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Abstract

We present a novel approach to noise-blind deblurring,

the problem of deblurring an image with known blur, but

unknown noise level. We introduce an efficient and robust

solution based on a Bayesian framework using a smooth

generalization of the 0-1 loss. A novel bound allows the cal-

culation of very high-dimensional integrals in closed form.

It avoids the degeneracy of Maximum a-Posteriori (MAP)

estimates and leads to an effective noise-adaptive scheme.

Moreover, we drastically accelerate our algorithm by using

Majorization Minimization (MM) without introducing any

approximation or boundary artifacts. We further speed up

convergence by turning our algorithm into a neural network

termed GradNet, which is highly parallelizable and can be

efficiently trained. We demonstrate that our noise-blind for-

mulation can be integrated with different priors and signifi-

cantly improves existing deblurring algorithms in the noise-

blind and in the known-noise case. Furthermore, GradNet

leads to state-of-the-art performance across different noise

levels, while retaining high computational efficiency.

1. Introduction

Non-blind image deblurring has been studied extensively

in the literature. Its principal assumption is that the blur

kernel affecting the image is known ahead of time. While

this may seem limiting, the blur may be known from the de-

sign of the imaging system [14] or can be estimated through

other modalities, e.g., inertial sensors [12]. Moreover, the

vast majority of blind deblurring algorithms have a non-

blind subcomponent [15], alternating between kernel esti-

mation and non-blind deblurring.

Even if the blur kernel is known, image deblurring is still

difficult due to the loss of high-frequency information and

the sensor noise. Moreover, noise cannot be avoided even

with the best image sensors. Although we might theoreti-

cally calibrate the noise level for each camera and each ISO

level, this quickly becomes infeasible in practice.

One approach to address this issue is to use a separate

noise estimator to tune a deblurring algorithm that assumes

known noise. For example [13, 24, 25, 37] focus on the

scenario where the noise level is known or user specified.

Discriminative approaches [24, 25] are even custom-trained

for specific noise levels; we would need to train and store a

deblurring method for each noise level, which is not practi-

cal. A key challenge of a separate noise estimation step is

that most noise estimation algorithms [6, 8, 17, 19, 35] are

designed for non-blurry input. An exception is [36], which

is able to estimate noise levels from blurry images. As we

show in the experiments, the combination of noise estima-

tion with subsequent deblurring can be suboptimal both in

accuracy and in execution time.

Therefore, we aim at estimating both the noise level and

a sharp image from a single noisy and blurred image, a

problem that we call noise-blind image deblurring. There

has been very little work on noise-blind deblurring so far.

Schmidt et al. [26] propose a Bayesian framework to deal

with the noise-blind case. Nevertheless, their sampling-

based technique is computationally very intensive, thus im-

practical for high-resolution images. In fact, computational

efficiency is a challenge even in the known noise case; only

very few fast and effective approaches exist [13, 25, 30].

In this paper, we propose an approach to noise-blind de-

blurring based on a noise-adaptive formulation derived from

Bayesian principles. More specifically, instead of using the

common 0-1 loss, which yields the well-known Maximum

a-Posteriori (MAP) estimation, we use a smooth Gaussian

utility function. We treat noise as a parameter that can be

integrated into the data term of the energy function. As a

consequence our formulation is noise-adaptive, and tuning

for different noise levels is no longer needed. Moreover,

we majorize the energy function, such that FFT-based pre-

conditioning can be applied, which speeds up the execution

process significantly, but also avoids artifacts from circular

boundary assumptions [25, 30]. We combine the above for-

mulations and derive a convolutional neural network, which

we call GradNet, that can solve the noise-blind image de-

blurring problem with very high computational efficiency.

Each block of layers in GradNet implements a gradient de-

scent step. Thus, the training of such network is the opti-

mization of a gradient descent algorithm [2, 7]. We can also
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interpret GradNet as a generalization of the diffusion net-

work of [4] to the noise-blind deblurring problem, where

we integrated our noise adaptivity and FFT-based precon-

ditioning. Hence, our network is also highly parallelizable

and well-suited for computation on GPUs, which makes in-

ference very fast, yet achieves very high image quality.

Our work makes a number of contributions: (1) The

proposed noise-adaptive formulation is conceptually sim-

ple and easy to calculate, with little computational cost; (2)

it is easily integrated into existing image restoration frame-

works, and even with a simple total variation prior it can al-

ready achieve high levels of image quality; (3) the automatic

weighting between data term and prior can yield significant

benefits even in the known-noise case (0.3–0.7dB on aver-

age); (4) our noise-adaptive formulation is also able to deal

with colored (spatially correlated) noise (see supplementary

material); (5) FFT-based preconditioning makes solving the

non-blind deblurring problem much faster; (6) our trainable

network GradNet makes inference even faster, yet outper-

forms the state of the art especially for large blur kernels.

2. Related Work

Non-blind deblurring is used not only when kernels are

known [14], but also in blind deblurring [5, 9, 15, 16, 20,

22, 28, 29, 32, 34] to restore the final sharp images.

Most non-blind deblurring approaches can be divided

into two classes, either based on iterative energy minimiza-

tion [13, 14, 30, 37] or discriminative learning [24, 25, 27,

33]. Wang et al. [30] rely on total variation and use half-

quadratic techniques to speed up optimization. Krishnan

and Fergus [13] similarly combine high-quality results with

fast execution. Levin et al. [14] formulate a more advanced

prior using second-order derivative filters. Zoran and Weiss

[37] use a Gaussian mixture prior, which is learned from

a set of natural images. This approach (EPLL) has been

widely used in blind deblurring for estimating the final

sharp image owing to its high-quality restoration results.

However, all these methods need to be well tuned according

to the noise level at test time. On the other hand, Schuler

et al. [27] propose a two-step approach, which first uses

a regularized inversion of the blur in the Fourier domain

and then removes the noise in the second step. Schmidt

and Roth [25] propose shrinkage fields, a discriminatively

trained network architecture, which is very efficient. How-

ever, it suffers from boundary artifacts due to its circular

boundary assumption and is not noise adaptive. Schmidt et

al. [24] propose a Gaussian conditional random field frame-

work, where parameters are predicted using learned regres-

sion trees [11]. Xu et al. [33] design a CNN to handle

saturation and nonlinearities of the model. However, these

learning approaches are designed/trained for a specific noise

level and not robust to other noise levels. Bayesian deblur-

ring [26] is an exception, which is able to integrate non-

blind deblurring and noise estimation with a Bayesian min-

imum mean squared error estimate. However, this approach

is computationally inefficient; scaling it to larger images is

prohibitively slow.

An intuitive way to deal with noise-blind deblurring is

first to estimate noise [6, 8, 17, 19, 35] and then apply exist-

ing non-blind deblurring algorithms. Donoho et al. [8] pro-

pose a mean absolute deviation (MAD) framework to infer

noise levels from the wavelet coefficients at the highest res-

olution. Zlokolica et al. [35] extend the MAD framework

to video noise estimation. Liu et al. [17] estimate an upper

bound on the noise level from a single image based on a

piecewise smooth image prior. De Stefano et al. [6] explore

the relationship between kurtosis values and image noise

in a wavelet-based approach. Liu et al. [19] apply principal

component analysis to selected patches to estimate the noise

level. However, none of these methods explicitly deals with

the case where the image is also blurry. The work of Zoran

and Weiss [37] is an exception, which exploits the connec-

tion between kurtosis values and image noise levels. Their

work can also estimate the noise level under image blur.

3. Bayesian Noise-Blind Image Deblurring

Let x̄ represent an unknown sharp image and k a given

blur kernel with non-negative values integrating to 1. We

assume that the observed blurry image y is formed1 as

y = k ∗ x̄+ n, n ∼ N (0, σ̄n), (1)

where n is Gaussian zero-mean noise with unknown stan-

dard deviation σ̄n. Alternatively, we can rewrite the image

formation via the Toeplitz matrix K of the blur kernel k as

y = Kx̄ + n, where we rearranged the sharp and blurry

images, as well as the noise n into column vectors. We con-

sider σ̄n a parameter, which is equivalent to assuming that

it follows a yet unknown Dirac delta distribution. We aim

to recover both x̄ and σ̄n given y and k.

To that end we first define a loss function L between the

true (x̄, σ̄n) and the estimate (x, σn), given observation y
and kernel k. Formally speaking, the loss function maps

(y, k, x̄, σ̄n, x, σn) to [0,∞). For notational simplicity, we

drop y, k as they are fixed. Also, since σn and σ̄n are pa-

rameters, i.e. modeled by Dirac delta distributions, they are

forced to be equal (for reasonable loss functions). We can

thus directly substitute σ̄n with σn and omit the parameters

σn and σ̄n in the definition of the loss function.

In our formulation we consider Bayes’ risk

Ex̄,y;σn
[L(x̄, x)] =

∫

L(x̄, x)p(x̄, y;σn) dx̄ dy, (2)

and define the estimator (x̃, σ̃n) via

(x̃, σ̃n) = argmin
x,σn

Ex̄,y;σn
[L(x̄, x)]. (3)

1
∗ is a ‘valid’ convolution, i.e., the output y is smaller than the input x.
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A common choice is the 0-1 loss

L(x̄, x) = 1− δ(x̄− x), (4)

which leads to the Maximum-a-Posteriori (MAP) problem

(x̃, σ̃n) = argmax
x,σn

p(y|x;σn)p(x). (5)

Here, the joint probability p(x, y;σn) = p(y|x;σn)p(x)
is written as product of likelihood and prior. Now, let us

consider the denoising case (k = 1). The log-likelihood is

given as

log p(y|x;σn) = − 1
2σ2

n
|y − x|2 −M log σn + const, (6)

where M is the number of pixels in x and the constant is

due to the partition function. The MAP solution becomes

argmin
x,σn

1
2σ2

n
|y − x|2 +M log σn − log p(x). (7)

By setting the first derivative w.r.t. σn to 0, we have

σ2
n = 1

M
|y − x|2, (8)

which is the well-known variance sample estimator. We

plug this closed form solution into Eq. (7) and obtain

x̃ = argmin
x

M
2 log |y − x|2 − log p(x). (9)

The solution to Eq. (9) is x̃ = y, since the first term tends

to −∞ while the second term will be typically finite at x =
y. This solution, however, is undesirable as it performs no

denoising. To address this failure, we introduce a different

loss function and a novel lower bound.

4. Beyond Maximum a-Posteriori

To avoid the degenerate solution of Eq. (9) we introduce

a family of loss functions that does not drastically penalize

small errors of the estimators. Let us define the loss function

as L(x̄, x) = 1−G(x̄, x), where we call G the utility func-

tion,2 and impose that G(x̄, x) ≥ 0 and
∫

G(x̄, x) dx̄ = 1.

For example, we can choose a Gaussian density with parti-

tion function Z and variance σ2:

G(x̄, x) = 1
Z
exp

[

− |x̄−x|2

2σ2

]

. (10)

This family of smooth loss functions generalizes the 0-1

loss, which is its limit case as σ → 0. We then obtain

Ex̄,y;σn
[L(x̄, x)] = 1− Ex̄,y;σn

[G(x̄, x)], (11)

2Notice that the two constraints on G are irrelevant (in the vast majority

of instances) as far as Bayes’ risk minimization is concerned. Positivity can

be achieved by adding a constant to the loss function and normalization can

be achieved by scaling the whole cost by a positive constant. Both of these

modifications to Bayes’ risk will not affect the minimizer (as long as the

loss function is bounded from below).

and the minimization of Bayes’ risk

argmin
x,σn

Ex̄,y;σn
[L(x̄, x)] = argmax

x,σn

Ex̄,y;σn
[G(x̄, x)]

(12)

becomes the maximization of Bayes’ utility (BU). More ex-

plicitly, we have

argmax
x,σn

Ex̄,y;σn
[G(x̄, x)] = argmax

x,σn

logEx̄,y;σn
[G(x̄, x)]

= argmax
x,σn

log

∫

G(x̄, x)p(x̄, y;σn) dx̄. (13)

Because of Jensen’s inequality and since log is concave, the

logarithm of BU has a lower bound (right hand side)

log

∫

G(x̄, x)p(x̄, y;σn) dx̄ ≥

∫

G(x̄, x) log p(x̄, y;σn) dx̄

(14)

and therefore

max
x,σn

log

∫

G(x̄, x)p(x̄, y;σn) dx̄ ≥

max
x,σn

∫

G(x̄, x) log p(x̄, y;σn) dx̄. (15)

The advantage of the above lower bound to BU is that it can

be computed in closed form – despite the high-dimensional

integral – whenever log p(x̄, y;σn) = log p(y|x̄;σn) +
log p(x̄) takes simple forms (e.g., linear or quadratic).

Data fidelity term. Let us now consider the deblurring

problem. We start by considering the log-likelihood

log p(y|x̄;σn) = − |y−k∗x̄|2

2σ2
n

−N log σn + const, (16)

where N is the number of pixels of the blurry image y. By

plugging Eq. (16) into the right hand side of Eq. (14) the

contribution of the log-likelihood to the bound becomes

∫

G(x̄, x) log p(y|x̄;σn) dx̄ (17)

= −

∫

1
Z
e−

|x̄−x|2

2σ2
|y−k∗x̄|2

2σ2
n

dx̄−N log σn + const

= − |y−k∗x|2

2σ2
n

−M σ2

2σ2
n
|k|2 −N log σn + const.

Image priors. We consider a product of type-1 Gumbel

density functions [21] of the squared norm of image filter

responses as image prior. A broad enveloping Gaussian en-

sures the distribution to be proper. This prior takes the form

log p(x̄) = − |x̄|2

2σ2

0

+
∑

ijk

wij exp
[

− |Fikx̄−µj |
2

2σ2

j

]

+ const,

(18)
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where Fi are Toeplitz matrices representing the filters, Fik

yields the kth entry of the output and is therefore a row vec-

tor with M pixels; µj and σj are parameters. σ2
0 is chosen

to be a large constant. Later we will see that this prior has

connections to common priors based on products of Gaus-

sian mixtures [26, 37]. The weights wij must be positive,

but do not have to sum to 1 here. Other priors, such as total

variation, are discussed in the supplementary material.

By constraining the filters to |Fik|2 = 1, we obtain the

contribution of the log-prior to the bound in Eq. (14)
∫

G(x̄, x) log p(x̄) dx̄ = (19)

− |x|2

2σ2

0

−
∑

ijk

ŵij exp
[

− |Fikx−µj |
2

2(σ2+σ2

j
)

]

+ const,

where, for ease of notation, we define

ŵij = −wij exp
[

−µ2
j

σ2

σ2

j
(σ2+σ2

j
)

]

. (20)

Notice that when σ → 0 the bound collapses to Eq. (18).

Image deblurring. Finally, we can put all the terms to-

gether and solve the maximization of the lower bound

argmax
x,σn

∫

G(x̄, x) log p(x̄, y;σn) dx̄ (21)

to BU as the following problem:

(x̂, σ̂n) = argmin
x,σn

|y−k∗x|2+Mσ2|k|2

2σ2
n

+N log σn

+ |x|2

2σ2

0

+
∑

ijk

ŵij exp
[

− |Fikx−µj |
2

2(σ2+σ2

j
)

]

.
(22)

We can now solve explicitly for σn and obtain

σ2
n = 1

N

[

|y − k ∗ x|2 +Mσ2|k|2
]

. (23)

This closed form can be incorporated in Eq. (22) and yields

x̂ = argmin
x

U [x]
.
= argmin

x

N
2 log

[

|y − k ∗ x|2

+Mσ2|k|2
]

+ |x|2

2σ2

0

+
∑

ijk

ŵij exp
[

− |Fikx−µj |
2

2(σ2+σ2

j
)

]

.
(24)

We point out that this formulation does not lead to degener-

ate solutions in the case of denoising or deblurring. In fact

with denoising (k = 1), Eq. (24) is not minimized at x = y.

In the more general noise-blind deblurring formulation, we

can explicitly obtain the gradient descent iteration

xτ+1 = xτ − α∇xU [xτ ] (25)

∇xU [xτ ] = λτK⊤(Kxτ − y) + xτ

σ2

0

−
∑

ik

F⊤
ikφi(Fikx

τ )

φi(z) =
∑

j

ŵij exp
[

− |z−µj |
2

2(σ2+σ2

j
)

]

z−µj

σ2+σ2

j

,

for some small step α > 0, where xτ denotes the solution at

gradient descent iteration τ and λτ = N
|y−Kxτ |2+Mσ2|k|2 .

Discussion. The alternative Bayesian approach by Schmidt

et al. [26] instead directly minimizes the Bayesian mini-

mum mean squared error (MMSE)

x̂ = argmin
x

∫

|x̄− x|2p(x̄, σ̄n|y) dx̄ dσ̄n. (26)

This very high-dimensional integration is then solved via

Gibbs sampling, but it is computationally intensive. In con-

trast, in our case the form of the utility function and the

proposed lower bound allow a simple analytical solution.

Notice that while we focus on Gaussian utility functions,

other choices (of probability density functions) lead to sim-

ilar closed form solutions. The utility function G has a reg-

ularizing effect on both the noise estimates through λτ and

the image prior filters. When σ ≫ 1 then λτ is biased to-

wards larger noise estimates and the image prior tends to

flatten more the filter responses while fixing the coefficients

ŵij to −wij exp[−µ2

j/σ2

j ] (see Eq. 20).

Notice also that ∇xU [xτ ] is similar to the gradient of a

standard least squares estimation with some prior p(x):

UL2
[x]

.
= λ

2 |y − k ∗ x|2 − log p(x)

∇xUL2
[xτ ] = λK⊤(Kxτ − y)− p′(xτ )

p(xτ ) .
(27)

The main difference is that in Eq. (25) the parameter λτ

changes during each iteration τ and thus adaptively deter-

mines the amount of regularization. Instead, λ is constant

in the minimization of UL2
. As shown later, our adaptive

λτ yields a better solution than any choice of a fixed λ.

5. Exact Preconditioning

We now describe an alternative method to the gradient

descent iteration of Eq. (25), which minimizes the problem

in Eq. (24) more efficiently while not introducing any ap-

proximation. We use the Majorization Minimization (MM)

technique [10]. MM defines an iteration much like gra-

dient descent, but such that every step is easy to com-

pute and still provably minimizes the original cost, here

Eq. (24). We first define a surrogate function ψ(x|xτ ),
where xτ is the solution at iteration τ , such that ∀x we have

ψ(x|xτ ) ≥ U [x], and ψ(xτ |xτ ) = U [xτ ]. We split the con-

struction of ψ into two surrogate functions ψ1 and ψ2, i.e.,

ψ(x|xτ ) = ψ1(x|x
τ ) + ψ2(x|x

τ ), each of which will be a

surrogate function to one of the terms in Eq. (24), i.e., ∀x

ψ1(x|x
τ ) ≥ N

2 log
[

|y − k ∗ x|2 +Mσ2|k|2
]

ψ2(x|x
τ ) ≥ |x|2

2σ2

0

+
∑

ijk

ŵij exp
[

− |Fikx−µj |
2

2(σ2+σ2

j
)

]

. (28)

Data term. The logarithm in the first term in Eq. (24) is

concave and thus we can use a first-order Taylor expansion
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as upper bound. Furthermore, we add a quadratic term with

the Toeplitz matrixH corresponding to the periodic circular

convolution with kernel k. By using the matrix notation K
for the blur k and λτ , we have

ψ1(x|x
τ ) =

[

λτK⊤(Kxτ − y)
]⊤

(x− xτ ) (29)

+ (x− xτ )⊤λτ H⊤H
2 (x− xτ ) + const(xτ ).

Image prior. In the second term we use a quadratic upper

bound instead:

ψ2(x|x
τ ) = const(xτ )+

(

xτ

σ2

0

−
∑

ik F
⊤
ikφi(Fikx

τ )
)⊤
(x−xτ )

+ γ
2 (x− xτ )⊤

(

δ +
∑

ik F
⊤
ikFik

)

(x− xτ ), (30)

where γ = maxi 2
∑

j

|ŵij |

σ2+σ2

j

and δ = 1
γσ2

0

.

Preconditioning. Now we can minimize ψ(x|xτ ) with re-

spect to x by setting its gradient to 0:

∇xψ(x|x
τ ) =λτK⊤(Kxτ − y) + λτH⊤H(x− xτ )

+ xτ

σ2

0

−
∑

ik F
⊤
ikφi(Fikx

τ ) (31)

+ γ
(

δ +
∑

ik F
⊤
ikFik

)

(x− xτ ) = 0.

Since this is a linear system, we arrive at the iteration

xτ+1 = xτ − Λ∇xU [xτ ]

Λ−1 = λτH⊤H + γ
(

δI +
∑

ik F
⊤
ikFik

)

,
(32)

which is a modification of the previous gradient descent in

Eq. (25) via preconditioning. Since preconditioning with

positive semidefinite matrices maintains the convergence of

gradient descent, we can also substitute the filters Fi in

the preconditioner with the corresponding periodic circular

convolution Toeplitz matrices Bi and obtain our algorithm

xτ+1 = xτ − Λ∇xU [xτ ]

Λ−1 = λτH⊤H + γ
∑

ik B
⊤
ikBik + 1

σ2

0

I

∇xU [xτ ] = λτK⊤(Kxτ − y)

+ xτ

σ2

0

−
∑

ik F
⊤
ikφi(Fikx

τ )

φi(z) =
∑

j ŵij exp
[

− |z−µj |
2

2(σ2+σ2

j
)

]

z−µj

σ2+σ2

j

.

(33)

This preconditioner can be computed very efficiently via the

fast Fourier transform (FFT) [25]. Notice that our derivation

ensures convergence to a local minimum of the original cost

U [x], and thus unlike [25] it does not suffer from artifacts

due to the periodic boundary assumptions of H and Bik.

In other words, circular convolutions are only used in the

preconditioner, but not in the cost and its gradient, where

valid convolutions are applied.

Figure 1. Cost UTV with and without preconditioning. The pro-

posed preconditioning (Eq. 32) leads to much faster convergence.

Figure 1 shows the average cost UTV (± the standard de-

viation), where we used the TV prior in Eq. (33), against the

iteration time over 32 images from the dataset of Levin et

al. [16] with and without preconditioning (omitting noise-

adaptivity and noise). Notice how preconditioning acceler-

ates convergence between 6 and 6.5 times.

Discussions. We now point out some fundamental differ-

ences and similarities between two previous methods [4, 25]

and Eq. (33). First, we turn to the cascade of shrinkage

fields (CSF) of Schmidt and Roth [25]. Even though not

originally derived in this way, based on Sec. 3 we can

rewrite Eq. (10) in [25] as a gradient descent step with pre-

conditioning (with σ2
0 → ∞)

xτ+1 = xτ − Λ−1∇xUSF[x
τ ] (34)

∇xUSF[x
τ ] = λH⊤(Hxτ − y)−

∑

ik B
⊤
ikφ

SF
i (Bikx

τ )

φSF
i (z) = z −

∑

j πij exp
[

−γSF|z − µj |
2
]

.

The main differences to our approach are (1) the missing

noise adaptivity term λτ , (2) the use of Toeplitz matrices H
and Bik in the definition of the gradient leading to artifacts

in shrinkage fields due to circular boundary conditions, and

(3) in the definition of φSF
i , which we interpret as an approx-

imation of the gradient of the negative log of an image prior.

Based on our derivation, the above iteration can be seen as

the minimizer of the following image prior (c.f . Eq.18)

log p(x) = −
∑

ijk

[

|Fikx|
2

2 + π̂ije
−γSF|Fikx−µj |

2

]

, (35)

for some π̂ij and where we used the difference of two Gaus-

sians to approximate terms exp
[

−γSF|z − µj |
2
]

(z−µj) in

the radial basis functions (RBF) expansion in φSF
i .

In the case of trainable nonlinear reaction diffusion

(TNRD) of Chen and Pock [4] with an RBF influence func-

tion we can also rewrite their Eq. (3) in our formalism as

xτ+1 = xτ −∆τ∇xETN[x
τ ] (36)

∇xETN[x
τ ] = λK⊤(Kxτ − y)−

∑

ik F
⊤
ikφ

TN
i (Fikx

τ )

φTN
i (z) = −

∑

j ŵij exp
[

− |z−µj |
2

γj

]

.
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Figure 2. The GradNet architecture.

The main differences to our approach are (1) the lack of

noise adaptivity, (2) the lack of preconditioning, and (3) in

the definition of φTN
i . By using similar approximations as

in the previous comparison, Eq. (36) can be seen as the ap-

proximate minimizer of the following image prior

log p(x) = −
∑

ijk ŵij exp
[

− |Fikx−µj |
2

γj

]

. (37)

Notice that the above methods were derived based on a mix-

ture of Gaussians prior. Our derivation above shows a link

between that prior and the type-1 Gumbel prior (Eq. 18).

6. The GradNet Architecture

We implement the gradient descent from Eq. (33) as a

neural network architecture so that the filters and all the

unknown parameters can be learned directly from data.

An illustration of the network, which we call GradNet is

shown in Fig. 2. Our GradNet is trained in a supervised

manner, i.e., we predefine Q-tuples of training samples

{yq, kq, x
GT
q }Qq=1, where yq is a noisy blurry image, kq is

the corresponding blur kernel, and xGT
q is the latent sharp

image. We use 57 RBF functions and fix σj = 10, µj ∈
[−280 : 10 : 280] and σ0 = 105. A GradNet with S stages

learns model parameters Θ = {γτ , σ, fτi , ŵ
τ
ij}τ=1,...,S ,

which include regularization tradeoff γτ , σ in the noise-

adaptivity λτq , linear filters fτi (2D kernel of Fi), and co-

efficients ŵτ
ij by minimizing the following loss function

minΘ L(Θ) = minΘ
∑Q

q=1
1
2

∣

∣CS
q (x

S
q − xGT

q )
∣

∣

2

2
, (38)

s.t.

{

xτ+1
q = xτq − Λ∇xU [xτq ], τ ∈ [0, . . . , S − 1]

Λ−1 = λτqHq
⊤Hq +

I
σ2

0

+ γτ
∑

ik B
τ
ik
⊤Bτ

ik,

where CS
q is an operator that selects only the valid part of

the latent image and we initialize x0q by a 3-fold edge taper-

ing of yq . Recall that Bτ
i is the Toeplitz matrix for circular

convolution with filter fτi . Additionally, instead of learning

arbitrary filters, we define each kernel as fτi =
∑

d
ατ

idtd
|ατ

i
|2

,

where {t1, . . . , t48} is a Discrete Cosine Transform (DCT)

basis, so that |fτi |2 = 1 and they are zero-mean. In ∇xU

we consider functions φi(z) =
∑

j ŵij exp
[

− |z−µj |
2

2(σ2+σ2

j
)

]

,

since we found experimentally that they yield the same per-

formance as the functions φi defined in Eq. (33), but are

faster to train. More details, including the backpropagation,

are reported in the supplementary material.

Figure 3. 48 learned filters from the 5th stage of GradNet.

Figure 4. 5 large kernels [23] that are tested with images from [1].

7. Experiments

Training. We choose S = 7 stages and train the network

with a greedy + joint training scheme. First, we greedily

train each of the 7 stages one after the other. Afterwards the

network is finetuned jointly. In the first 4 stages, we simply

use 4 pre-defined pairwise filters as they give a good trade-

off between image deblurring accuracy and computational

cost. Hence, only the regularization parameter and nonlin-

ear functions are trained. From the 5th to 7th stage, we use

48 filters each of size 7 × 7. At each stage, we use 400

training images from the Berkeley segmentation dataset [1]

without cropping. Since real blur data is limited, we syn-

thetically generated motion blur kernels with size 27 × 27
using [3]. We add different amounts of white Gaussian

noise, σ ∈ {2.55, 3.875, 5.1, 6.375, 7.65, 8.925, 10.2}, to

the blurry images. For each stage different image blurs are

used to avoid overfitting. We optimize using 150 iterations

of limited memory BFGS [18]. Greedy training takes 1.5

days and joint training takes half a day with one Titan X

GPU. The code, trained model, dataset and other supple-

mental material will be available on the authors’ webpage.

Figure 3 shows the 48 filters of the 5th stage. Most filters re-

semble directional derivative filters, similar to those learned

by the diffusion network [4]. Figure 2 shows three repre-

sentative non-linear functions in the GradNet architecture,

again similar to those learned in the diffusion network.

Noise-blind deblurring. To thoroughly study our noise-

adaptive approach as well as GradNet, we experiment with

three different datasets. First, we use the popular datasets

of Levin et al. [16] and Sun et al. [29] to assess perfor-

mance with different image scales. These two datasets con-

tain 32 test images (255×255) and 640 test images (roughly

700 × 900), where 8 different blur kernels from [16] are

used. As the amount of blur from these kernels is somewhat

limited, we furthermore test a more challenging setting. We

randomly select 10 images from the Berkeley dataset [1]

and test with 5 large blurs from [23]. The blurs have differ-

ent sizes from 29 to 37 pixels, see Fig. 4. Note that training

and test sets do not overlap, neither in images nor kernels.
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Method σ → 2.55 5.10 7.65 10.20

FD [13] (non-blind) 30.03 28.40 27.32 26.52

RTF [24] (σ = 2.55) 32.36 26.34 21.43 17.33

CSF [25] (non-blind) 29.85 28.13 27.28 26.70

TNRD [4] (non-blind) 28.88 28.10 – –

TV-L2 (non-blind) 30.87 28.43 27.59 26.51

EPLL [37] (non-blind) 32.03 29.79 28.31 27.20

EPLL [37] + NE [36] 31.86 29.77 28.28 27.16

EPLL [37] + NA 32.16 30.25 28.96 27.85

TV-L2 + NA 31.05 29.14 28.03 27.16

BD [26] 30.42 28.77 27.91 27.29

GradNet 7S 31.43 28.88 27.55 26.96

Table 1. Average PSNR (dB) on 32 test images from [16].

Method σ → 2.55 5.10 7.65 10.20

FD [13] (non-blind) 30.79 28.90 27.86 27.14

EPLL [37] (non-blind) 32.05 29.60 28.25 27.34

CSF [25] (non-blind) 30.88 28.60 27.65 26.97

TNRD [4] (non-blind) 30.03 28.79 – –

EPLL [37] + NE 32.02 29.60 28.25 27.34

EPLL [37] + NA 32.18 30.08 28.77 27.81

TV-L2 + NA 30.07 28.59 27.60 26.89

GradNet 7S 31.75 29.31 28.04 27.54

Table 2. Average PSNR (dB) on 640 test images from [29].

We blur the test images and add 1%, 2%, 3%, and 4% noise

(i.e., σ = 2.55, 5.10, 7.65, 10.20). Additionally, we quan-

tized the intensities of the noisy blurry observations to 8-bit

to make them more realistic. All results are measured using

the PSNR (see supplementary material for SSIM [31]).

Table 1 shows the performance on the dataset of Levin

et al. [16]. Algorithms are divided into three classes: noise

non-blind (top), noise estimation + non-blind (middle), and

noise-blind (bottom). The non-blind experiments comprise

6 approaches: Fast Deconvolution [13] (FD) and TV-L2 are

well tuned for each noise level and EPLL [37] is tested with

known ground truth noise level. For CSF [25], we use the

official code to train different models for each noise level.

We strictly follow the greedy + joint training mechanism to

obtain the best performing model for each noise level. Since

there is no available deblurring code for TNRD [4], we

modified our code by removing preconditioning and noise

adaptivity and then trained for two exemplary noise levels,

thus ensuring best performance per noise level. For Re-

gression Tree Fields (RTF) [24], we use the only available

pre-trained model (σ = 2.55). We observe that RTFs only

perform well for the noise level on which they are trained.

For other noise levels, the performance drops significantly.

Notice that our noise-blind method GradNet 7S performs

better than CSF and our implementation of TNRD, which

are non-blind and custom-trained for each noise level.

Method σ → 2.55 5.10 7.65 10.20

FD [13] (non-blind) 24.44 23.24 22.64 22.07

EPLL [37] (non-blind) 25.38 23.53 22.54 21.91

RTF [24] (σ = 2.55) 25.70 23.45 19.83 16.94

CSF [25] (non-blind) 24.73 23.61 22.88 22.44

TNRD [4] (non-blind) 24.17 23.76 – –

EPLL [37] + NE [36] 25.36 23.53 22.55 21.90

EPLL [37] + NA 25.57 23.90 22.91 22.27

TV-L2 + NA 24.61 23.65 22.90 22.34

GradNet 7S 25.57 24.23 23.46 22.94

Table 3. Average PSNR (dB) on 50 test images from the Berkeley

segmentation dataset [1] with large blurs (Fig. 4).

Method size → 128
2

256
2

512
2

1024
2

2048
2

FD [13] 0.05s 0.08s 0.13s 0.53s 2.3s

CSF [25] 0.06s 0.11s 0.28s 1.35s 5.44s

EPLL [37] 13s 54s 185s 860s >1h

TV-L2 0.26s 0.86s 2.8s 17.2s 63s

BD [26] 7min 26min 40min >1h –

FD [13] + NE [36] 0.35s 0.50s 0.99s 3.74s 15.8s

CSF [25] + NE [36] 0.36s 0.53s 1.14s 4.56s 19.8s

GradNet 7S 0.07s 0.24s 0.78s 3.62s 14.8s

Table 4. Execution time for different algorithms. All methods are

based on Matlab implementations and tested on the same platform

(Intel Core i7, quad-core at 2.4GHz).

To assess the effect of pre-estimating the noise level

(NE), we use the approach of [36] and use the estimated

noise level to adapt EPLL. Finally, the noise-blind exper-

iments rely on 5 different settings: First, we extend two

widely used non-blind techniques, EPLL and TV-L2, to the

noise-blind case using our noise-adaptive (NA) formulation

(see supplementary material for details). We find that our

noise-adaptive formulation not only enables existing tech-

niques to deal with the noise-blind case. Importantly, the

results also compare favorably to the known-noise case. For

EPLL our noise-adaptive formalism improves the perfor-

mance significantly by 0.3–0.7dB over the non-blind setting

despite the fact that we solve a more challenging problem.

This is because the optimal λ does not depend just on im-

age noise, but more generally on a combination of image

noise and approximations made by the image prior. Put

differently, a prior captures the statistics of a whole set of

images, which is not necessarily the best choice for a spe-

cific image. Our adaptive λτ based on the regularized image

residual (Eq. 23) addresses this and outperforms any fixed

λ. For TV-L2 the improvement is equally significant, with

improvements in the same range. Additionally, we show

the result of Bayesian deblurring (BD) [26] and our Grad-

Net. While GradNet does not quite reach the performance

level of EPLL + NA, it is 2 orders of magnitude faster.
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(a) Blurry input (b) TV-L2 (c) FD [13] (d) EPLL [37]

(e) Ground Truth (f) GradNet 1 stage (g) GradNet 4 stage (h) GradNet 7 stage

Figure 5. Results for 1% noise case. PSNR results are also shown at the top left corner of the estimated images. Best viewed on screen.

Table 2 shows the performance on the dataset of Sun

et al. [29]. We omit Bayesian deblurring [26] here, since

it does not scale well to large images. Results show that

our noise-adaptive approaches compare favorably to state-

of-the-art priors (EPLL) with separate noise estimation.

Results in Table 3 show that our GradNet is more robust

to large blurs [23] and outperforms EPLL at all noise levels,

on average by 0.75dB. We posit that discriminative training

may enable GradNet to better cope with this challenging

setting. We also combined EPLL with our noise-adaptive

formulation, which again improves the performance.

In all three experimental settings, our noise-adaptive ap-

proach consistently improves the performance of existing

priors, even compared to the non-blind case, which means

that our noise adaptation is robust to image scales, noise lev-

els, and blur kernels. Figs. 5 shows qualitative and quanti-

tative results with 1% noise. Compared to competing meth-

ods, GradNet handles boundaries better and also restores

the ground part of the image more faithfully.

Execution time. Table 4 shows a comparison of execu-

tion times. We see that GradNet scales well to large im-

ages. Although FD and CSF are fast, noise estimation is

quite slow, which is a bottleneck for further efficiency im-

provements. However, we are free of this issue, since our

approach automatically adapts to the noise level. Another

potential benefit of our model is that it is highly paralleliz-

able and well-suitable for computation on the GPU. [4] has

shown that by going from CPU to GPU, their approach can

be sped up around 100 times. Since we are using a similar

architecture, we believe that our network can also enjoy a

significant GPU speed-up. We leave this as future work.

8. Conclusion

Noise is an unavoidable image degradation that must be

accounted for in image restoration and in particular in im-

age deblurring. We focused on the practical case where a

full characterization of noise is not available and must be es-

timated. We showed that a direct application of MAP leads

to a degenerate solution and proposed instead to substitute

the 0-1 loss with a more general family of smooth loss func-

tions. While using general loss functions may lead to infea-

sible high-dimensional integrals or computationally inten-

sive methods, we derive simple bounds that can be com-

puted analytically in closed form. This leads to a novel

method for noise-adaptive deblurring, which can be effi-

ciently implemented as a neural network. The noise adap-

tation leads to significant performance boosts in the noise-

blind and known-noise case. The efficient GradNet yields

state-of-the-art performance even with large blurs.
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