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Abstract

Multiresolution analysis and matrix factorization are
foundational tools in computer vision. In this work, we
study the interface between these two distinct topics and
obtain techniques to uncover hierarchical block structure in
symmetric matrices — an important aspect in the success of
many vision problems. Our new algorithm, the incremental
multiresolution matrix factorization, uncovers such struc-
ture one feature at a time, and hence scales well to large ma-
trices. We describe how this multiscale analysis goes much
farther than what a direct “global” factorization of the data
can identify. We evaluate the efficacy of the resulting factor-
izations for relative leveraging within regression tasks using
medical imaging data. We also use the factorization on rep-
resentations learned by popular deep networks, providing
evidence of their ability to infer semantic relationships even
when they are not explicitly trained to do so. We show that
this algorithm can be used as an exploratory tool to im-
prove the network architecture, and within numerous other
settings in vision.

1. Introduction

Matrix factorization lies at the heart of a spectrum of
computer vision problems. While the wide ranging and ex-
tensive use of factorization schemes within structure from
motion [38], face recognition [40] and motion segmenta-
tion [10] have been known, in the last decade, there is re-
newed interest in these ideas. Specifically, the celebrated
work on low rank matrix completion [6] has enabled de-
ployments in a broad cross-section of vision problems from
independent components analysis [ | 8] to dimensionality re-
duction [42] to online background estimation [43]. Novel
extensions based on Robust Principal Components Analy-
sis [13, 6] are being developed each year.

In contrast to factorization methods, a distinct and rich
body of work based on early work in signal processing is
arguably even more extensively utilized in vision. Specif-
ically, Wavelets [34] and other related ideas (curvelets [5],
shearlets [24]) that loosely fall under multiresolution analy-

sis (MRA) based approaches drive an overwhelming major-
ity of techniques within feature extraction [29] and repre-
sentation learning [34]. Also, Wavelets remain the “go to”
tool for image denoising, compression, inpainting, shape
analysis and other applications in video processing [30].
SIFT features can be thought of as a special case of the so-
called Scattering Transform (using theory of Wavelets) [4].
Remarkably, the “network” perspective of Scattering Trans-
form at least partly explains the invariances being identi-
fied by deep representations, further expanding the scope of
multiresolution approaches informing vision algorithms.

The foregoing discussion raises the question of whether
there are any interesting bridges between Factorization and
Wavelets. This line of enquiry has recently been studied
for the most common “discrete” object encountered in vi-
sion — graphs. Starting from the seminal work on Diffu-
sion Wavelets [|1], others have investigated tree-like de-
compositions on matrices [25], and organizing them using
wavelets [ 16]. While the topic is still nascent (but evolving),
these non-trivial results suggest that the confluence of these
seemingly distinct topics potentially holds much promise
for vision problems [17]. Our focus is to study this interface
between Wavelets and Factorization, and demonstrate the
immediate set of problems that can potentially benefit. In
particular, we describe an efficient (incremental) multireso-
lution matrix factorization algorithm.

To concretize the argument above, consider a represen-
tative example in vision and machine learning where a fac-
torization approach may be deployed. Figure 1 shows a set
of covariance matrices computed from the representations
learned by AlexNet [23], VGG-S [9] (on some ImageNet
classes [35]) and medical imaging data respectively. As a
first line of exploration, we may be interested in characteriz-
ing the apparent parsimonious “structure” seen in these ma-
trices. We can easily verify that invoking the de facto con-
structs like sparsity, low-rank or a decaying eigen-spectrum
cannot account for the “block”™ or cluster-like structures in-
herent in this data. Such block-structured kernels were the
original motivation for block low-rank and hierarchical fac-
torizations [36, 8] — but a multiresolution scheme is much
more natural — in fact, ideal — if one can decompose the
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Figure 1.
AlexNet, VGG-S (of a few ImageNet classes) and medical imaging data.

matrix in a way that the blocks automatically ‘reveal’ them-
selves at multiple resolutions. Conceptually, this amounts to
a sequential factorization while accounting for the fact that
each level of this hierarchy must correspond to approximat-
ing some non-trivial structure in the matrix. A recent result
introduces precisely such a multiresolution matrix factor-
ization (MMF) algorithm for symmetric matrices [21].

Consider a symmetric matrix C € R™*". PCA de-
composes C as QT AQ where Q is an orthogonal matrix,
which, in general, is dense. On the other hand, sparse
PCA (sPCA) [46] imposes sparsity on the columns of Q,
allowing for fewer dimensions to interact that may not
capture global patterns. The factorization resulting from
such individual low-rank decompositions cannot capture hi-
erarchical relationships among data dimensions. Instead,
MMF applies a sequence of carefully chosen sparse rota-
tions Q', Q2?, ... QF to factorize C in the form

C=(@Q)H(Q)"...(Q")"AQ"...Q*Q,
thereby uncovering soft hierarchical organization of differ-
ent rows/columns of C. Typically the Qs are sparse k-
order rotations (orthogonal matrices that are the identity ex-
cept for at most k of their rows/columns), leading to a hi-
erarchical tree-like matrix organization. MMF was shown
to be an efficient compression tool [39] and a precondi-
tioner [21]. Randomized heuristics have been proposed to
handle large matrices [22]. Nevertheless, factorization in-
volves searching a combinatorial space of row/column in-
dices, which restricts the order of the rotations to be small
(typically, < 3). Not allowing higher order rotations re-
stricts the richness of the allowable block structure, result-
ing in a hierarchical decomposition that is “too localized” to
be sensible or informative (reverting back to the issues with
sPCA and other block low-rank approximations).

A fundamental property of MMF is the sequential com-
position of rotations. In this paper, we exploit the fact that
the factorization can be parameterized in terms of an MMF
graph defined on a sequence of higher-order rotations. Un-
like alternate batch-wise approaches [39], we start with a
small, randomly chosen block of C, and gradually ‘insert’
new rows into the factorization — hence we refer to this as
an incremental MMF. We show that this insertion proce-
dure manipulates the topology of the MMF graph, thereby
providing an efficient algorithm for constructing higher or-
der MMFs. Our contributions are: (A) We present a fast

and efficient incremental procedure for constructing higher
order (large k) MMFs on large dense matrices; (B) We eval-
uate the efficacy of the higher order factorizations for rela-
tive leveraging of sets of pixels/voxels in regression tasks
in vision; and (C) Using the output structure of incremental
MMEF, we visualize the semantics of categorical relation-
ships inferred by deep networks, and, in turn, present some
exploratory tools to adapt and modify the architectures.

2. Multiresolution Matrix Factorization

Notation: We begin with some notation. Matrices are bold
upper case, vectors are bold lower case and scalars are lower
case. [m] := {1,...,m} for any m € N. Given a matrix
C € R™*™ and two set of indices S; = {r1,...rx} and
Sy ={c1,...¢p}, Cs, s, will denote the block of C cut out
by the rows S; and columns S. C. ; is the it" column of C.
I,, is the m-dimensional identity. SO(m) is the group of
m dimensional orthogonal matrices with unit determinant.
R is the set of m-dimensional symmetric matrices which
are diagonal except for their S x S block (S—core-diagonal
matrices).

Multiresolution matrix factorization (MMF), introduced
in [21, 22], retains the locality properties of sSPCA while
also capturing the global interactions provided by the many
variants of PCA, by applying not one, but multiple sparse
rotation matrices to C in sequence. We have the following.

Definition. Given an appropriate class O C SO(m) of
sparse rotation matrices, a depth parameter L € N and a
sequence of integers m = dg > dy > ... > dp > 1, the
multi-resolution matrix factorization (MMF) of a sym-
metric matrix C € R"*™ is a factorization of the form

M(C):=Q AQ with Q=QF...Q*Q', )

where Qf € O and Qfm]\sz_l,[m]\se_lz 1,4, for some
nested sequence of sets [m] = Sy 2 S 2 ... 2O Sy, with
|Se| = dgand A € R, .

Sy_1 is referred to as the ‘active set’ at the £ level, since
Qf is identity outside [m] \ Sy_1. The nesting of the Sys
implies that after applying Q¢ at some level ¢, S, \ Sy
rows/columns are removed from the active set, and are not
operated on subsequently. This active set trimming is done
at all L levels, leading to a nested subspace interpretation
for the sequence of compressions C* = Q‘C*1(Q")”
(C° = C and A = CF). In fact, [21] has shown that, for
a general class of symmetric matrices, MMF from Defini-
tion 2 entails a Mallat style multiresolution analysis (MRA)
[28]. Observe that depending on the choice of Q’, only a
few dimensions of C¢~1 are forced to interact, and so the
composition of rotations is hypothesized to extract subtle or
softer notions of structure in C.
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Since multiresolution is represented as matrix factoriza-
tion here (see (1)), the Sy_1 \ Sy columns of Q correspond
to “wavelets”. While dy,ds, ... can be any monotonically
decreasing sequence, we restrict ourselves to the simplest
case of dy = m — ¢. Within this setting, the number of
levels L is at most m — k + 1, and each level contributes a
single wavelet. Given Sp, So, ... and O, the matrix factor-
ization of (1) reduces to determining the Q' rotations and
the residual A, which is usually done by minimizing the
squared Frobenius norm error

min C - M(C 2r0 ' )
Q‘cO,AERY, I (C)lrob 2)

The above objective can be decomposed as a sum of contri-
butions from each of the L different levels (see Proposition
1, [21]), which suggests computing the factorization in a
greedy manner as C = C° — C! —» C? — ... — A.
This error decomposition is what drives much of the intu-
ition behind our algorithms.

After £ — 1 levels, C!~1 is the compression and Sy_1 is
the active set. In the simplest case of O being the class
of so-called k—point rotations (rotations which affect at
most k coordinates) and dy = m — /£, at level ¢ the algo-
rithm needs to determine three things: (a) the k—tuple ¢
of rows/columns involved in the rotation, (b) the nontriv-
ial part O := qu o of the rotation matrix, and (c) st the
index of the row/column that is subsequently designated a
wavelet and removed from the active set. Without loss of
generality, let s* be the last element of ¢/. Then the contri-
bution of level ¢ to the squared Frobenius norm error (2) is
(see supplement)

£(CH 051 s) _22 loc; 0" ];;
@)
2[0BBTO7];.;, where B =C! .

t¢,Sp_1\tt?

and, in the definition of B, t¢ is treated as a set. The factor-
ization then works by minimizing this quantity in a greedy
fashion, i.e.,

Q4% s" « argmin £(C*1;0;t, 5)
O,t,s (4)
Si+Sa\st 3 ¢t =QcH QY.

3. Incremental MMF

We now motivate our algorithm using (3) and (4). Solv-
ing (2) amounts to estimating the L different k-tuples
t!,...,t" sequentially. At each level, the selection of
the best k-tuple is clearly combinatorial, making the ex-
act MMF computation (i.e., explicitly minimizing (2)) very
costly even for £ = 3 or 4 (this has been independently

observed in [39]). As discussed in Section 1, higher or-
der MMFs (with large k) are nevertheless inevitable for al-
lowing arbitrary interactions among dimensions (see sup-
plement for a detailed study), and our proposed incremental
procedure exploits some interesting properties of the factor-
ization error and other redundancies in k-tuple computation.
The core of our proposal is the following setup.

3.1. Overview

Let C € R(m+1)x(m+1) pe the extension of C by a single

new column w = [u”, v]T, which manipulates C as:
~ Clu
o-[Cle] 5

The goal is to compute M (C). Since C and C share all but
one row/column (see (5)), if we have access to M(C), one
should, in principle, be able to modify C’s underlying se-
quence of rotations to construct M (C). This avoids having
to recompute everything for C from scratch, i.e., perform-
ing the greedy decompositions from (4) on the entire C.
The hypothesis for manipulating M(C) to compute
M(C) comes from the precise computations involved in
the factorization. Recall (3) and the discussion leading up
to the expression. At level ¢ + 1, the factorization picks the
‘best’” candidate rows/columns from C¥ that correlate the
most with each other, so that the resulting diagonalization
induces the smallest possible off-diagonal error over the rest
of the active set. The components contributing towards this
error are driven by the inner products ( Cfi)TCf ; for some
columns ¢ and j. In some sense, the largest such correlated
rows/columns get picked up, and adding one new entry to
CZL may not change the range of these correlations. Ex-
tending this intuition across all levels, we argue that

argmax C C A% argmax CT C.;. (6)
¥ ¥

Hence, the k-tuples computed from C’s factorization are
reasonably good candidates even after introducing w. To
better formalize this idea, and in the process present our
algorithm, we parameterize the output structure of M (C)
in terms of the sequence of rotations and the wavelets.

3.2. The graph structure of M (C)

If one has access to the sequence of k-tuples 1, ... t~
involved in the rotations and the corresponding wavelet in-
dices (s!,.. ., s"), then the factorization is straightforward
to compute i.e., there is no greedy search anymore. Recall
that by definition s € t* and s* ¢ S; (see (4)). To that
end, for a given O and L, M(C) can be ‘equivalently’ rep-
resented using a depth L MMF graph G(C). Each level of
this graph shows the k-tuple ¢* involved in the rotation, and
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the corresponding wavelet s° i.e., G(C) := {t, s}F. Inter-
preting the factorization in this way is notationally conve-
nient for presenting the algorithm. More importantly, such
an interpretation is central for visualizing hierarchical de-
pendencies among dimensions of C, and will be discussed
in detail in Section 4.3. An example of such a 3"¢ order
MMF graph constructed from a 5 x 5 matrix is shown in
Figure 2 (the rows/columns are color coded for better vi-
sualization). At level £ = 1, s1, so and s3 are diagonalized
while designating the rotated s; as the wavelet. This process
repeats for £ = 2 and 3. As shown by the color-coding of
different compositions, MMF gradually teases out higher-
order correlations that can only be revealed after composing
the rows/columns at one or more scales (levels here).

For notational convenience, we denote the MMF graphs
of Cand Cas G := {t’,s'}F and G := {#, 5} 1. Recall
that Q will have one more level than G since the row/column
w, indexed m + 1 in C, is being added (see (5)). The goal
is to estimate G without recomputing all the k-tuples using
the greedy procedure from (4). This translates to inserting
the new index m + 1 into the ts and modifying s’s accord-
ingly. Following the discussion from Section 3.1, incremen-
tal MMF argues that inserting this one new element into
the graph will not result in global changes in its topology.
Clearly, in the pathological case, G may change arbitrarily,
but as argued earlier (see discussion about (6)) the chance
of this happening for non-random matrices with reasonably
large k is small. The core operation then is to compare the
new k-tuples resulting from the addition of w to the best
ones from [m]"* provided via G. If the newer k-tuple gives
better error (see (3)), then it will knock out an existing k-
tuple. This constructive insertion and knock-out procedure
is the incremental MMF.

3.3. Inserting a new row/column

The basis for this incremental procedure is that one has
access to G (i.e., MMF on C). We first present the algorithm

assuming that this “initialization” is provided, and revisit
this aspect shortly. The procedure starts by setting ¢ = ¢¢
and §° = s’ for ¢ = 1,..., L. Let T be the set of elements
(indices) that needs to be inserted into G. At the start (the
first level) Z = {m + 1} corresponding to w. Let t! =
{p1,...,pr}. The new k-tuples that account for inserting
entries of Z are {m+ 1} Ut' \p; (i = 1,..., k). These new
k candidates are the probable alternatives for the existing
t'. Once the best among these k + 1 candidates is chosen,
an existing p; from ¢! may be knocked out.

If 3! gets knocked out, then Z = {3'} for future levels.
This follows from MMF construction, where wavelets at £
level are not involved in later levels. Since 3! is knocked
out, it is the new inserting element according to G. On the
other hand, if one of the k£ — 1 scaling functions is knocked
out, 7 is not updated. This simple process is repeated se-
quentially from ¢ = 1 to L. At L + 1, there are no estimates
for tL*+1 and 5411, and so, the procedure simply selects the
best k-tuple from the remaining active set Sy,. Algorithm 1
summarizes this insertion and knock-out procedure.

Algorithm 1 INSERTROW(C, w, {t*, s*}L )

Output: {i*,5°};4}
CO + C asin )
2 em4+1
for/{=1to L—1do
{tf 3¢, 241 Q') «+—CHECKINSERT(C! L ¢4 ¢, 2¢)
Qléffl(Ql)T
end for
T « GENERATETUPLES ([m + 1] \ U;—,'5(C))
{0, ", 5"} « argming LET, st E(CE1,05t,5)

Q *Im—i-l’ QtL thO CL QLCL 1(QL)

Algorithm 2 CHECKINSERT(A,{, 3, 2)
Output: £, 3, z, Q
T < GENERATETUPLES(Z, 2)
{O,t,5} «+ argming ye 7 sey E(A;0;t,s)
if s € z then

z+ (zU8)\§
end if R
Q=L+, Q;; =0

3.4. Incremental MMF Algorithm

Observe that Algorithm 1 is for the setting from (5)
where one extra row/column is added to a given MMF, and
clearly, the incremental procedure can be repeated as more
and more rows/columns are added. Algorithm 3 summa-
rizes this incremental factorization for arbitrarily large and
dense matrices. It has two components: an initialization
on some randomly chosen small block (of size m x m) of
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the entire matrix C; followed by insertion of the remain-
ing m — m rows/columns using Algorithm 1 in a streaming
fashion (similar to w from (5)). The initialization entails
computing a batch-wise MMF on this small block (7 > k).

BATCHMMEF: Note that at each level ¢, the error crite-
rion in (3) can be explicitly minimized via an exhaustive
search over all possible k-tuples from S;_; (the active set)
and a randomly chosen (using properties of () R decomposi-
tion [31]) dictionary of k*" order rotations. If the dictionary
is large enough, the exhaustive procedure would lead to the
smallest possible decomposition error (see (2)). However,
it is easy to see that this is combinatorially large, with an
overall complexity of O(n*) [22] and will not scale well
beyond k£ = 4 or so. Note from Algorithm 1 that the error
criterion £(+) in this second stage which inserts the rest of
the m — m rows is performing an exhaustive search as well.

Algorithm 3 INCREMENTAL MMF(C)
Output: M(C)
CZC[,;LL[,;Z},L:’ITL—]C—FI
{t¢, s}k +1  BATCHMMEF(C)
forjc{m+1,...,m}do
{t',s" Y « INserTROW(C, C; ., {t!, s} ")
C=Cpi
end for
M(C) = {t", s}

Other Variants: The are two alternatives that avoid this
exhaustive search. Since Q*’s job is to diagonalize some
k rows/columns (see Definition 2), one can simply pick the
relevant k x k block of C* and compute the best O (for a
given t). Hence the first alternative is to bypass the search
over O (in (4)), and simply use the eigen-vectors of Cfe, 4
for some tuple tf. Nevertheless, the search over S;_ for t¢
still makes this approximation reasonably costly. Instead,
the k-tuple selection may be approximated while keeping
the exhaustive search over O intact [22]. Since diagonal-
ization effectively nullifies correlated dimensions, the best
k-tuple can be the k rows/columns that are maximally cor-
related. This is done by choosing some s; ~ Sy—1 (from
the current active set), and picking the rest by

k _ _
S9 Sp < argmin —(Cﬁsll)TCﬁs"l (7
Y simSe-\s1 o3 ICESMICS)

This second heuristic (which is related to (6) from Section
3.1) has been shown to be robust [22], however, for large
k it might miss some k-tuples that are vital to the quality
of the factorization. Depending on m, and the available
computational resources at hand, these alternatives can be
used instead of the earlier proposed exhaustive procedure
for the initialization. Overall, the incremental procedure

scales efficiently for very large matrices, compared to us-
ing the batch-wise scheme on the entire matrix.

4. Experiments

We study various computer vision and medical imaging
scenarios (see supplement for details) to evaluate the quality
of incremental MMF factorization and show its utility. We
first provide evidence for factorization’s efficacy in select-
ing the relevant features of interest for regression. We then
show that the resultant MMF graph is a useful tool for visu-
alizing/decoding the learned task-specific representations.

4.1. Incremental versus Batch MMF

The first set of evaluations compares the incremental
MMF to the batch version (including the exhaustive search
based and the two approximate variants from Section 3.4).
Recall that MMF error is the off-diagonal norm of A, ex-
cept for the S;, x Sy, block (see (1)), and the smaller the
error is, the closer the factorization is to being exact (see
2). We observed that the incremental MMFS incur approxi-
mately the same error as the batch versions, while achieving
2 20 — 25 times speed-up compared to a single-core imple-
mentation of the batch MMF. Specifically, across 6 different
toy examples and 3 covariance matrices constructed from
real data, the loss in factorization error is < 4% of || C|| b,
with no strong dependence on the fraction of the initializa-
tion 1 (see Algorithm 3). Due to space restrictions, these
simulations are included in the supplement.

4.2. MMF Scores

The objective of MMF (see (2)) is the signal that is
not accounted for by the k'"-order rotations of MMF (it
is 0 whenever C is exactly factorizable). Hence, ||(C —
M(C));..|| is a measure of the extra information in the i
row that cannot be reproduced by hierarchical compositions
of the rest. Such value-of-information summaries, referred
to as MMF scores, of all the dimensions of C give an im-
portance sampling distribution, similar to statistical lever-
age scores [3, 27]. These samplers drive several regres-
sion tasks in vision including gesture tracking [33], face
alignment/tracking [7] and medical imaging [!5]. More-
over, the authors in [27] have shown that statistical lever-
age type marginal importance samplers may not be opti-
mal for regression. On the other hand, MMF scores give
the conditional importance or “relative leverage” of each
dimension/feature given the remaining ones. This is be-
cause MMF encodes the hierarchical block structure in the
covariance, and so, the MMF scores provide better impor-
tance samplers than statistical leverages. We first demon-
strate this on a large dataset with 80 predictors/features and
1300 instances. Figure 3(a,b) shows the instance covariance
matrices after selecting the ‘best’ 5% of features. The block
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structure representing the two classes, diseased and non-
diseased, is clearly more apparent with MMF score sam-
pling (see the yellow block vs.the rest in Figure 3(b)).

We exhaustively compared leverages and MMF scores
on a medical imaging regression task on region-of-interest
(ROI) summaries from positron emission tomography
(PET) images. The goal is to predict the cognitive score
summary using the imaging ROIs. (see Figure 3(c), and
supplement for details). Despite the fact that the features
have high degree of block structure (covariance matrix from
Figure 3(c)), this information is rarely, if ever, utilized
within the downstream models, say multi-linear regression
for predicting health status. Here we train a linear model
using a fraction of these voxel ROIs sampled according to
statistical leverages (from [3]) and relative leverage from
MMF scores. Note that, unlike LASSO, the feature sam-
plers are agnostic to the responses (a setting similar to opti-
mal experimental design [12]). The second row of Figure 3
shows the Adjusted-R? of the resulting linear models, and
Figure 3(h,i) show the corresponding F'-statistic. The z-
axis corresponds to the fraction of the ROIs selected using
the leverage (black lines) and MMF scores (red lines). As
shown by the red vs. black curves, the voxel ROIs picked
by MMF are better both in terms of adjusted-R? (the ex-
plainable variance of the data) and F'-statistic (the overall
significance). More importantly, the first few ROIs picked
up by MMF scores are more informative than those from
leverage scores (left end of z-axis in Figure 3(d-i)). Fig-
ure 3(j,k) show the gain in AUC of adjusted-R? as the order
of MMF changes (z-axis). Clearly the performance gain
of MMF scores is large. The error bars in these plots are
omitted for clarity (see supplement for details, and other
plots/comparisons). These results show that MMF scores
can be used within numerous regression tasks where the
number of predictors is large with sample sizes.

4.3. MMF graphs

The ability of a feature to succinctly represent the pres-
ence of an object/scene is, at least, in part, governed by
the relationship of the learned representations across multi-
ple object classes/categories. Beyond object-specific infor-
mation, such cross-covariate contextual dependencies have
shown to improve the performance in object tracking and
recognition [45] and medical applications [20] (a motivat-
ing aspect of adversarial learning [26]). Visualizing the
histogram of gradients (HoG) features is one such interest-
ing result that demonstrates the scenario where a correctly
learned representation leads to a false positive [41], for in-
stance, the HoG features of a duck image are similar to a
car HoG. [37, 14] have addressed similar aspects for deep
representations by visualizing image classification and de-
tection models, and there is recent interest in designing tools
for visualizing what the network perceives when predicting

atest label [44]. As shown in [1], the contextual images that
a deep network (even with good detection power) desires to
see may not even correspond to real-world scenarios.

The evidence from these works motivate a simple ques-
tion — Do the semantic relationships learned by the deep
representations associate with those seen by humans? For
instance, can such models infer that cats are closer to dogs
than they are to bears; or that bread goes well with but-
ter/cream rather than, say, salsa. Invariably, addressing
these questions amounts to learning hierarchical and cate-
gorical relationships in the class-covariance of hidden rep-
resentations. Using classical techniques may not easily
reveal interesting, human-relateable, trends as was shown
very recently by [32]. There are at least few reasons, but
most importantly, the covariance of hidden representations
(in general) has parsimonious structure with multiple com-
positions of blocks (the left two images in Figure 1 are from
AlexNet and VGG-S). As motivated in Section 1, and later
described in Section 3.2 using Figure 2, a MMF graph is the
natural object to analyze such parsimonious structure.

4.3.1 Decoding the deep

A direct application of MMF on the covariance of hid-
den representations reveals interesting hierarchical struc-
ture about the “perception” of deep networks. To precisely
walk through these compositions, consider the last hidden
layer (FC7, that feeds into softmax) representations from a
VGG-S network [9] corresponding to 12 different ImageNet
classes, shown in Figure 4(a). Figure 4(b,c) visualize a 5th
order MMF graph learned on this class covariance matrix.
The semantics of breads and sides. The 5! order MMF
says that the five categories — pita, limpa, chapati, chutney
and bannock — are most representative of the localized struc-
ture in the covariance. Observe that these are four differ-
ent flour-based main courses, and a side chutney that shared
strongest context with the images of chapati in the training
data (similar to the body building and dumbell images from
[1]). MMF then picks salad, salsa and saute representa-
tions’ at the 2"? level, claiming that they relate the strongest
to the composition of breads and chutney from the previous
level (see visualization in Figure 4(b,c)). Observe that these
are in fact the sides offered/served with bread. Although
VGG-S was not trained to predict these relations, according
to MMEF, the representations are inherently learning them
anyway — a fascinating aspect of deep networks i.e., they
are seeing what humans may infer about these classes.
Any dressing? What are my dessert options? Let us
move to the 3% level in Figure 4(b,c). margarine is a cheese
based dressing. shortcake is dessert-type meal made from
strawberry (which shows up at 4" level) and bread (the
composition from previous levels). That is the full course.
The last level corresponds to ketchup, which is an outlier,
distinct from the rest of the 10 classes — a typical order of
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Figure 3. Evaluating Feature Importance Sampling of MMF Scores vs. Leverage Scores (a,b) Visualizing apparent (if any) blocks in instance
covariance matrices using best 5% features, (c) Regression setup (see structure in covariance), (d-g) Adjusted R?2, and (h,i) Fstatistic of linear models, Gg.k)
gains in R2. Mdl1-Mdl4 are linear models constructed on different datasets (see supplement). 7 = 0.1m (from Algorithm 3) for these evaluations.

dishes involving the chosen breads and sides does not in-
clude hot sauce or ketchup. Although shortcake is made
up of strawberries, “conditioned” on the 1°¢ and 2"¢ level
dependencies, it is less useful in summarizing the covari-
ance structure. An interesting summary of this hierarchy
from Figure 4(b,c) is — an order of pita with side ketchup or
strawberries is atypical in the data seen by these networks.

4.3.2 Are we reading tea leaves?

It is reasonable to ask if this description is meaningful since
the semantics drawn above are subjective. We provide ex-
planations below. First, the networks are not trained to
learn the hierarchy of categories — the task was object/class
detection. Hence, the relationships are completely a by-
product of the power of deep networks to learn contextual
information, and the ability of MMF to model these compo-
sitions by uncovering the structure in the covariance matrix.
Supplement provides further evidence by visualizing such
hierarchy from few dozens of other ImageNet classes. Sec-
ond, one may ask if the compositions are sensitive/stable to
the order k — a critical hyperparameter of MMF. Figure 4(d)
uses a 4" order MMF, and the resulting hierarchy is similar

to that from Figure 4(b). Specifically, the different breads
and sides show up early, and the most distinct categories
(strawberry and ketchup) appear at the higher levels. Simi-
lar patterns are seen for other choices of k (see supplement).

Further, if the class hierarchy in Figures 4(b—d) is non-
spurious, then similar trends should be implied by MMF’s
on different (higher) layers of VGG-S. Figure 4(e) shows
the compositions from the 10" layer representations (the
outputs from 3"% convolutional layer of VGG-S) of the 12
classes in Figure 4(a). The strongest compositions, the 8
classes from ¢ = 1 and 2, are already picked up half-
way thorough the VGG-S, providing further evidence that
the compositional structure implied by MMF is data-driven.
We further discuss this in Section 4.3.3. Finally, we com-
pared MMF’s class-compositions to the hierarchical clus-
ters obtained from agglomerative clustering of representa-
tions. The relationships in Figure 4(b-d) are not apparent in
the corresponding dendrograms (see supplement, [32]) — for
instance, the dependency of chutney/salsalsalad on several
breads, or the disparity of ketchup from the others.

Overall, Figure 4(b—e) shows many of the summaries
that a human may infer about the 12 classes in Figure 4(a).
Apart from visualizing deep representations, such MMF
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graphs are vital exploratory tools for category/scene un-
derstanding from unlabeled representations in transfer and
multi-domain learning [2]. This is because, by comparing
the MMF graph prior to inserting the new unlabeled in-
stance to the one after insertion, one can infer whether the
new instance contains non-trivial information that cannot be
expressed as a composition of existing categories.

4.3.3 The flow of MMF graphs: An exploratory tool

Figure 4(f) shows the compositions from the 5" order
MMF on the input (pixel-level) data. These features are
non-informative, and clearly, the classes whose RGB values
correlate are at [ = 0 in Figure 4(f). But most importantly,
comparing Figure 4(b,e) we see that [ = 1 and 2 have the
same compositions. One can construct visualizations like
Figure 4(b,e,f) for all the layers of the network. Using this
trajectory of the class compositions, one can ask whether a
new layer needs to be added to the network (a vital aspect
for model selection in deep networks [19]). This is driven
by the saturation of the compositions — if the last few levels’
hierarchies are similar, then the network has already learned
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the information in the data. On the other hand, variance in
the last levels of MMFs implies that adding another network
layer may be beneficial. The saturation at ! = 1, 2 in Fig-
ure 4(b,e) (see supplement for remaining layers’ MMFs) is
one such example. If these 8 classes are a priority, then the
predictions of the VGG-S’ 3"¢ convolutional layer may al-
ready be good enough. Such constructs can be tested across
other layers and architectures (see supplement for MMFs
from AlexNet, VGG-S and other networks).

5. Conclusions

We present an algorithm that uncovers multiscale struc-
ture of symmetric matrices by performing a matrix factor-
ization. We showed that it is an efficient importance sampler
for relative leveraging of features.We also showed how the
factorization sheds light on the semantics of categorical re-
lationships encoded in deep networks, and presented ideas
to facilitate adapting/modifying their architectures.
Acknowledgments: The authors are supported by
NIH AGO021155, EB022883, AG040396, NSF CAREER
1252725, NSF AI117924 and 1320344/1320755.
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