
′
f ) = log

1− ps(df ,d′
f )

ps(df ,d′
f )

(8)

ψt(df , d
′
f ′) = log

1− pt(df ,d′

f′ )

pt(df ,d′

f′ )

. (9)

While ps denotes the probability that two joint detections d
and d′ in a frame f belong to the same person, pt denotes

the probability that two detections of a joint in frame f and

f ′ are the same. In Sec. 3.4 we will discuss how the proba-

bilities pd, ps(df ,d′
f )

, and pt(df ,d′

f′ )
are learned.

In order to ensure that the feasible solutions of the ob-

jective (3) result in well defined body poses and valid pose

tracks, we have to add additional constraints. The first set of

constraints ensures that two joint hypotheses are associated

to the same person (s(df ,d′
f )=1) only if both detections are

considered as valid, i.e., vdf
=1 and vd′

f
=1:

s(df ,d′
f ) ≤ vdf

∧ s(df ,d′
f ) ≤ vd′

f
∀(df , d

′
f ) ∈ Es.

(10)

The same holds for the temporal edges:

t(df ,d′

f′ ) ≤ vdf
∧ t(df ,d′

f′ ) ≤ vd′

f′
∀(df , d

′
f ′) ∈ Et.

(11)

The second set of constraints are transitivity constraints

in the spatial domain. Such transitivity constraints have

been proposed for multi-person pose estimation in im-

ages [30, 16, 17]. They enforce for any triplet of joint de-

tection candidates (df , d
′
f , d

′′
f ) that if df and d′f are asso-

ciated to one person and d′f and d′′f are also associated to

one person, i.e. s(df ,d′
f )=1 and s(d′

f ,d′′
f )=1, then the edge

(df , d
′′
f ) should also be added:

s(df ,d′
f ) + s(d′

f ,d′′
f ) − 1 ≤ s(df ,d′′

f ) (12)

∀(df , d
′
f ), (d

′
f , d

′′
f ) ∈ Es.

An example of a transitivity constraint is illustrated in

Fig. 3a. The transitivity constraints can be used to enforce

that a human can have only one joint type j, e.g. only one

head. Let df and d′′f have the same joint type j while d′f
belongs to another joint type j′. Without transitivity con-

straints connecting df and d′′f with d′f might result in a

low cost. The transitivity constraints, however, enforce that

the binary cost ψs(df , d
′′
f ) is added. To prevent poses with

multiple joints, we thus only have to ensure that the binary

cost ψs(d, d
′′) is very high if j=j′′. We discuss this more

in detail in Sec. 3.4.

In contrast to previous work, we also have to ensure

spatio-temporal consistency. Similar to the spatial transi-

tivity constraints (12), we can define temporal transitivity

constraints:

t(df ,d′

f′ ) + t(d′

f′ ,d′′

f′′ ) − 1 ≤ t(df ,d′′

f′′ ) (13)

∀(df , d
′
f ′), (d′f ′ , d′′f ′′) ∈ Et.

df

d′f d′′f

(a)

df

f

d′f ′

f ′

d′′f ′′

f ′′

(b)

df

f
d′f ′

f ′

d′′f ′

(c)

df

f

d′f ′

f ′

d′′f d′′′f ′

(d)

Figure 3: (a) The spatial transitivity constraints (12) ensure that

if the two joint hypotheses df and d′′f are spatially connected to

d′f (red edges) then the cost of the spatial edge between df and

d′′f (green edge) also has to be added. (b) The temporal transitiv-

ity constraints (13) ensure transitivity for temporal edges (dashed).

(c) The spatio-temporal transitivity constraints (14) model transi-

tivity for two temporal edges and one spatial edge. (d) The spatio-

temporal consistency constraints (15) ensure that if two pairs of

joint hypotheses (df , d
′

f ′) and (d′′f , d
′′′

f ′) are temporally con-

nected (dashed red edges) and df and d′′f are spatially connected

(solid red edge) then the cost of the spatial edge between d′f ′ and

d′′′f ′ (solid green edge) also has to be added.

The last set of constraints are spatio-temporal constraints

that ensure that the pose is consistent over time. We define

two types of spatio-temporal constraints. The first type con-

sists of a triplet of joint detection candidates (df , d
′
f ′ , d′′f ′)

from two different frames f and f ′. The constraints are de-

fined as,

t(df ,d′

f′ ) + t(df ,d′′

f′ ) − 1 ≤ s(d′

f′ ,d′′

f′ )

t(df ,d′

f′ ) + s(d′

f′ ,d′′

f′ ) − 1 ≤ t(df ,d′′

f′ ) (14)

∀(df , d
′
f ′), (df , d

′′
f ′) ∈ Et,

and enforce transitivity for two temporal edges and one

spatial edge. The second type of spatio-temporal con-

straints are based on quadruples of joint detection candi-

dates (df , d
′
f ′ , d′′f , d

′′′
f ′) from two different frames f and

f ′. The spatio-temporal constraints ensure that if (df , d
′
f ′)

and (d′′f , d
′′′

f ′) are temporally connected and (df , d
′′
f ) are

spatially connected then the spatial edge (d′f ′ , d′′′f ′) has to

be added:

t(df ,d′

f′ ) + t(d′′
f ,d′′′

f′ ) + s(df ,d′′
f ) − 2 ≤ s(d′

f′ ,d′′′

f′ )

t(df ,d′

f′ ) + t(d′′
f ,d′′′

f′ ) + s(d′

f′ ,d′′′

f′ ) − 2 ≤ s(df ,d′′
f )

(15)

∀(df , d
′
f ′), (d′′f , d

′′′
f ′) ∈ Et.

An example of both types of spatio-temporal constraint can

be seen in Fig. 3c and Fig. 3d, respectively.

3.3. Optimization

We optimize the objective (3) with the branch-and-cut

algorithm of the ILP solver Gurobi. To reduce the runtime

for long sequences, we process the video batch-wise where

each batch consists of k = 31 frames. For the first k frames,

we build the spatio-temporal graph as discussed and opti-

mize the objective (3). We then continue to build a graph
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for the next k frames and add the previously selected nodes

and edges to the graph, but fix them such that they cannot

be removed anymore. Since the graph partitioning produces

also small partitions, which usually correspond to clusters

of false positive joint detections, we remove any partition

that is shorter than 7 frames or has less than 6 nodes per

frame on average.

3.4. Potentials

In order to compute the unaries φ (7) and binaries ψ
(8),(9), we have to learn the probabilities pd, ps(df ,d′

f )
, and

pt(df ,d′

f′ )
.

The probability pd is given by the confidence of the

joint detector. As joint detector, we use the publicly avail-

able pre-trained CNN [16] trained on the MPII Multi-

Person Pose dataset [30]. In contrast to [16], we do not

assume that any scale information is given. We there-

fore apply the detector to an image pyramid with 4 scales

γ ∈ {0.6, 0.9, 1.2, 1.5}. For each detection d located at x
f
d ,

we compute a quadratic bounding box Bd = {xf
d , hd}. We

use hd = 70
γ

for the width and height. To reduce the num-

ber of detections, we remove all bounding boxes that have

an intersection-over-union (IoU) ratio over 0.7 with another

bounding box that has a higher detection confidence.

The spatial probability ps(df ,d′
f )

depends on the joint

types j and j′ of the detections. If j=j′, we define

ps(df ,d′
f )
=IoU(Bd, Bd′). This means that a joint type j can-

not be added multiple times to a person except if the detec-

tions are very close. If a partition includes detections of

the same type in a single frame, the detections are merged

by computing the weighted mean of the detections, where

the weights are proportional to pd. If j 6=j′, we use the pre-

trained binaries [16] after a scale normalization.

The temporal probability pt(df ,d′

f′ )
should be high if

two detections of the same joint type at different frames

belong to the same person. To that end, we build on

the idea recently used in multi-person tracking [38] and

compute dense correspondences between two frames us-

ing DeepMatching [41]. Let Kdf
and Kd′

f′
be the sets

of matched key-points inside the bounding boxes Bdf
and

Bd′

f′
and Kdd′=|Kdf

∪ Kd′

f′
| and Kdd′=|Kdf

∩ Kd′

f′
|

the union and intersection of these two sets. We then form

a feature vector by {K/K,min(pd, pd′),∆xdd′ , ‖∆xdd′‖}

where ∆xdd′ = x
f
d − x

f ′

d′ . We also append the feature vec-

tor with non-linear terms as done in [38]. The mapping from

the feature vector to the probability pt(df ,d′

f′ )
is obtained by

logistic regression.

4. The Multi-Person PoseTrack Dataset

In this section we introduce our new dataset for multi-

person pose estimation in videos. The MPII Multi-Person

Pose [1] is currently one of the most popular benchmarks

Dataset
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Leeds Sports [22] 2000

MPII Pose [1] X X 40,522

We Are Family [11] X 3131

MPII Multi-Person Pose [30] X X X 14,161

MS-COCO Keypoints [25] X X X 105,698

J-HMDB [21] X X X 32,173

Penn-Action [45] X X 159,633

VideoPose [35] X 1286

Poses-in-the-wild [9] X 831

YouTube Pose [7] X 5000

FYDP [36] X 1680

UYDP [36] X 2000

Multi-Person PoseTrack X X X X 16,219

Table 1: A comparison of PoseTrack dataset with the existing re-

lated datasets for human pose estimation in images and videos.

for multi-person pose estimation in images, and covers

a wide range of activities. For each annotated image,

the dataset also provides unlabeled video clips ranging 20

frames both forward and backward in time relative to that

image. For our video dataset, we manually select a sub-

set of all available videos that contain multiple persons and

cover a wide variety of person-person or person-object in-

teractions. Moreover, the selected videos are chosen to con-

tain a large amount of body pose appearance and scale vari-

ation, as well as body part occlusion and truncation. The

videos also contain severe body motion, i.e., people oc-

clude each other, re-appear after complete occlusion, vary

in scale across the video, and also significantly change their

body pose. The number of visible persons and body parts

may also vary during the video. The duration of all pro-

vided video clips is exactly 41 frames. To include longer

and variable-length sequences, we downloaded the original

raw video clips using the provided URLs and obtained an

additional set of videos. To prevent an overlap with the ex-

isting data, we only considered sequences that are at least

150 frames apart from the training samples, and followed

the same rationale as above to ensure diversity.

In total, we compiled a set of 60 videos with the number

of frames per video ranging between 41 and 151. The num-

ber of persons ranges between 2 and 16 with an average

of more than 5 persons per video sequence, totaling over

16,000 annotated poses. The person heights are between

100 and 1200 pixels. We split the dataset into a training and

testing set with an equal number of videos.

4.1. Annotation

As in [1], we annotate 14 body joints and a rectangle en-

closing the person’s head. The latter is required to estimate

the absolute scale which is used for evaluation. We assign

a unique identity to every person appearing in the video.

This person ID remains the same throughout the video un-
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til the person moves out of the field-of-view. Since we do

not target person re-identification in this work, we assign a

new ID if a person re-appears in the video. We also pro-

vide occlusion flags for all body joints. A joint is marked

occluded if it was in the field-of-view but became invisi-

ble due to an occlusion. Truncated joints, i.e. those outside

the image border limits, are not annotated, therefore, the

number of joints per person varies across the dataset. Very

small persons were zoomed in to a reasonable size to accu-

rately perform the annotation. To ensure a high quality of

the annotation, all annotations were performed by trained

in-house workers, following a clearly defined protocol. An

example annotation can be seen in Fig. 1.

4.2. Experimental setup and evaluation metrics

Since the problem of simultaneous multi-person pose es-

timation and person tracking has not been quantitatively

evaluated in the literature, we define a new evaluation pro-

tocol for this problem. To this end, we follow the best prac-

tices followed in both multi-person pose estimation [30] and

multi-target tracking [26]. In order to evaluate whether a

part is predicted correctly, we use the widely adopted PCKh

(head-normalized probability of correct keypoint) metric

[1], which considers a body joint to be correctly localized if

the predicted location of the joint is within a certain thresh-

old from the true location. Due to the large scale variation of

people across videos and even within a frame, this threshold

needs to be selected adaptively, based on the person’s size.

To that end, [1] propose to use 30% of the head box diago-

nal. We have found this threshold to be too relaxed because

recent pose estimation approaches are capable of predicting

the joint locations rather accurately. Therefore, we use a

more strict evaluation with a 20% threshold.

Given the joint localization threshold for each person, we

compute two sets of evaluation metrics, one adopted from

the multi-target tracking literature [42, 10, 26] to evaluate

multi-person pose tracking, and one which is commonly

used for evaluating multi-person pose estimation [30].

Tracking. To evaluate multi-person pose tracking, we con-

sider each joint trajectory as one individual target,3 and

compute multiple measures. First, the CLEAR MOT met-

rics [4] provide the tracking accuracy (MOTA) and tracking

precision (MOTP). The former is derived from three types

of error ratios: false positives, missed targets, and identity

switches (IDs). These are linearly combined to produce a

normalized accuracy where 100% corresponds to zero er-

rors. MOTP measures how precise each object, or in our

case each body joint, has been localized w.r.t. the ground-

truth. Second, we report trajectory-based measures pro-

posed in [24], that count the number of mostly tracked (MT)

and mostly lost (ML) tracks. A track is considered mostly

tracked if it has been recovered in at least 80% of its length,

3Note that only joints of the same type are matched.

and mostly lost if more than 80% are not tracked. For com-

pleteness, we also compute the number of times a ground-

truth trajectory is fragmented (FM).

Pose. For measuring frame-wise multi-person pose accu-

racy, we use Mean Average Precision (mAP) as is done in

[30]. The protocol to evaluate multi-person pose estimation

in [30] assumes that the rough scale and location of a group

of persons is known during testing [30], which is not the

case in realistic scenarios, and in particular in videos. We

therefore propose to make no assumption during testing and

evaluate the predictions without rescaling or shifting them

according to the ground-truth.

Occlusion handling. Both of the aforementioned proto-

cols to measure pose estimation and tracking accuracy do

not consider occlusion during evaluation, and penalize if an

occluded target that is annotated in the ground-truth is not

correctly estimated [26, 30]. This, however, discourages

methods that either detect occlusion and do not predict the

occluded joints or approaches that predict the joint position

even for occluded joints. We want to provide a fair com-

parison for both types of occlusion handling. We therefore

extend both measures to incorporate occlusion information

explicitly. To this end, we first assign each person to one

of the ground-truth poses based on the PCKh measure as

done in [30]. For each matched person, we consider an oc-

cluded joint correctly estimated either if a) it is predicted at

the correct location despite being occluded, or b) it is not

predicted at all. Otherwise, the prediction is considered as

a false positive.

5. Experiments

In this section we evaluate the proposed method for joint

multi-person pose estimation and tracking on the newly in-

troduced Multi-Person PoseTrack dataset.

5.1. Multi­Person Pose Tracking

The results for multi-person pose tracking (MOT

CLEAR metrics) are reported in Tab. 2. To find the best set-

ting, we first perform a series of experiments, investigating

the influence of temporal connection density, temporal con-

nection length, and inclusion of different constraint types.

We first examine the impact of different joint combina-

tions for temporal connections. Connecting only the Head

Tops (HT) between frames results in a Multi-Object Track-

ing Accuracy (MOTA) of 27.2 with a recall and precision of

57.6% and 66.0%, respectively. Adding Neck and Shoul-

der (HT:N:S) detections for temporal connections improves

the MOTA score to 28.2, while also improving the recall

from 57.6% to 62.7%. Adding more temporal connections

also increases other metrics such as MT, ML, and also re-

sults in a lower number of ID switches (IDs) and fragments

(FM). However, increasing the number of joints for tem-

poral edges even further (HT:N:S:H) results in a slight de-
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Method Rcll Prcn MT ML IDs FM MOTA MOTP

↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑

Impact of temporal connection density

HT 57.6 66.0 632 623 674 5080 27.2 56.1

HT:N:S 62.7 64.9 760 510 470 5557 28.2 55.8

HT:N:S:H 63.1 64.5 774 494 478 5564 27.8 55.7

HT:W:A 62.8 64.9 758 526 516 5458 28.2 55.8

Impact of the length of temporal connection (τ )

HT:N:S (τ = 1) 62.7 64.9 760 510 470 5557 28.2 55.8

HT:N:S (τ = 3) 63.0 64.8 775 502 431 5629 28.2 55.7

HT:N:S (τ = 5) 62.8 64.7 763 508 381 5676 28.0 55.7

Impact of the constraints

All 63.0 64.8 775 502 431 5629 28.2 55.7

All \ spat. transitivity 22.2 76.0 115 1521 39 3947 15.1 58.0

All \ temp. transitivity 60.3 65.1 712 544 268 5610 27.7 55.8

All \ spatio-temporal 55.1 64.1 592 628 262 5444 23.9 55.7

Comparison with the Baselines

Ours 63.0 64.8 775 502 431 5629 28.2 55.7

BBox-Tracking [38, 34]

+ LJPA [17] 58.8 64.8 716 646 319 5026 26.6 53.5

+ CPM [40] 60.1 57.7 754 611 347 4969 15.6 53.4

Table 2: Quantitative evaluation of multi-person pose-tracking us-

ing common multi-object tracking metrics. Up and down arrows

indicate whether higher or lower values for each metric are better.

The first three blocks of the table present an ablative study on de-

sign choices w.r.t. joint selection, temporal edges, and constraints.

The bottom part compares our final result with two strong base-

lines described in the text. HT:Head Top, N:Neck, S:Shoulders,

W:Wrists, A:Ankles

crease in performance. This is most likely due to the weaker

DeepMatching correspondences between hip joints, which

are difficult to match. When only the body extremities

(HT:W:A) are used for temporal edges, we obtain a simi-

lar MOTA as for (HT:N:S), but slightly worse other track-

ing measures. Considering the MOTA performance and the

complexity of our graph structure, we use (HT:N:S) as our

default setting.

Instead of considering only neighboring frames for tem-

poral edges, we also evaluate the tracking performance

while introducing longer-range temporal edges of up to 3
and 5 frames. Adding temporal edges between detections

that are at most three frames (τ = 3) apart improves the

performance only slightly, whereas increasing the distance

even further (τ =5) worsens the performance. For the rest

of our experiments we therefore set τ = 3.

To evaluate the proposed optimization objective (3) for

joint multi-person pose estimation and tracking in more de-

tail, we have quantified the impact of various kinds of con-

straints (10)-(15) enforced during the optimization. To this

end, we remove one type of constraints at a time and solve

the optimization problem. As shown in Tab. 2, all types of

constraints are important to achieve best performance, with

the spatial transitivity constraints playing the most crucial

role. This is expected since these constraints ensure that we

obtain valid poses without multiple joint types assigned to

one person. Temporal transitivity and spatio-temporal con-

Method Head Sho Elb Wri Hip Knee Ank mAP

Impact of the temporal connection density

HT 52.5 47.0 37.6 28.2 19.7 27.8 27.4 34.3

HT:N:S 56.1 51.3 42.1 31.2 22.0 31.6 31.3 37.9

HT:N:S:H 56.3 51.5 42.2 31.4 21.7 31.6 32.0 38.1

HT:W:A 56.0 51.2 42.2 31.6 21.6 31.2 31.7 37.9

Impact of the length of temporal connection (τ )

HT:N:S (τ = 1) 56.1 51.3 42.1 31.2 22.0 31.6 31.3 37.9

HT:N:S (τ = 3) 56.5 51.6 42.3 31.4 22.0 31.9 31.6 38.2

HT:N:S (τ = 5) 56.2 51.3 41.8 31.1 22.0 31.4 31.5 37.9

Impact of the constraints

All 56.5 51.6 42.3 31.4 22.0 31.9 31.6 38.2

All \ spat. transitivity 7.8 10.1 7.2 4.6 2.7 4.9 5.9 6.2

All \ temp. transitivity 50.5 46.8 37.5 27.6 20.3 30.1 28.7 34.5

All \ spatio-temporal 42.3 40.8 32.8 24.3 17.0 25.3 22.4 29.3

Comparison with the state-of-the-art

Ours 56.5 51.6 42.3 31.4 22.0 31.9 31.6 38.2

BBox-Detection [34]

+ LJPA [17] 50.5 49.3 38.3 33.0 21.7 29.6 29.2 35.9

+ CPM [40] 48.8 47.5 35.8 29.2 20.7 27.1 22.4 33.1

DeeperCut [16] 56.2 52.4 40.1 30.0 22.8 30.5 30.8 37.5

Table 3: Quantitative evaluation of multi-person pose estimation

(mAP). HT:Head Top, N:Neck, S:Shoulders, W:Wrists, A:Ankles

straints also turn out to be important to obtain good results.

Removing either of the two significantly decreases the re-

call, resulting in a drop in MOTA.

Since we are the first to report results on the Multi-

Person PoseTrack dataset, we also develop two baseline

methods by using the existing approaches. For this, we

rely on a state-of-the-art method for multi-person pose es-

timation in images [17]. The approach uses a person de-

tector [34] to first obtain person bounding box hypotheses,

and then estimates the pose for each person independently.

We extend it to videos as follows. We first generate person

bounding boxes for all frames in the video using a state-of-

the-art person detector (Faster R-CNN [34]), and perform

person tracking using a state-of-the-art person tracker [38]

and train it on the training set of the Multi-Person Pose-

Track Dataset. We also discard all tracks that are shorter

than 7 frames. The final pose estimates are obtained by us-

ing the Local Joint-to-Person Association (LJPA) approach

proposed by [17] for each person track. We also report re-

sults when Convolutional Pose Machines (CPM) [40] are

used instead. Since CPM does not account for joint occlu-

sion and truncation, the MOTA score is significantly lower

than for LJPA. LJPA [17] improves the performance, but

remains inferior w.r.t. most measures compared to our pro-

posed method. In particular, our method achieves the high-

est MOTA and MOTP scores. The former is due to a signifi-

cantly higher recall, while the latter is a result of a more pre-

cise part localization. Interestingly, the person bounding-

box tracking based baselines achieve a lower number of ID

switches. We believe that this is primarily due to the pow-

erful multi-target tracking approach [38], which can handle

person identities more robustly.
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Figure 4: Left Impact of the the temporal edge density. Middle Impact of the length of temporal edges. Right Impact of different constraint

types.

5.2. Frame­wise Multi­Person Pose Estimation

The results for frame-wise multi-person pose estimation

(mAP) are summarized in Tab. 3. Similar to the evaluation

for pose tracking, we evaluate the impact of spatio-temporal

connection density, length of temporal connections and the

influence of different constraint types. Having connections

only between Head Top (HT) detections results in a mAP of

34.3%. As for pose tracking, introducing temporal connec-

tions for Neck and Shoulders (HT:N:S) results in a higher

accuracy and improves the mAP from 34.3% to 37.9%. The

mAP elevates slightly more when we also incorporate con-

nections for hip joints (HT:N:S:H). This is in contrast to

pose tracking where MOTA dropped slightly when we also

use connections for hip joints. As before, inclusion of edges

between all detections that are in the range of 3 frames im-

proves the performance, while increasing the distance fur-

ther (τ = 5) starts to deteriorate the performance. A similar

trend can also been seen for the impact of different types of

constraints. The removal of spatial transitivity constraints

results in a drastic decrease in pose estimation accuracy.

Without temporal transitivity constraints or spatio-temporal

constraints the pose estimation accuracy drops by more than

3% and 8%, respectively. This once again indicates that all

types of constraints are essential to obtain better pose esti-

mation and tracking performance.

We also compare the proposed method with the state-

of-the-art approaches for multi-person pose estimation in

images. Similar to [17], we use Faster R-CNN [34] as

person detector, and use the provided codes for LJPA [17]

and CPM [40] to process each bounding box detection in-

dependently. We can see that person bounding box based

approaches significantly underperform as compared to the

proposed method. We also compare with the state-of-the-art

method DeeperCut [16]. The approach, however, requires

the rough scale of the persons during testing. For this, we

use the person detections obtained from [34] to compute the

scale using the median scale of all detected persons.

Our approach achieves a better performance than all

other methods. Moreover, all these approaches require an

additional person detector either to get the bounding boxes

[17, 40], or the rough scale of the persons [16]. Our ap-

proach on the other hand does not require a separate per-

son detector, and we perform joint detection across different

scales, while also solving the person association problem

across frames.

We also visualize how multi-person pose estimation ac-

curacy (mAP) relates with the multi-person tracking accu-

racy (MOTA) in Fig. 4. Finally, Tab. 4 provides mean and

median runtimes for constructing and solving the spatio-

temporal graph along with the graph size for k=31 frames

over all test videos.

Runtime

(sec./frame)

# of nodes # of spatial

edges

# of temp.

edges

Mean 14.7 2084 65535 12903

Median 4.2 1907 58164 8540

Table 4: Runtime and size of the spatio-temporal graph (τ = 3,

HT:N:S, k=31), measured on a single threaded 3.3GHz CPU .

6. Conclusion

In this paper we have presented a novel approach to

simultaneously perform multi-person pose estimation and

tracking. We demonstrate that the problem can be formu-

lated as a spatio-temporal graph which can be efficiently

optimized using integer linear programming. We have

also presented a challenging and diverse annotated dataset

with a comprehensive evaluation protocol to analyze the

algorithms for multi-person pose estimation and tracking.

Following the evaluation protocol, the proposed method

does not make any assumptions about the number, size, or

location of the persons, and can perform pose estimation

and tracking in completely unconstrained videos. More-

over, the method is able to perform pose estimation and

tracking under severe occlusion and truncation. Experi-

mental results on the proposed dataset demonstrate that our

method outperforms other baseline methods.
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