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2Perceiving Systems Department, MPI for Intelligent Systems Tübingen
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Abstract

Existing optical flow datasets are limited in size and

variability due to the difficulty of capturing dense ground

truth. In this paper, we tackle this problem by tracking pix-

els through densely sampled space-time volumes recorded

with a high-speed video camera. Our model exploits the lin-

earity of small motions and reasons about occlusions from

multiple frames. Using our technique, we are able to es-

tablish accurate reference flow fields outside the laboratory

in natural environments. Besides, we show how our predic-

tions can be used to augment the input images with realistic

motion blur. We demonstrate the quality of the produced

flow fields on synthetic and real-world datasets. Finally, we

collect a novel challenging optical flow dataset by applying

our technique on data from a high-speed camera and ana-

lyze the performance of the state-of-the-art in optical flow

under various levels of motion blur.

1. Introduction

Much of the recent progress in computer vision has been

driven by high-capacity models trained on very large an-

notated datasets. Examples for such datasets include Ima-

geNet [50] for image classification [26,32], MS COCO [36]

for object localization [45] or Cityscapes [14] for semantic

segmentation [22]. Unfortunately, annotating large datasets

at the pixel-level is very costly [70] and some tasks like op-

tical flow or 3D reconstruction do not even admit the collec-

tion of manual annotations. As a consequence, less training

data is available for these problems, preventing progress in

learning-based methods. Synthetic datasets [12, 19, 25, 48]

provide an attractive alternative to real images but require

detailed 3D models and sometimes face legal issues [47].

Besides, it remains an open question whether the real-

ism and variety attained by rendered scenes is sufficient to

match the performance of models trained on real data.

Figure 1: Illustration. This figure shows reference flow

fields with large displacements established by our approach.

Saturated regions (white) are excluded in our evaluation.

This paper is concerned with the optical flow task. As

there exists no sensor that directly captures optical flow

ground truth, the number of labeled images provided by

existing real world datasets like Middlebury [3] or KITTI

[21, 39] is limited. Thus, current end-to-end learning ap-

proaches [16, 38, 44, 61] train on simplistic synthetic im-

agery like the flying chairs dataset [16] or rendered scenes

of limited complexity [38]. This might be one of the reasons

why those techniques do not yet reach the performance of

classical hand designed models. We believe that having ac-

cess to a large and realistic database will be key for progress

in learning high-capacity flow models.

Motivated by these observations, we exploit the power

of high-speed video cameras for creating accurate optical

flow reference data in a variety of natural scenes, see Fig. 1.

In particular, we record videos at high spatial (QuadHD:
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(a) Input Image (b) High Frame Rate (c) Low Frame Rate

Figure 2: Motion Blur. Using high frame rate videos and

our technique (described in Section 4.2) we are able to add

realistic motion blur (b) to the images (a). In contrast, using

low frame rates with a classical optical flow method results

in severe staircasing artifacts (c).

2560 × 1440 Pixels) and temporal (> 200 fps) resolutions

and propose a novel approach to dense pixel tracking over a

large number of high-resolution input frames with the goal

of predicting accurate correspondences at regular spatial

and temporal resolutions. High spatial resolution provides

fine textural details while high temporal resolution ensures

small displacements allowing to integrate strong temporal

constraints. Unlike Middlebury [3], our approach does not

assume special lighting conditions or hidden texture. Com-

pared to KITTI [21, 39], our method is applicable to non-

rigid dynamic scenes, does not require a laser scanner and

provides dense estimates. In addition, our approach allows

for realistically altering the input images, e.g., by synthesiz-

ing motion blur as illustrated in Fig. 2.

To quantify the quality of our reference flow fields, we

evaluate our method on a high frame rate version of the MPI

Sintel dataset [12] and several 3D reconstructions of static

scenes. Next, we process a novel high frame rate video

dataset using our technique and analyze the performance of

existing optical flow algorithms on this dataset. We demon-

strate the usefulness of high frame rate flow estimates by

systematically investigating the impact of motion magni-

tude and motion blur on existing optical flow techniques.

We provide our code and dataset on our project web page1.

2. Related Work

Datasets: After decades of assessing the performance of

optical flow algorithms mostly qualitatively [41] or on syn-

thetic data [5], Baker et al. proposed the influential Middle-

bury optical flow evaluation [3], for which correspondences

have been established by recording images of objects with

fluorescent texture under UV light illumination. Like us,

they use images with high spatial resolution to compute

dense sub-pixel accurate flow at lower resolution. They

did not, however, use high temporal resolution. While their

1http://www.cvlibs.net/projects/slow flow

work addressed some of the limitations of synthetic data, it

applies to laboratory settings where illumination conditions

and camera motion can be controlled.

More recently, Geiger et al. published the KITTI dataset

[21] which includes 400 images of static scenes with semi-

dense optical flow ground truth obtained via a laser scanner.

In an extension [39], 3D CAD models have been fitted in

a semi-automatic fashion to rigidly moving objects. While

this approach scales better than [3], significant manual in-

teraction is required for removing outliers from the 3D point

cloud and fitting 3D CAD models to dynamic objects. Ad-

ditionally, the approach is restricted to rigidly moving ob-

jects for which 3D models exist.

In contrast to Middlebury [3] and KITTI [21], we strive

for a fully scalable solution which handles videos captured

under generic conditions using a single flexible hand-held

high-speed camera. Our goal is to create reference optical

flow data for these videos without any human in the loop.

Butler et al. [12] leveraged the naturalistic open source

movie “Sintel” for rendering 1600 images of virtual scenes

in combination with accurate ground truth. While our goal

is to capture optical flow reference data in real world condi-

tions, we render a high frame rate version of the MPI Sintel

dataset to assess the quality of the reference flow fields pro-

duced by our method.

Remark: We distinguish between ground truth and refer-

ence data. While the former is considered free of errors2,

the latter is estimated from data and thus prone to inaccu-

racies. We argue that such data is still highly useful if the

accuracy of the reference data exceeds the accuracy of state-

of-the-art techniques by a considerable margin.

Methods: Traditionally, optical flow has been formulated

as a variational optimization problem [15, 28, 43, 49, 57]

with the goal of establishing correspondences between two

frames of a video sequence. To cope with large displace-

ments, sparse feature correspondences [9,11,62,67] and dis-

crete inference techniques [4,13,34,37,40,55,71] have been

proposed. Sand et al. [52] combine optical flow between

frames with long range tracking but do so only sparsely and

do not use high-temporal resolution video. More recently,

deep neural networks have been trained end-to-end for this

task [16, 38, 61]. However, these solutions do not yet attain

the performance of hand-engineered models [1, 13, 24, 53].

One reason that hinders further progress in this area is the

lack of large realistic datasets with reference optical flow.

In this paper, we propose a data-driven approach which ex-

ploits the massive amount of data recorded with a high-

speed camera by establishing dense pixel trajectories over

multiple frames. In the following, we discuss the most re-

lated works on multi-frame optical flow estimation, ignor-

2Note that this is not strictly true as KITTI suffers from calibration

errors and MPI Sintel provides motion fields instead of optical flow fields.
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ing approaches that consider purely rigid scenes [7, 29].

Early approaches have investigated spatio-temporal fil-

ters for optical flow [17, 20, 27]. A very simple formulation

of temporal coherence is used in [42, 56, 66, 72] where the

magnitude of flow gradients is penalized. As the change

of location is not taken into account, these methods only

work for very small motions and a small number of frames.

[51, 58, 64, 65] incorporate constant velocity priors directly

into the variational optical flow estimation process. A con-

stant acceleration model has been used in [6, 30] and lay-

ered approaches have been proposed in [59, 60]. Lucas-

Kanade based sparse feature tracking has been considered

in [35]. Epipolar-plane image analysis [7] provides another

approach when imagery is dense in time.

Unfortunately, none of the methods mentioned above is

directly applicable to our scenario, which requires dense

pixel tracking through large space-time volumes. While

most of the proposed motion models only hold for small

time intervals or linear motions, several methods do not in-

corporate temporal or spatial smoothness constraints which

is a necessity even in the presence of large amounts of data.

Besides, computational and memory requirements prevent

scaling to dozens of high-resolution frames.

In this paper, we therefore propose a two-stage approach:

We first estimate temporally local flow fields and occlusion

maps using a novel discrete-continuous multi-frame vari-

ational model, exploiting linearity within small temporal

windows3. Second, we reason about the whole space-time

volume based on these predictions.

3. Slow Flow

Let I = {I1, . . . , IN} denote a video clip with N im-

age frames It ∈ R
w×h×c of size w × h, captured at high

frame rate. Here, c denotes the number of input channels

(e.g., color intensities and gradients). In our experiments,

we use a combination of brightness intensity [28] and gra-

dients [10] for all color channels as features. This results in

c = 9 feature channels for each image It in total.

Our goal is to estimate the optical flow F1→N from

frame 1 to N , exploiting all intermediate frames. As the

large number of high-resolution images makes direct opti-

mization of the full space time volume hard, we split the

task into two parts. In Section 3.1, we first show how small-

displacement flow fields {Ft→t+1} can be estimated reli-

ably from multiple frames while accounting for occlusions.

These motion estimates (which we call “Flowlets”) form the

input to our dense tracking model which estimates the full

flow field F1→N as described in Section 3.2.

3We expect that most objects move approximately with constant veloc-

ity over short time intervals due to the physical effects of mass and inertia.

3.1. Multi­Frame Flowlets

Let {J−T , . . . ,J0, . . . ,JT } with Jt = Is+t denote a

short window of images from the video clip (e.g., T = 2),

centered at reference image J0 = Is. For each pixel

p ∈ Ω = {1, . . . , w} × {1, . . . , h} in the reference image

J0 we are interested in estimating a flow vector F(p) ∈ R
2

that describes the displacement of p from frame t = 0
to t = 1 as well as an occlusion map O(p) ∈ {0, 1}
where O(p) = 1 indicates that pixel p is forward occluded

(i.e., occluded at t > 0, see Fig. 3). Due to our high in-

put frame rate we expect roughly linear motions over short

time windows. We thus enforce constant velocity as a pow-

erful hard constraint. In contrast to a constant velocity

soft constraint, this keeps the number of parameters in our

model tractable and allows for efficient processing of mul-

tiple high-resolution input frames.

We now describe our energy formulation. We seek a mini-

mizer to the following energy functional:

E(F,O) = (1)
∫

Ω

ψD(F(p),O(p)) + ψS(F(p)) + ψO(O(p))dp

Here, ψD is the data term and ψS , ψO are regularizers that

encourage smooth flow fields and occlusion maps.

The data term ψD measures photoconsistency in the for-

ward direction if pixel p is backward occluded (O(p) = 0)

and photoconsistency in backward direction otherwise4, see

Fig. 3a for an illustration. In contrast to a “temporally sym-

metric” formulation this allows for better occlusion han-

dling due to the reduction of blurring artefacts at motion

discontinuities as illustrated in Fig. 3b.

Thus, we define the data term as

ψD(F(p),O(p)) =

{

ψF (F(p))− τ if O(p) = 0

ψB(F(p)) otherwise
(2)

where the bias term τ favors forward predictions in case nei-

ther forward nor backward occlusions occur. The forward

and backward photoconsistency terms are defined as

ψF (F(p)) =

T−1∑

t=0

ϕt
1(F(p)) +

T∑

t=1

ϕt
2(F(p)) (3)

ψB(F(p)) =

−1∑

t=−T

ϕt
1(F(p)) +

−1∑

t=−T

ϕt
2(F(p)) (4)

and measure photoconsistency between adjacent frames

(ϕt
1) and wrt. the reference frame J0 (ϕt

2) to avoid drift [65]:

ϕt
1(F(p)) = ρ(Jt(p+ tF(p))− Jt+1(p+ (t+ 1)F(p)))

ϕt
2(F(p)) = ρ(Jt(p+ tF(p))− J0(p))

4For small time windows, it can be assumed that either forward occlu-

sion, backward occlusion or no occlusion occurs.
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(a) Forward and backward occlusions (b) Results using different data terms

Figure 3: Occlusion Reasoning. (a) Illustration of a forward (dark green) and a backward (light green) occluded pixel. (b)

Visualization of the end-point-error (EPE, larger errors in brighter colors) using a symmetric data term (ψD = ψF + ψB),

forward photoconsistency (ψD = ψF ) and our full model (ψD as defined in Eq. 2). See text for details.

Here, ρ(·) denotes a robust ℓ1 cost function which operates

on the feature channels of J. In our implementation, we

extend the data term normalization proposed in [33, 46, 54]

to the multi-frame scenario, which alleviates problems with

strong image gradients.

In addition, we impose a spatial smoothness penalty on

the flow (ψS ) and occlusion variables (ψO):

ψS(F(p)) = exp(−κ‖∇J0(p)‖2) · ρ(∇F(p)) (5)

ψO(O(p)) = ‖∇O(p)‖2 (6)

The weighting factor in Eq. 5 encourages flow discontinu-

ities at image edge. We minimize Eq. 1 by interleaving vari-

ational optimization [10] of the continuous flow variables F

with MAP inference [8] of the discrete variables O. This

optimization yields highly accurate flow fields for small dis-

placements which form the input to our dense pixel tracking

stage described in the following section.

3.2. Dense Tracking

Given the Flowlets {Ft→t+1} from the previous section,

our goal is to estimate the final optical flow field F1→N

from frame 1 to frame N . In the following, we formulate

the problem as a dense pixel tracking task.

Let H = {H1, . . . ,HN} denote the location of each

(potentially occluded) pixel of reference image I1 in each

frame of the full sequence. Here, Ht ∈ R
w×h×2 describes

a location field. H1 comprises the location of each pixel in

the reference image. The optical flow from frame 1 to frame

N is given by F1→N = HN −H1.

Let further V = {V1, . . . ,VN} denote the visibility

state of each pixel of reference image I1 in each frame of

the sequence where Vt ∈ {0, 1}w×h is a visibility field

(1=“visible”, 0=“occluded”). By definition, V1 = 1w×h.

To simplify notation, we abbreviate the trajectory of

pixel p ∈ Ω in reference image I1 from frame 1 to frame

N with hp = {H1(p), . . . ,HN (p)} where Ht(p) ∈ R
2

is the location of reference pixel p in frame t. Similarly,

we identify all visibility variables along a trajectory with

vp = {V1(p), . . . ,VN (p)} where Vt(p) ∈ {0, 1} indi-

cates the visibility state of pixel p in frame t.

We are now ready to formulate our objective. Our goal is

to jointly estimate dense pixel trajectories H∗ = H\H1 and

the visibility label of each point in each frame V∗ = V\V1.

We cast this task as an energy minimization problem

E(H∗,V∗) = λDA

∑

t<s

ψDA

ts (Ht,Vt,Hs,Vs)
︸ ︷︷ ︸

Appearance Data Term

(7)

+ λDF

∑

s=t+1

ψDF

ts (Ht,Vt,Hs,Vs)
︸ ︷︷ ︸

Flow Data Term

+ λFT

∑

p∈Ω

ψFT

p
(hp)

︸ ︷︷ ︸

Temporal Flow

+λFS

∑

p∼q

ψFS

pq
(hp,hq)

︸ ︷︷ ︸

Spatial Flow

+ λVT

∑

p∈Ω

ψVT

p
(vp)

︸ ︷︷ ︸

Temporal Vis.

+λVS

∑

p∼q

ψVS

pq
(vp,vq)

︸ ︷︷ ︸

Spatial Vis.

where ψDA

ts , ψDF

ts , ψFT

p
, ψFS

pq
, ψVT

p
, ψVS

pq
are data, smooth-

ness and occlusion constraints, and {λ} are linear weighting

factors. Here, p ∼ q denotes all neighboring pixels p ∈ Ω
and q ∈ Ω on a 4-connected pixel grid.

The appearance data term ψDA

ts robustly measures the

photoconsistency between frame t and frame s at all visible

pixels given the image evidence warped by the respective

location fields Ht and Hs:

ψDA

ts (Ht,Vt,Hs,Vs) = (8)
∑

p∈Ω

Vt(p)Vs(p) ‖It(Ht(p))− Is(Hs(p))‖1

Here, Vt(p) ∈ {0, 1} indicates the visibility of pixel p in

frame t. For extracting features at fractional locations p′
t

we use bilinear interpolation.

Similarly, the flow data term ψDF

ts measure the agree-

ment between the predicted location field and the Flowlets:

ψDF

ts (Ht,Vt,Hs,Vs) = (9)
∑

p∈Ω

Vt(p)Vs(p) ‖Hs(p)−Ht(p)− Ft→s(Ht(p))‖1
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While the appearance term reduces long-range drift, the

flow term helps guide the model to a good basin. We thus

obtained best results by a combination of the two terms.

The temporal flow term ψFT

p
robustly penalizes devia-

tions from the constant velocity assumption

ψFT

p
(hp) =

N−1∑

t=2

‖ht−1
p

− 2ht
p
+ ht+1

p
‖
1

(10)

with ht
p

the location of reference pixel p in frame t.

The spatial flow term ψFS

pq
encourages similar trajecto-

ries at reference pixels p and q

ψFS

pq
(hp,hq) = ξ(p,q)

N∑

t=1

‖(ht
p
− h1

p
)− (ht

q
− h1

q
)‖

2

(11)

with a weighting factor which encourages flow discontinu-

ities at image edges ξ(p,q) = exp(−κ‖∇I1(
p+q

2 )‖2).
The temporal visibility term ψVT

p
penalizes temporal

changes of the visibility of a pixel p via a Potts model (first

part) and encodes our belief that the majority of pixels in

each frame should be visible (second part):

ψVT

p
(vp) =

N−1∑

t=1

[vt
p
6= vt+1

p
]− λV

N∑

t=1

vt
p
. (12)

Here, vt
p

denotes if pixel pixel p in frame t is visible or not.

The spatial visibility term ψVS

pq
encourages neighboring

trajectories to take on similar visibility labels modulated by

the contrast-sensitive smoothness weight ξ.

ψVS

pq
(vp,vq) = ξ(p,q)

N∑

t=1

[vt
p
6= vt

q
] (13)

3.3. Optimization

Unfortunately, finding a minimizer of Eq. 7 is a very dif-

ficult problem that does not admit the application of black-

box optimizers: First, the number of variables to be esti-

mated is orders of magnitude larger than for classical prob-

lems in computer vision. For instance, a sequence of 100

QuadHD images results in more than 1 billion variables to

be estimated. Second, our energy comprises discrete and

continuous variables, which makes optimization hard. Fi-

nally, the optimization problem is highly non-convex due to

the non-linear dependency on the input images. Thus, gra-

dient descent techniques quickly get trapped in local min-

ima when initialized with constant location fields.

In this section, we introduce several simplifications to

make approximate inference in our model tractable. As the

choice of these simplifications will crucially affect the qual-

ity of the retrieved solutions, we provide an in-depth discus-

sion of each of these choices in the following.

Optimization: We optimize our discrete-continuous ob-

jective using max-product particle belief propagation, i.e.,

we iteratively discretize the continuous variables, sample

the discrete variables, and perform tree-reweighted message

passing [31] on the resulting discrete MRF. More specifi-

cally, we create a discrete set of trajectory and visibility hy-

potheses {(h
(1)
p ,v

(1)
p ), . . . , (h

(M)
p ,v

(M)
p )} for each pixel p

(see next paragraph). Given this discrete set, the optimiza-

tion of Eq. 7 is equivalent to the MAP solution of a simpler

Markov random field with Gibbs energy

E(X) =
∑

p

ψU
p
(xp) +

∑

p∼q

ψP
pq

(xp, xq) (14)

with X = {xp|p ∈ Ω} and xp ∈ {1, . . . ,M}. The unary

ψU
p

and pairwise ψP
pq

potentials can be easily derived from

Eq. 7. Technical details are provided in the supplementary.

Hypothesis Generation: A common strategy for max-

product particle belief propagation [23,63] is to start from a

random initialization and to generate particles by iteratively

resampling from a Gaussian distribution centered at the last

MAP solution. This implements a stochastic gradient de-

scent procedure without the need for computing gradients.

Unfortunately, our objective is highly non-convex, and ran-

dom or constant initialization will guide the optimizer to a

bad local minimum close to the initialization.

We therefore opt for a data-driven hypothesis generation

strategy. We first compute Flowlets between all subsequent

frames of the input video sequence. Next, we accumulate

them in temporal direction, forwards and backwards. For

pixels visible throughout all frames, this already results in

motion hypotheses of high quality. As not all pixels are

visible during the entire sequence, we detect temporal oc-

clusion boundaries using a forward-backward consistency

check and track through partially occluded regions with

spatial and temporal extrapolation. We use EpicFlow [46]

to spatially extrapolate the consistent parts of each Flowlet

which allows to propagate the flow from the visible into

occluded regions. For temporal extrapolation, we predict

point trajectories linearly from the last visible segment of

each partially occluded trajectory. This strategy works well

in cases where the camera and objects move smoothly (e.g.,

on Sintel or recordings using a tripod) while the temporal

linearity assumption is often violated for hand-held record-

ings. However, spatial extrapolation is usually able to es-

tablish correct hypotheses in those cases.

After each run of tree-reweighted message passing, we

re-sample the particles by sampling hypotheses from spa-

tially neighboring pixels. This allows for propagation of

high-quality motions into partial occlusions.

Assuming that the motion of occluders and occludees

differs in most cases, we set the visibility of a hypothesis by

comparing the local motion prediction with the correspond-

ing Flowlet. If for a particular frame the predicted flow
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differs significantly from the Flowlet estimate, the pixel

is likely occluded. We leverage non-maximum suppres-

sion based on the criterion in Eq. 11 to encourage diversity

amongst hypotheses.

Spatial Resolution: While a high (QuadHD) input res-

olution is important to capture fine details and attain sub-

pixel precision, we decided to produce optical flow refer-

ence data at half resolution (1280 × 1024 Pixels) which is

still significantly larger than all existing optical flow bench-

marks [3, 12, 21]. While using the original resolution for

the data term, we estimate H and V directly at the output

resolution, yielding a 4 fold reduction in model parameters.

Note that we do not lose precision in the optical flow field

as we continue evaluating the data term at full resolution.

To strengthen the data term, we assume that the flow in a

small 3× 3 pixel neighborhood of the original resolution is

constant, yielding 9 observations for each point p in Eq. 8.

Temporal Resolution: While we observed that a high tem-

poral resolution is important for initialization, the temporal

smoothness constraints we employ operate more effectively

at a coarser resolution as they are able to regularize over

larger temporal windows. Additionally, we observed that it

is not possible to choose one optimal frame rate due to the

trade-off between local estimation accuracy and drift over

time, which agrees with the findings in [35]. Therefore, we

use two different frame rates for the hypotheses generation

and choose the highest frame rate based on the robust up-

per 90% quantile of the optical flow magnitude computed

at a smaller input resolutions with classical techniques [46].

This allows us to choose a fixed maximum displacement

between frames. In practice, we chose the largest frame

rate that yields maximal displacements of ∼2 pixels and

the smallest frame rate that yields maximal displacements

of ∼8 pixels which empirically gave the best results. Our

dense pixel tracking algorithm operates on key frames based

on the smallest frame rate. Flowlet observations of larger

frame rates are integrated by accumulating the optical flow

between key frames.

4. Evaluation & Analysis

In this section, we leverage our method to create refer-

ence flow fields for challenging real-world video sequences.

We first validate our approach, by quantifying the error of

the reference fields on synthetic and real data with ground

truth (Section 4.1). Next, we create reference flow fields for

a new high frame rate dataset (see Fig. 1) to systematically

analyze state-of-the-art techniques wrt. their robustness to

motion magnitude and motion blur (Section 4.2). All of our

real-world sequences are captured with a Fastec TS5Q cam-

era5 which records QuadHD videos with up to 360 fps. Sat-

5http://www.fastecimaging.com/products/handheld-cameras/ts5

urated regions which do not carry information are excluded

from all our evaluations.

4.1. Validation of Slow Flow

We begin our evaluation by analyzing the quality of the

reference flow fields produced using our method. As there

exists no publicly available high frame rate dataset with op-

tical flow ground truth, we created two novel datasets for

this purpose. First, we re-rendered the synthetic data set

MPI Sintel [12] using a frame rate of 1008 fps (a multi-

ple of the default MPI Sintel frame rate) in Blender. While

perfect ground truth flow fields can be obtained in this syn-

thetic setting, the rendered images lack realism and textu-

ral details. We thus recorded a second data set of static

real-world scenes using our Fastec TS5Q camera. In ad-

dition, we took a large number (100 − 200) of high reso-

lution (24 Megapixel) images with a DSLR camera. Using

state-of-the-art structure-from-motion [68] and multi-view

stereo [18], we obtained high-quality 3D reconstructions of

these scenes which we manually filtered for outliers. High-

quality 2D-2D correspondences are obtained by projecting

all non-occluded 3D points into the images. We provide

more details and illustrations of this dataset in the supple-

mentary document.

MPI Sintel: We selected a subset of 19 sequences from

the MPI Sintel training set [12] and re-rendered them based

on the “clean” pass of Sintel at 1008 frames per second,

using a resolution of 2048 × 872 pixels. Table 1a shows

our results on this dataset evaluated in all regions, only the

visible regions, only the occluded regions or regions close to

the respective motion boundares (“Edges”). For calibration,

we compare our results to Epic Flow [46] at standard frame

rate (24fps), a simple accumulation of EpicFlow flow fields

at 144 fps (beyond 144 fps we observed accumulation drift

on MPI Sintel), our multi-frame Flowlets (using a windows

size of 5) accumulated at the same frame rate and at 1008

fps, as well as our full model.

Compared to computing optical flow at regular frame

rates (“Epic Flow (24fps)”), the accumulation of flow fields

computed at higher frame rates increases performance in

non-occluded regions (“Epic Flow (Accu. 144fps)”). In

contrast, occluded regions are not handled by the simple

flow accumulation approach.

The proposed multi-frame flow integration (“Slow Flow

(Accu. 144fps)”) improves performance further. This is

due to our multi-frame data term which reduces drift dur-

ing the accumulation. While motion boundaries improve

when accumulating multi-frame estimates at higher frame

rates (“Slow Flow (Accu. 1008fps)”), the accumulation of

flow errors causes drift resulting in an overall increase in

error. This confirms the necessity to choose the frame rate

adaptively depending on the expected motion magnitude as

discussed in Section 3.3.
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Methods All (Edges) Visible (E.) Occluded (E.)

Epic Flow (24fps) 5.53 (16.23) 2.45 (10.10) 16.54 (20.68)

Epic Flow (Accu. 144fps) 4.73 (12.76) 1.04 (4.41) 17.09 (18.44)

Slow Flow (Accu. 144fps) 4.03 (12.03) 0.78 (4.43) 15.24 (17.28)

Slow Flow (Accu. 1008fps) 5.38 (11.78) 1.35 (2.60) 19.18 (17.93)

Slow Flow (Full Model) 2.58 (10.06) 0.87 (4.65) 9.45 (14.28)

(a) EPE on MPI Sintel

Jaccard Index

All Occluded 16.36%

EpicFlow F/B 62.86%

Our Method 70.09%

(b) Occlusion estimates on MPI Sintel

Flow Magnitude 100 200 300

Epic Flow 1.54 9.33 25.11

Slow Flow 1.47 3.47 5.13

(c) EPE on Real-World Scenes

Table 1: This figure shows the accuracy of our dense pixel tracking method and various baselines on MPI Sintel (a) and

wrt. different motion magnitudes on real-world scenes (c) with ground truth provided by 3D reconstruction. In addition, we

compare the occlusion estimates of two baselines and our method on MPI Sintel (b). See text for details.

Using our full model (“Slow Flow (Full Model)”),

we obtain the overall best results, reducing errors wrt.

EpicFlow at original frame rate by over 60% in visible re-

gions and over 40% in occluded regions. Especially, in se-

quences with large and complex motions like “Ambush”,

“Cave”, “Market” and “Temple” we observe a significant

improvement. We improve in particular in the occluded re-

gions and at motion boundaries due to the propagation of

neighbouring hypotheses and our occlusion reasoning.

In Table 1b we compare the occlusion estimation of our

method (last row) to a naı̈ve estimate which sets all pixels in

the image to occluded (first row) and two-frame EpicFlow

in combination with a simple forward/backward check (sec-

ond row). Our method outperforms both baselines consid-

ering the Jaccard Index and works best at large occluded

regions. Several Sintel sequences (e.g. Bamboo) comprise

very fine occlusions that are hard to recover. However, we

found that failures in these cases have little impact on the

performance of the flow estimates.

Note that the MPI Sintel dataset also contains many easy

sequences (e.g., “Bamboo”, “Mountain”) where state-of-

the-optical flow algorithms perform well due to the rela-

tively small motion. Thus the overall improvement of our

method is less pronounced compared to considering the

challenging cases alone.

Real-world Sequences: To assess the performance margin

we attain on more challenging data, we recorded a novel

real-world data set comprising several static scenes. We

used our Fastec TS5Q camera to obtain high frame rate

videos and created sparse optical flow ground truth using

structure-from-motion from high-resolution DSLR images

with manual cleanup as described above.

Table 1c shows our results. Again, we compare our ap-

proach to a EpicFlow [46] baseline at regular frame rate.

While performance is nearly identical for small flow mag-

nitudes of ∼ 100 Pixels, we obtain a five-fold decrease in

error for larger displacements (∼ 300 Pixels). This differ-

ence in performance increases even further if we add motion

blur to the input images of the baseline as described in the

following section. We conclude that our technique can be

used to benchmark optical flow performance in the presence

of large displacements where state-of-the-art methods fail.

4.2. Real­World Benchmark

In this section, we benchmark several state-of-the-art

techniques on a challenging novel optical flow dataset. For

this purpose, we have recorded 160 diverse real-world se-

quences of dynamic scenes using the Fastec TS5Q high

speed camera, see Fig. 1 for an illustration. For each se-

quence, we have generated reference flow fields using the

approach described in this paper. Based on this data, we

compare 8 state-of-the-art optical flow techniques. More

specifically, we evaluate DiscreteFlow [40], Full Flow [13],

ClassicNL [57], EpicFlow [46], Flow Fields [2], LDOF

[11], PCA Flow [69], FlowNet [16] and SPyNet [44] us-

ing the recommended parameter settings, but adapting the

maximal displacement to the input. We are interested in

benchmarking the performance of these methods wrt. two

important factors: motion magnitude and motion blur, for

which a systematic comparison on challenging real-world

data is missing in the literature.

To vary the magnitude of the motion, we use different

numbers of Flowlets in our optimization such that the 90%
quantile of each sequence reaches a value of 100, 200 or 300
pixels. By grouping similar motion magnitudes, we are able

to isolate the effect of motion magnitude on each algorithm

from other influencing factors.

The second challenge we investigate is motion blur. Us-

ing our high frame rate Flowlets, we are able to add real-

istic motion blur onto the reference and target images. For

different flow magnitudes which we wish to evaluate, we

blend images over a certain blur length using the Flowlets at

the highest frame rate in both forward and backward direc-
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Figure 4: State-of-the-art comparison on the generated reference data wrt. motion magnitude and blur.

tion. In particular, we blur each frame in the reference/target

frame’s neighborhood, by applying adaptive line shaped

blur kernels depending on the estimated flow of the corre-

sponding Flowlet. Tracing the corresponding pixels can be

efficiently implemented using Bresenham’s line algorithm.

Finally, we average all blurred frames in a window around

the reference/target frame for different window sizes corre-

sponding to different shutter times. As illustrated in Fig. 2b,

this results in realistic motion blur. For comparison, we also

show the blur result when applying the adaptive blur kernel

on the low frame rate inputs directly (Fig. 2c).

Fig. 4 shows our evaluation results in terms of average

end-point-error (EPE) over all sequences. We use three dif-

ferent plots according to the magnitude of the motion rang-

ing from 100 pixels (easy) to 300 pixels (hard). For each

plot we vary the length of the blur on the x-axis. The blur

length is specified with respect to the number of blurred

frames at the highest temporal resolution, where 0 indicates

the original unblurred images. Per sequence results are pro-

vided in the supplementary material.

As expected, for the simplest case (100 pixels without

motion blur), most methods perform well, with Discrete-

Flow [40] slightly outperforming the other baselines. In-

terestingly, increasing the blur length impacts the meth-

ods differently. While matching-based methods like PCA

Flow [69], EpicFlow [46] and DiscreteFlow [40] suffer sig-

nificantly, the performance of FlowNet [16], SPyNet [44]

and ClassicNL [57] remains largely unaffected. A similar

trend is visible for larger flow magnitudes, where the dif-

ference in performance becomes more clearly visible. As

expected, the performance of all methods decreases with

larger magnitudes. We further note that some methods (e.g.,

Full Flow [13]) which perform well on synthetic datasets

such as MPI Sintel [12] produce large error on our dataset.

This underlines the importance of optical flow datasets with

real-world images as the one proposed in this paper.

5. Conclusion and Future Work

In this paper, we presented a dense tracking approach to

generate reference data from high speed images for evalu-

ating optical flow algorithms. The introduction of Flowlets

allows to integrate strong temporal assumptions at higher

frame rates and the proposed dense tracking method allows

for establishing accurate reference data even at large dis-

placements. Using this approach we created a real world

dataset with novel challenges for evaluating the state-of-the-

art in optical flow. Our experiments showed the validity of

our approach by comparing it to a state-of-the-art two frame

formulation on a high frame rate version of the MPI Sintel

dataset and several real-world sequences. We conclude that

the generated reference data is precise enough to be used

for the comparison of methods.

In our comparison of state-of-the-art approaches, we ob-

served that all methods except FlowNet, SPyNet and Clas-

sicNL suffer from motion blur. The magnitude of the

flow affects in particular learning based and variational

approaches which cannot handle large displacements well

compared to methods guided by matching or optimizing lo-

cal feature correspondences.

In future work, we plan to further improve upon our

method. In particular, complex occlusions and partial oc-

clusions are the main source of errors remaining. Detect-

ing these occlusions reliably is a difficult task even in the

presence of high frame rates. In addition, we plan to de-

rive a probabilistic version of our approach which allows

for measuring confidences beyond simple flow consistency

or color saturation measures which we have used in this pa-

per. We also plan to extend our dataset in size to make it

useful for training high-capacity networks and comparing

their performance with networks trained on synthetic data.
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