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Abstract

Understanding the camera wearer’s activity is central to

egocentric vision, yet one key facet of that activity is in-

herently invisible to the camera—the wearer’s body pose.

Prior work focuses on estimating the pose of hands and

arms when they come into view, but this 1) gives an incom-

plete view of the full body posture, and 2) prevents any pose

estimate at all in many frames, since the hands are only

visible in a fraction of daily life activities. We propose to

infer the “invisible pose” of a person behind the egocen-

tric camera. Given a single video, our efficient learning-

based approach returns the full body 3D joint positions for

each frame. Our method exploits cues from the dynamic

motion signatures of the surrounding scene—which change

predictably as a function of body pose—as well as static

scene structures that reveal the viewpoint (e.g., sitting vs.

standing). We further introduce a novel energy minimiza-

tion scheme to infer the pose sequence. It uses soft pre-

dictions of the poses per time instant together with a non-

parametric model of human pose dynamics over longer win-

dows. Our method outperforms an array of possible alter-

natives, including typical deep learning approaches for di-

rect pose regression from images.

1. Introduction

Wearable “egocentric” cameras are steadily gaining

traction—thanks not only to smaller devices, but also the

increasing promise of vision and learning technology to

transform applications. Head- or chest-mounted cameras,

initially perceived as the purview of hard-core life loggers,

are now valuable tools for many others. Law enforcement

agencies across the US are using bodycams in an effort to

promote transparency with the public. Psychologists lever-

age wearable cameras on infants to gain insights into mo-

tor and linguistic development [27]. In healthcare, ego-

centric vision could move daily-living activity monitoring

required for motor rehabilitation from the hospital to the

home [16, 21].

For many applications, the important vision problems
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Figure 1. Our goal is to infer the full 3D body pose of a person

using the video captured from a single chest-mounted camera. (a):

Person with a chest-mounted camera. (b): Egocentric view. (c):

Predicted body pose using only video from view (b).

center around inferring the camera wearer’s behavior, i.e.,

his activity and interactions with people and objects. As

such, the ability to infer the camera wearer’s 3D body pose

is of great interest. However, doing so is challenging be-

cause most body parts are invisible to the egocentric cam-

era!

Existing work estimates a person’s pose by analyzing

the body parts visible in his first-person camera. Naturally,

this makes them restricted to the arms and hands [4, 11,

12, 13, 20]. However, from the view of a chest-mounted

wide-angle camera, arms and legs are often not visible in

daily life activity. For example, in our ground truth videos

in which people perform normal activities in public places

such as labs and offices, the chance to view arms and legs

is less than 10%. To estimate full body pose, one creative

approach [1] is to fasten multiple cameras to all the person’s

joints, then use structure from motion (SfM) to localize the

cameras and hence the joints. However, this comes with the

disadvantages of requiring 1) obtrusive multi-camera equip-

ment not amenable to everyday casual use and 2) intensive

computational requirements (hours to days of processing to

infer pose for a minute of video [1]).

We ask the question: Is it possible to estimate the “invis-

ible” human body pose behind a single egocentric camera?

(See Fig. 1). Despite the fact that we cannot see the per-

son behind the body-mounted camera, the video seen from

his point of view provides clues that may well be learnable.

In particular, we expect clues from two sources: dynamic

motion signatures and static scene structure. First, there

exist motion signatures for pose changes that are resistant

to scene changes. For example, the act of standing up has a

certain motion pattern as seen by the ego-camera, no mat-
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ter if he stands up from a chair in a restaurant or a bench

at the park. In fact, first-person games use these effects to

guide the virtual camera, giving gamers the impression they

are moving the same way as the virtual character. Second,

static scene structure sets the context and offers a prior on

likely poses. For example, the pose of typing on a keyboard

occurs in similar views showing a monitor or laptop, even

though the hands need not be visible. Or, if we see a table in

front of us with a specific distance and angle, we can predict

whether we are standing or sitting in front of the table.

Of course, not all poses are distinguishable from egocen-

tric video; some will be aliased, meaning different poses can

produce the same visual signal. Our intent is to leverage the

typical structure linking how the scene changes to how the

body is posed. When there is ambiguity, we infer a pose

with high probability from the egocentric view.

We introduce a novel approach to predict first-person

body pose, given an egocentric video sequence. As training

data, our approach takes videos from a wearable camera,

where each frame is labeled with ground truth pose param-

eters. The pose is parameterized by 25 3D joint positions,

i.e., a “stick figure” representation, and is obtained with

Kinect during training. At test time, we are given a novel

RGB egocentric video from a new user, and must infer the

sequence of 3D body poses based on the single wearable

camera video alone.

Our learning approach capitalizes on the clues described

above, while also incorporating longer term pose dynam-

ics. First, classifiers based on dynamic and static cues es-

timate the probability of each of a (large) set of quantized

poses per frame. Then, we jointly infer poses for a longer

sequence based on those initial predictions together with a

non-parametric model of pose dynamics. The latter is used

to identify a least-cost “pose path” through exemplar train-

ing video. This step regularizes the initial estimates with

priors about how people can move, and is efficiently opti-

mized with dynamic programming. The whole approach is

fast—about 0.5 seconds per frame.

We validate our method quantitatively on videos from

ten camera wearers performing daily activity poses, as well

as qualitatively on challenging videos in unconstrained en-

vironments. The experiments show the proposed method

gives robust results. It greatly outperforms several alterna-

tive methods, including a CNN regression method modeled

after the third-person DeepPose [5] approach retrained for

our setting.

In summary, our contributions are: (1) We tackle a new

problem that estimates the wearer’s “invisible” pose from

a single egocentric video; (2) We propose a novel global

optimization method that leverages both learned dynamic

and scene classifiers and the pose coupling over a long time

span; and (3) We benchmark several methods, including

hand crafted features and CNN learned features, for our

task.

2. Related work

We deal with a new problem of predicting invisible hu-

man poses from a single egocentric video stream.

Third-person pose Pose estimation from images and

video has been studied for decades [7]. Existing work tack-

les pose estimation from a third-person viewpoint, where

the person is entirely visible. In contrast, we consider es-

timating the body pose of the person behind the camera;

his body parts are rarely visible, if at all. So, existing pose

estimation methods are not applicable to our scenario.

Some third-person pose methods use regression to map

from images to pose parameters (e.g., [5, 8, 9, 6]), including

the recent DeepPose work using convolutional neural net-

works [5]. At a glance, a direct regression approach seems

like a possible solution for our problem. Even though the

body is not visible, we want to learn the connection between

what the person sees and how his body is posed. However,

a naive application of that idea is inadequate, since 1) even

large training sets cannot fully capture the possible variation

in environments, poses, and movements, and 2) the relevant

egocentric visual signals are inherently temporal. The pro-

posed method learns the connection between pose and dy-

namic and static cues from snippets of video, and enforces

long term constraints between estimated poses. Our exper-

iments show this yields superior results to a DeepPose-like

scheme applied to our task.

First-person pose Limited research explores ways to in-

fer the body pose of an egocentric camera wearer [4, 1, 13,

2, 11, 12]. Given interest in understanding handled objects,

some methods are dedicated to estimating pixel-wise 2D

maps of the camera wearer’s hands [13, 11, 12]. Recent

work also investigates how depth data from an egocentric

RGBD camera can help estimate shoulder, arm, and hand

poses in 3D [4], and how specially designed head mounted

stereo rigs can be used for markerless mocap [2]. These

lines of work assume the body parts are visible in the ego-

centric view. In contrast, we aim to estimate the full body

pose of the person (e.g., 25 joint positions), and we do so

even when the body is entirely out of view of the egocentric

camera.

In this sense, our goal is more related to the “inside-

out” mocap approach of [1]. In that work, 16 or more

body-mounted cameras are placed on a person’s joints, and

then each camera’s 3D location is recovered via structure

from motion (SfM). There are important differences with

our technical approach and motivation. First, rather than

16+ cameras attached at joints worn expressly for the pur-

pose of a mocap session [1], we employ a single chest-

mounted camera—the sort typical wearable-computer-users

may wear anyway while going about daily activities. Thus,

the SfM approach cannot be directly applied to our setting,

and our system requirements are more lightweight and flex-
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