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Abstract

We present a novel strategy to shrink and constrain a 3D

model, represented as a smooth spline-like surface, within

the visual hull of an object observed from one or multiple

views. This new ‘background’ or ‘silhouette’ term combines

the efficiency of previous approaches based on an image-

plane distance transform with the accuracy of formulations

based on raycasting or ray potentials. The overall formula-

tion is solved by alternating an inner nonlinear minimization

(raycasting) with a joint optimization of the surface geome-

try, the camera poses and the data correspondences. Experi-

ments on 3D reconstruction and object tracking show that

the new formulation corrects several deficiencies of existing

approaches, for instance when modelling non-convex shapes.

Moreover, our proposal is more robust against defects in the

object segmentation and inherently handles the presence of

uncertainty in the measurements (e.g. null depth values in

images provided by RGB-D cameras).

1. Introduction

An important problem in computer vision is the recovery

of 3D models from one or more images, whether RGB or

depth. Examples include human body tracking [6], single-

view reconstruction [13], or the acquisition of deformable

object class models [3]. A dominant paradigm is to express

the problem as energy minimization: find the 3D model

parameters (including model shape, camera positions, etc.)

which best explain the given data.

Formulations of such problems as energy minimization

typically involve two key data terms: a term encouraging

‘foreground’ measurements within the object to be explained

by the model, and a ‘background’ or ‘empty space’ term,

requiring that the model does not project in front of data
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Figure 1. Modelling an arch from a single depth image and a

challenging initial control mesh topology. Even with depth data,

the model spills over into the background region (NB). We show

how existing background terms based on the distance transform

(DT) fail to capture the concavity, while our new methods based on

shrinking kernels (SK1 and SK2) succeed.

samples known to be outside the object. Typically the fore-

ground terms are easily written as variants of a closest-point

or closest-intensity objective, which are readily optimized

using ICP [1] or lifting algorithms [7, 3]. In contrast, the

background terms involve an expensive raycasting or ren-

dering operation, or are approximated by projecting a finite

subset of points on the model surface into a distance trans-

form.

This paper’s contribution is to illustrate the failings of

distance-transform-based background terms, and to intro-

duce a new formulation with the accuracy of raycasting but

which admits efficient optimization using smooth-function

optimizers such as Levenberg-Marquardt. The key innova-

tion is to write raycasting as an optimization problem in its

own right, and to solve the min-of-max optimization that

results from combining raycasting with the foreground term.

We will demonstrate the advantages of such a formula-

tion in two very common scenarios in computer vision: 3D

reconstruction and non-rigid tracking. In both cases the ob-
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ject to be reconstructed or tracked will be modeled with a

subdivision surface, and the input data will consist of one or

multiple depth images with unknown camera positions.

2. Related Work

Given the considerable body of related literature, we fo-

cus on only a few key examples of the existing approaches.

One class of methods is volumetric or voxel-based. For

example, the single-view reconstruction work of Töppe et

al. [20], which imposes the hard constraint that object vox-

els must project into foreground regions, and expresses the

reconstruction problem as energy minimization with one

parameter per voxel. Recent work [15, 5] allows significant

improvements in optimization, but the large state space lim-

its model resolution, and as noted by Oswald et al. [13], the

absence of a thresholding theorem means that the relaxation

method employed for solution may not yield the optimal

Boolean labelling. KinectFusion [12] avoids an optimization

over the entire volume by estimating camera position using

robust ICP, followed by deterministic carving of a 3D signed

distance function, but copes poorly with missing data.

This paper focuses on mesh-based methods, such as used

by Prasad et al. [14] for single-view reconstruction, or Vi-

cente and Agapito [21] in deforming a template 3D mesh

to match a given image silhouette. The latter paper used a

distance transform penalty for the background term, as did

Ganapathi et al. [6] in solving the problem of human body

tracking. As shown below, the distance transform term has

several limitations.

We consider a smooth surface representation based on

subdivision surfaces. This spline-like representation has re-

cently been used for 3D morphable model construction [3],

hand shape estimation [19] and hand tracking [18]. Subdi-

vision surfaces have also been used to fit 3D point clouds

or regular meshes [8, 11, 4, 9, 10], but our guiding example

problems differ in that either the camera positions, or the

mesh/object topology, or both, are unknown. Moreover, in

real applications a significant percentage of the object to re-

construct or track might be missing due to lack of sufficient

views and errors in the measurement process (null pixels in

depth images provided by RGB-D cameras). Under these cir-

cumstances, the use of an effective and efficient background

term becomes crucial.

3. Definitions and Notation

To illustrate the advantages of our proposal, we address

two distinct problems: (A) generating a 3D reconstruction of

an object from multiple views and (B) tracking a non-rigid

object from an image sequence. In both cases, our input

data comprise a set of N depth images {Zi}
N
i=1 of a target

object. A depth image is a collection of 3D points Zi =
[pij ]

M
j=1 associated with 2D pixel coordinates xij through

the projection function π : R3 7→ R
2, i.e. xij = π(pij).

For each data point pij we also estimate a unit normal nij

of the target object with ‖nij‖ = 1. Each image i has an

unknown camera pose parametrized using the twist ξi ∈ R
6,

inducing a rotation matrix R(ξi) ∈ SO(3) ⊂ R
3×3 and

a translation vector t(ξi) ∈ R
3. The function π is also

overloaded to project world-coordinate points s by passing

the pose of the camera to which points are projected, so

π(s, ξi) = π
(

R(ξi)s+ t(ξi)
)

.

The pixel indices are segmented into three disjoint regions

Di, Bi and Ci to specify whether each pixel observes the

target object, the background, or provides no valid depth

respectively. For example, j ∈ Di means that 3D point pij

is a foreground measurement, and j ∈ Ci means that pixel

xij has an invalid 3D point. As we shall never access pij

for invalid pixels, we need not define it in this case.

To model the object we use a Catmull-Clark subdi-

vision surface, the shape of which is defined by a con-

trol mesh comprising P control vertices {Xp}
P
p=1 ⊂ R

3

that are referenced as the corners of F quadrilateral faces

{Qf}
F
f=1 ⊂ {1..P}4. The subdivision surface is a mapping

s : Ω 7→ R
3, where the parametric domain Ω of the sur-

face is the union �× {1..F} of F copies of the unit square

� := [ 0, 1 ] × [ 0, 1 ] ⊂ R
2: one copy for each face in the

control mesh. The topology of the surface, and hence Ω,

is held fixed throughout the optimization, and so the shape

of the surface is determined purely by the control vertices

X = {Xp}
P
p=1. We therefore write the surface as s(u|X)

where u is the tuple u = (ux, uy, f) ∈ Ω. The normalized

surface normal is written similarly as s⊥(u|X).

4. Optimization Problem

We present a unified framework to address either the 3D

reconstruction or the non-rigid tracking of an object. It is

based on two main constraints:

• The model must fit the geometric data (pij and nij)

computed from the depth images {Zi} for those pixels

j ∈ Di where the object is present.

• The model should not be observable from pixels xij

which are known to observe the background (i.e. j ∈
Bi), since in these locations we know the target object

to be absent.

The remaining pixels, referenced by Ci, should not place any

restriction on the model since their true depth is unknown,

and we therefore have no evidence for either presence or

absence of the target object.

4.1. Data Term

The first energy term measures the error in position and

orientation between pixel j ∈ Di and a to-be-estimated
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corresponding model point u ∈ Ω:

Ep
ij(X, ξi,u) =

∥

∥pij −R(ξi)s(u|X)− t(ξi)
∥

∥

2

T
, (1)

En
ij(X, ξi,u) =

∥

∥nij −R(ξi)s
⊥(u|X)

∥

∥

2

T
, (2)

where ‖•‖T represents a truncated Euclidean norm. We

combine (1) and (2) into a data term defined as the weighted

combination

Êd(X, ξ) =

N
∑

i=1

∑

j∈Di

min
u

(

λpE
p
ij(X, ξi,u) +

λnE
n
ij(X, ξi,u)

)

.

(3)

This energy allows us to fit the model to the data by lifting [7,

3, 19] the latent model-data correspondences U = {ud
ij} for

each i = 1 . . . N and j ∈ Di to give the energy

Ed(X, ξ,U) =
N
∑

i=1

∑

j∈Di

λpE
p
ij(X, ξi,u

d
ij) +

λnE
n
ij(X, ξi,u

d
ij)

(4)

with Êd(X, ξ) ≤ Ed(X, ξ,U) for all U . We can therefore

minimize (3) and fit the observed data by finding

argmin
X,ξ,U

{

Ed(X, ξ,U)
}

. (5)

4.2. Background Term

Unfortunately, solving (5) often gives poor results, be-

cause there is nothing to penalize the model spilling over

the observed object silhouette (see Fig. 1 panel ‘NB’ or the

teddy bear’s legs in Fig. 4). It is therefore necessary to define

an additional energy term that forces the model to remain

within the visual hull of the object, as observed by the depth

images.

Our goal is to have a background term that penalizes

instances of the model that project into pixels j ∈ Bi where

the object is known to be absent. Essentially this is a sum

of terms of the form “if any point anywhere on the model

projects to pixel xij , pay a penalty”:

N
∑

i=1

∑

j∈Bi

{

1 if ∃u ∈ Ω with π(s(u|X), ξi) = xij

0 otherwise
(6)

which can be re-cast as a minimization

N
∑

i=1

∑

j∈Bi

{

1 if min
u∈Ω

‖π(s(u|X), ξi)− xij‖ = 0

0 otherwise
(7)

and then written in terms of the finite delta function ⊥(r) =
[[r = 0]] (in code ⊥(r) = {if r = 0 then 1 else 0}):

N
∑

i=1

∑

j∈Bi

⊥
(

min
u

‖π(s(u|X), ξi)− xij‖
)

. (8)

�
∧ � �

�� �
�௜௝

Figure 2. Left: Plot of the shrinking kernel Λ(r) with respect to

the reprojection error r. Right: 3D representation of the shrinking

kernel centered at a particular background pixel xij .

This transformation expresses raycasting as an optimiza-

tion problem, but not an easy one: first, the L0-like function

has a zero-sized basin of convergence, and second, we cannot

use the lifting trick. We rectify the first deficiency by using

a more tractable proxy. A natural proxy to use for bounded

terms is the L1 proxy, but here this introduces complex

bound constraints, meaning that the advantages conferred by

a convex proxy are lost. We can choose as an alternative the

complement of almost any flattening robust kernel, with the

following desirable properties. It should be continuous and

differentiable to allow the use of smooth-surface optimizers,

which have been shown to provide significant improvements

in convergence for the data term [18]. It also improves the

efficiency of our solver (see §5) if the proxy is convex al-

most everywhere and flat (i.e. has a local maximum) at its

peak. A suitable choice is the kernel used in the graduated

non-convexity algorithm of Blake and Zisserman [2], which

we name the ‘shrinking kernel’ (SK) to describe its effect on

parts of the model that spill over the background:

Λ(r) =















(

1− ǫ
τ

)

(

1− r2

ǫτ

)

r < ǫ
(

1− r
τ

)2
ǫ ≤ r ≤ τ

0 r > τ

(9)

with ǫ ≪ τ as depicted in Fig. 2. Other alternatives like

a quartic polynomial could be used instead; we chose the

shrinking kernel because it is the simplest one that fulfills

our conditions.

We thus define our background energy by replacing ⊥
with Λ in (8):

Êb(X, ξ) = λb

N
∑

i=1

∑

j∈Bi

Λ

(

min
u

‖π(s(u|X), ξi)− xij‖

)

.

(10)

We can also now easily correct the second deficiency in (8):

access to lifting. By noting that Λ is monotonic, we obtain

Λ(minx f(x)) = maxx Λ(f(x)) so

Êb(X, ξ) = λb

N
∑

i=1

∑

j∈Bi

max
u

Λ

(

‖π(s(u|X), ξi)−xij‖

)

,

(11)
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which can be subject to lifting as above (4), by defining latent

variables Ub = {ub
ij} for each i = 1 . . . N and j ∈ Bi:

Eb(X, ξ,Ub) = λb

N
∑

i=1

∑

j∈Bi

Λ
(

‖π(s(ub
ij |X), ξi)− xij‖

)

(12)

with Êb(X, ξ) ≥ Eb(X, ξ,Ub) for all Ub.

4.2.1 Fixed vs adaptive τ

The value of τ in (9) significantly changes the effect of the

background term (12) on the overall optimization. A high

value of τ increases the number of pixels pushing the model

inwards (r ≤ τ ) and leads to a smoother energy which is

easier to optimize. However, a high τ also implies that the

background term competes with the data term at the ob-

ject boundaries and prevents the model from fitting the data

in these areas. Conversely, a low value for τ implies fewer

pixels pushing inward and a sharper energy but also less com-

petition between the background and the foreground terms.

To overcome these limitations, we employ an adaptive τi(x)
which depends on the pixel x and the image i. Thus, τ will

be low for pixels close to the silhouette and will be higher oth-

erwise. The function which measures the minimum distance

from any pixel to the object silhouette is the distance trans-

form DTi(x) : R
2 7→ R. Therefore, the adaptive width of

the shrinking kernel is given by τi(x) = min(DTi(x), τmax)
for a given image i. A maximum width τmax must be set

because the shrinking kernel is intended to work close to the

model boundaries and would be ineffective and inefficient if

τ took arbitrarily high values.

This strategy takes advantage of the distance transform by

using information about proximity to the silhouette to avoid

pushing the model beyond it, but it flattens appropriately far

from the silhouette, unlike the distance transform, whose

gradients are often wrong or misleading (see §6 and Fig. 3).

5. Solver

We combine the data and background terms with regular-

izers ER(X) (described in Appendix A) to build the overall

optimization problem:

min
X,U,ξ

{

Ed(X, ξ,U) + max
Ub

{

Eb(X, ξ,Ub)
}

+ ER(X)

}

(13)

This energy is highly non-linear, non-convex and combines

minimization and maximization processes that appear chal-

lenging to solve jointly. The problem contains some standard

components: the combination of minimization and maxi-

mization recalls the concave-convex procedure [22] and DC

programming [17]. However the natural decompositions

Distance

Transform

Shrinking

Kernel

Figure 3. Evolution of the surface throughout the optimization

process. The images illustrate how each background term pushes

the surfaces: DT creates gradients for every sample of the surface

projecting out of the silhouette. However moving surface samples

off the background can be achieved without moving the surface off

the background. In contrast, SK acts at every background pixel, but

with nonzero gradient only in a thin band around the silhouette.

of our problem (i.e. the objectives of the min and max as

written) are not concave so these techniques do not directly

apply.

Our solver is divided into two stages: an inner maximiza-

tion and an outer minimization. The inner maximization

finds the background correspondences Ub (raycasting) that

are needed for every iteration of the outer minimization

problem. In turn, the outer minimization will be solved it-

eratively by generating updates for the control vertices X ,

the foreground correspondences U and the camera poses ξ,

guaranteeing that each iteration decreases the overall energy.

5.1. Inner Raycasting Maximization

The first task is to find the correspondences for the back-

ground term, that is

Ůb = argmax
Ub

{

Eb(X, ξ,Ub)
}

. (14)

The correspondences within the vector Ub are independent

from each other, which means that (14) can be solved

with independent optimizations over Ω for each pixel.

These remain nonlinear optimizations, but we can make use

of Levenberg-Marquardt. Although Eb is non-quadratic,

monotonicity of Λ means that argmaxu Λ(f(u)) =
argminu f(u)

2 for a smooth function f : Ω 7→ R
2. Note

that this transformation applies only because the optimiza-

tions are independent per pixel: it is not the case that

argmaxu Λ(f1(u))+Λ(f2(u)) = argminu f
2
1 (u)+f2

2 (u)
in the general case when f1 and f2 both depend on all of u.

To improve efficiency, the background correspondences stop

being updated if their projection error is higher than a given

threshold υ > τ , thereby discarding all those pixels of the

background which are too far from the model to provide any

help.

7180



In order to update these correspondences within the op-

timizer, correspondences may need to transition between

different faces of the control mesh. As Catmull-Clark subdi-

vision surfaces are nearly-everwhere C2 continuous, these

transitions do not harm the differentiability of our energy

terms, and the correspondence updates can be handled using

the strategy described in [3, 19]. Transitions of the fore-

ground correspondences U in the outer minimization are

handled similarly.

5.2. Outer Minimization

Now we need to solve

min
X,U,ξ

{f(X,U , ξ) + g(X, ξ)} (15)

with

f(X,U , ξ) = Ed (X, ξ,U) + ER(X), (16)

g(X, ξ) = Eb
(

X, ξ, Ůb(X, ξ)
)

. (17)

The Levenberg-Marquardt algorithm does not appear to be

applicable here because not every term is expressed in the

form of sum of squares and, moreover, the background term

Eb is not convex. However, we will show that thanks to the

particular choice (9) adopted to approximate the raycasting

function (6), the Levenberg-Marquardt algorithm can be ap-

plied and it leads to an efficient optimization strategy. First of

all, the shrinking kernel is flat at its maximum, which makes

the Jacobian computation much easier, as the multiplicands

of the difficult terms
∂Ůb(X,ξ)

∂X
are zero:

∂g(X, ξ)

∂X
=

∂Eb(X, ξ, Ůb)

∂X
+
✘

✘
✘

✘
✘
✘
✘✿

0
∂Eb(X, ξ, Ůb)

∂Ub
·
∂Ůb(X, ξ)

∂X
,

∂g(X, ξ)

∂ξ
=

∂Eb(X, ξ, Ůb)

∂ξ
+
✘

✘
✘

✘
✘
✘
✘✿

0
∂Eb(X, ξ, Ůb)

∂Ub
·
∂Ůb(X, ξ)

∂ξ
.

For the sake of clarity, the Jacobians have been written as

scalar partial derivatives. Secondly, the shrinking kernel is

defined with ǫ ≪ τ (see Fig. 2) and, hence, it is convex and

can be expressed as a sum of squares almost everywhere

(apart from a small area surrounding its peak). Therefore,

we use all those pixels with correspondences lying in the

convex area and with non-null gradient (ǫ ≤ r ≤ τ ), and

omit those which are just at the maximum or very close

to it. In practice, this does not have any detrimental effect

over the minimization process because this approximation

discards only pixels which have a ray intersecting with the

model or very close to it. Rays that intersect with the model

(r = 0) contribute no gradient as previously shown; only a

tiny fraction of the pixels discarded will have a ray which

does not intersect and yet still lies in the concave area (0 <
r ≤ ǫ).

Every iteration of the Levenberg-Marquardt algorithm

involves the construction of a sparse and large linear sys-

tem which is solved by applying a Cholesky LDLT decom-

position. Moreover, to overcome/avoid local minima due

to wrong correspondence associations, we periodically per-

form a global search by uniformly sampling the subdivision

surface and checking for each pixel j ∈ Di (foreground)

whether any of these samples reduces its energy Ed
ij . A

similar search is also performed for the background corre-

spondences.

5.3. Coarse­to­Fine

Subdivision surfaces provide a refinement relation R that

densifies the control mesh without modifying the surface:

s(u|X) = s(u|RX) for all u ∈ Ω. (18)

This refinement can be iterated to define a series of control

meshes X l = RlX , all of which represent the same limit

surface. Here l denotes a given level within the coarse-to-

fine scheme. This means we can optimize a coarse model

for the control vertices X = X0, then apply R to obtain a

new set of model freedoms X1 without changing E in (13).

We then optimize X = X1 using (13) to obtain optimal

control vertices at level 1, and iterate this procedure until we

find a solution at the target control mesh density. Thus, the

optimizer is able to fit a detailed model with many control

vertices by using the coarse model to find the energy well

for a good local minimum.

6. Experiments

We conducted a series of experiments to compare our

approach with the popular distance transform (DT) method

for enforcing silhouette consistency [6, 21]. To perform these

comparisons we implemented an alternative background

term Eb
DT by sampling the subdivision surface uniformly at L

fixed locations {σl}
L
l=1 in Ω, and projecting the samples

into the distance transforms of each of the N depth images:

Eb
DT(X, ξ) = λDT

N
∑

i=1

L
∑

l=1

DT2
i

(

π(s(σl|X), ξi)

)

. (19)

We present three distinct experiments to compare our

background term with the standard DT-based term (19).

These experiments are intended to investigate the behaviour

of our proposal in common computer vision scenarios, not

to demonstrate state-of-the-art algorithms for 3D reconstruc-

tion or tracking. The first two experiments address the 3D

reconstruction problem from single or multiple views re-

spectively. In the third test we track a non-rigid object (a

person) through a sequence of depth images. Moreover, we

include two additional experiments in the supplementary

material, together with details of the image segmentation

and the computational cost of the different tested methods.
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For a better visualization of the results presented here, we

encourage the reader to watch the demonstration video.

6.1. Modeling an Arch

Our first experiment is a synthetic test where the data to

fit consists of a single depth image generated as the front

view of a smooth arch. To initialize the mesh, we compute

the bounding box of the data and apply R twice to generate

a mesh with enough degrees of freedom to deform and adapt

to the data. Its corresponding initial surface is roughly an

ellipsoid, which is quite far from the arch that we aim to

reconstruct (see Fig. 1). In the experiment, we compare four

different strategies for the background term: DT (19), SK

(12) with fixed τ (SK1), SK (12) with adaptive τ (SK2) and

without background term (NB). The weights associated to

the different background terms (λb and λDT) are tuned so

that all the background energies have the same initial value.

The final solutions are depicted in Fig. 1. We observe that

the distance transform is unable to shrink the model properly

while the two versions of our approach do it almost perfectly.

The DT’s poor behaviour has two causes. First, our formula-

tion of Eb
DT implements a discrete sampling over the model

instead of integrating each DTi over all of Ω. However, the

second reason for the failure is that the gradients of the DT

function (shown in Fig. 3) are mostly horizontal between the

two pillars of the arch. This gives no reason for the model

to shrink vertically. Instead, it stretches horizontally in both

directions to move the sampled model positions {σl} out

of the penalized image region while leaving model surface

stretched in-between. On the other hand, the shrinking ker-

nel always pushes the surface in the opposite direction to

the surface normals at the model silhouette. The only pixels

where the shrinking kernel has non-zero gradient are those

whose ray does not intersect the model but comes close to it

(ǫ ≤ d ≤ τ ). Thus, the SK background term projects the 3D

model onto the image plane and pushes the surface inward

on those parts of the model’s silhouette that project out of

the real silhouette (see Fig. 3).

The number of iterations (see demonstration video) re-

quired is significantly reduced by SK2 over SK1, and is

similar to DT. Interestingly, SK2 also finds a better optimum

for the data term that NB is directly optimizing, by helping

the model to distribute its freedoms more usefully. Although

SK1 is also able to create the gap between the columns of the

arch, its energy after convergence is higher because the data

and the background terms compete at the object boundaries.

6.2. Incorrect Segmentations

Another problem associated with the DT background

term is the fact that an incorrect segmentation, even if there

is just a single misclassified pixel, can lead to a very different

distance transform which might be detrimental for the 3D

reconstruction. A perfect segmentation is hard to obtain in

NB

DT

SK

�ଵ�ଶ
�ଷ

�ଵ �ଶ �ଷ

��்� �ௌ���૚ 0.702 0.089�૛ 38.58 0.097�૜ 54.11 0.120

Figure 4. Top left: Illustration of the object to model together

with the outline of the initial spheres used in the 3 sets of tests.

Bottom left: Final energy terms after the optimization. Right: 3D

reconstructions obtained without background term, with DT and

with SK for the 3 different initializations φ1, φ2 and φ3. SK is less

dependent on initialization, and is better on the gap between the

legs.

many practical cases, so robustness to segmentation errors is

important. In this section we compare basic 3D reconstruc-

tions obtained with no background term (NB), with DT and

with SK (adaptive τ ) when the segmentation of the object is

imperfect.

We test on a multi-view 3D reconstruction problem with

N = 4 depth images of a teddy bear taken from differ-

ent camera angles. We segment the depth images using

background subtraction as explained in the supplementary

material. Since the measurement error grows quadratically

with depth, we use a comparison threshold between the

background and the input images {Zi}
N
i=1 that also grows

quadratically with depth, in an attempt to avoid many false

positive detections at distant areas. However, the resulting

segmentation is still imperfect and every image contains scat-

tered pixels or small distant regions which are mistakenly

tagged as object. While it would be possible to post-process

the segmentations further for better results, we leave them in

this unprocessed state as our intention is to test the robustness

of each method to segmentation errors.

We compare the basin of convergence for the reconstruc-

tion in each case, by starting with three different initial con-

trol meshes. These meshes are cubes placed at the centroid

of the data points with edges set to 0.4, 0.5 and 0.6 meters

respectively. The control meshes generate roughly spherical

surfaces with diameters denoted by φ1, φ2 and φ3 in Fig. 4.

In this experiment we give high weights λb and λDT to the

background terms to test whether the algorithm is able to

shrink the model to the convex hull. The optimization is run

in a coarse-to-fine scheme with 4 levels, each one running

25 iterations of LM to solve (15).

Quantitative and qualitative results are presented in Fig. 4,

which shows that the data term alone is able to shrink the
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model partially in the first two cases but completely fails for

the largest initialization. It also fails to create the expected

gap between the teddy’s legs. On the other hand, DT pro-

duces a good result for s1 but fails dramatically for s2 and s3
because the DT gradients far from the target object are some-

times directed towards pixels that are incorrectly segmented

as data. In fact, they even force the model to protrude and

deform in undesirable ways, worsening the solution com-

pared to that without the background term. Finally, SK is

able to shrink the model into the convex hull in all cases

and successfully separates the teddy bear’s legs. The final

energies associated to the background terms are also shown

in Fig. 4.

6.3. Tracking under Poor Illumination Conditions

In this last experiment we compare the two different back-

ground terms focusing on the regions {Ci} that can be seg-

mented as neither object nor as background. These regions

are common artefacts of the capture mechanisms used by

depth cameras, but the same problem could arise with RGB

images if there are areas which cannot be segmented properly

and remain uncertain.

The goal of the experiment is to track the body of a per-

son who moves in front of an RGB-D camera. To better

illustrate the differences between the compared methods,

the sequence of images has been recorded outdoors where

the depth measurements have a lower quality due to the

sun’s radiation. The testing sequence consists of 20 images

subsampled from a longer sequence of 60 to increase the

displacement between consecutive frames. Images are seg-

mented by thresholding depth since the person is always

closer to the camera than the background points. The com-

pared background terms are configured so that they have

similar weights during the optimization process. For the

experiment we assume that an initial mesh (Xo in (22)) with

the shape of a person is provided. Coarse-to-fine is not used

here, i.e., the size and topology of this mesh does not change

during the experiment.

Under the presence of invalid or uncertain measure-

ments, we need to decide between two options to com-

pute the distance transform. The first is to compute the

distance transform for both background and invalid pixels,

setting to zero only those pixels that are segmented as ob-

ject (DTi(xij) = 0 iff j ∈ Di). We refer to this strategy

as DTall. The main disadvantage of DTall is that it shrinks

the model beyond the real silhouette of the object, because

the object is likely to be visible from some of those pixels

tagged as invalid (j ∈ Ci). The second option, denoted here

as DTsafe, sets to zero both the pixels observing the object

and the invalid depth measurements, in an attempt to create a

distance transform that only penalizes pixels that are known

to observe the background (DTi(xij) = 0 iff j /∈ Bi). This

alternative strategy is less restrictive and gives the model

DTsafe DTall

SegmentationRGB (not used)

Figure 5. Differences between DTall and DTsafe for one of the

frames used for tracking. Top left: RGB image included for clarity

but not used in the algorithm. Top right: Segmented image. The

foreground pixels are shown in green, background in gray and

null depth in black. Bottom: DTall and DTsafe starting from zero

(green) and truncated at 50 (red) for a better visualization.

NB

Depth

DTsafe

DTall

SK

Figure 6. Top row: Some of the depth images used for tracking.

Black represents null depth, pixels in gray observe the background

and those in purple the object. Rows 2-5: Results after convergence

for the selected images and the different tested approaches.

more freedom to adapt to the data properly, but it also has a

drawback: the invalid area surrounding the object may have

arbitrary size and contour, which can lead to gradients ∇Eb
DT

with directions that are harmful to the model (see Fig. 5).

In contrast, the shrinking kernel penalizes only background

pixels (so it does not overconstrain the final solution) without

being affected by the null depth measurements.

Qualitative results are shown in Fig. 6. It can be observed

that, in the absence of a background term, the model fits the

data but sometimes protrudes out of the silhouette. Moreover,

it allows for wrong correspondences between the model
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and the data, as occurs sometimes for the head (middle

column) which tries to fit some of the arm points. DTall

provides the worst results because it tries to push the model

out of the areas with null depth, and almost half of the

pixels observing the person have null depth. DTsafe performs

better but still leads to some artefacts as the gradients of the

distance transform are not always directed towards the target.

Finally, SK achieves the best results, keeping the surface

within the silhouette during the whole sequence without

leading to artefacts or protusion of the surface.

The same experiment has been carried out indoors under

good illumination conditions. In that case, the number of

pixels with null depth is much lower and both DT and SK

provide equally good results.

7. Conclusions

This paper describes a novel background term that forces

a 3D model to shrink within the visual hull of an object

observed from one or multiple views. To demonstrate its

superior performance over the popular distance transform-

based formulation, we introduced a unified framework to

address the problems of 3D reconstruction or non-rigid track-

ing with smooth surface models. Results demonstrate that

our proposal enforces silhouette consistency more effectively

than the distance transform. Specifically, it works better

with real data that often include noise and uncertainty and

which cannot always be segmented perfectly. This proposal

could therefore be extended to RGB-based reconstruction

and tracking systems.

Future work includes finding a better solver for this

concave-convex optimization problem, which would opti-

mize all variables jointly, and adapting the topology of the

mesh during optimization.

A. Regularization

The data and background terms (4) and (12) guarantee

that the model fits the data and keeps within the convex

hull of the object. However, the solution found using these

terms alone can include creases and sharp edges that make

the 3D model unappealing. The mesh can also degenerate

throughout the optimization process, leading to ill-posed

configurations that eventually cause the 3D reconstruction or

the tracking system to fail. For these reasons, we introduce

two regularization terms that encode a smoothness prior on

the object we are trying to reconstruct. Moreover, for the

tracking problem, we include other two extra terms to keep

the subdivision surface as rigid as possible while tracking

the target object. The sum of these terms forms ER(X).
To keep the surface smooth we penalize the gradient of

the surface normals, a proxy for surface curvature. We

approximate this using a discrete sum by homogeneously

sampling the subdivision surface over its parametric domain

�×{1..F} to obtain F sets of K samples per face, denoted

sfk. Then the surface smoothness regularizer is

Es(X) = λs

F
∑

f=1

K
∑

k=1

∥

∥∇ux
s⊥(sfk|X)

∥

∥

2

‖∇ux
s(sfk|X)‖2

+

∥

∥∇uy
s⊥(sfk|X)

∥

∥

2

∥

∥∇uy
s(sfk|X)

∥

∥

2 ,

(20)

where we use forward finite differences to approximate the

gradients ∇s⊥(u) ∈ R
3 and ∇s(u) ∈ R

3.

In addition, we want control vertices to be spread as

evenly as possible over the model, so we must avoid the

control mesh from stretching and distorting arbitrarily. We

enforce this by adding a simplified and discrete version of

the membrane energy. If ef,k denotes the kth edge of

the quadrilateral face f , this second regularization term is

defined as

Eh(X) = λr

F
∑

f=1

4
∑

k=1

‖ef,k(X)‖2 . (21)

Eh penalizes long edges and indirectly favours isometry.

When the goal is to track a non-rigid object, we assume

that a mesh with the shape of the object is given. This mesh

moves and deforms over time to fit the new incoming data

but, at the same, it must keep its original proportions. To

enforce such behaviour, we include the as-rigid-as-possible

regularizer (ARAP) [16]:

Ea(X, ζ) = λa

P
∑

v=1

∑

k∈Nv

∥

∥R(ζv)(X
o
v−Xo

k )−(Xv−Xk)
∥

∥

2

(22)

where Xo gives the initial locations of the control vertices

of the mesh employed for tracking, and Nv contains the

neighbours for vertex v. For each control vertex, the relative

rotation of the mesh with respect to its original configuration

is represented by the matrix R(ζv) ∈ SO(3). These rotations

are minimized, and are regularized so that the deformation

of the mesh is locally smooth:

Er(ζ) = λr

P
∑

v=1

∑

k∈Nv

‖ζv − ζk‖
2

(23)

The minimization is written ER(X) = minζ E
R(X, ζ), and

the rotations ζ are lifted into the overall problem.
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