
Webly Supervised Semantic Segmentation

Bin Jin

IC, EPFL

bin.jin@epfl.ch

Maria V. Ortiz Segovia
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Abstract

We propose a weakly supervised semantic segmentation

algorithm that uses image tags for supervision. We ap-

ply the tags in queries to collect three sets of web images,

which encode the clean foregrounds, the common back-

grounds, and realistic scenes of the classes. We introduce

a novel three-stage training pipeline to progressively learn

semantic segmentation models. We first train and refine a

class-specific shallow neural network to obtain segmenta-

tion masks for each class. The shallow neural networks of

all classes are then assembled into one deep convolutional

neural network for end-to-end training and testing. Exper-

iments show that our method notably outperforms previous

state-of-the-art weakly supervised semantic segmentation

approaches on the PASCAL VOC 2012 segmentation bench-

mark. We further apply the class-specific shallow neural

networks to object segmentation and obtain excellent re-

sults.

1. Introduction

Semantic segmentation, which refers to accurately as-

signing semantic labels to the corresponding pixels in an

image, is a challenging task actively studied in computer

vision. Recent breakthroughs [1, 2, 3, 4, 5, 6] in semantic

segmentation are mainly due to the fully supervised algo-

rithms that apply Convolutional Neural Networks (CNNs)

on datasets that contain images and their pixel-wise anno-

tations, e.g., PASCAL VOC [7] and Microsoft COCO [8].

These algorithms report excellent performance on the lim-

ited amount of classes covered by these datasets. The PAS-

CAL VOC segmentation set contains 20 object classes with

500 images per class, the Microsoft COCO 91 object classes

with 3.5K images per class, respectively. Extending fully

supervised algorithms to more object classes, however, re-

quires collecting massive amount of pixel-wise annotations,

which is both time-consuming and expensive. As reported

in [9], the average annotation time was 239.7 seconds per

image in the PASCAL VOC 2012 dataset. Thus, other an-

notations that are less precise but faster to collect, such as

Figure 1: To supervise semantic segmentation, we extract

three sets of web images: images with white background

{Wk}, images that contain common background scenes

C, and realistic images {Rk}. {Wk} and C sets are

used for initial training of the segmentation models. Later,

these models are iteratively refined on the realistic image set

{Rk}. Finally {Rk} is adopted again to train an end-to-end

semantic segmentation network.

points, scribbles, or bounding boxes, have also been em-

ployed to supervise semantic segmentation [9, 10, 11, 12].

Our proposed semantic segmentation algorithm only

uses image tags as supervision. Image tags represent which

object class(es) are present in the image. They are usu-

ally much easier and faster to obtain than the other hu-

man annotations described above, and have thus been used

in many weakly supervised semantic segmentation meth-

ods [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. However, as op-

posed to the segmentation masks obtained by the pixel-wise

annotations, image tags do not indicate the location of the

object(s) in the image, therefore making semantic segmen-
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tation much more challenging.

In our framework, we take advantage of the enormous

amount of images and their rich context on the Internet.

Through cleverly querying and exploiting web images, we

can build a pipeline to automatically generate segmentation

masks for each class and then train a deep convolutional

neural network for segmenting multiple classes using the

generated masks. We only use image tags to query the web

images and to train the network. No additional human an-

notations or interactions are required.

We extract three sets of images to supervise semantic

segmentation, as shown in Figure 1. These three sets of im-

ages include the objects on white background, the common

backgrounds, and the realistic scenes of the classes. We pro-

pose a novel three-stage procedure to progressively train our

semantic segmentation model, as illustrated in Figure 2. In

the first stage, a Shallow Neural Network (SNN) is initially

trained to predict class-specific segmentation masks, us-

ing the hypercolumn features [23] from images with white

background and images with common backgrounds. We

then iteratively refine the SNN of each class on a set of re-

alistic images of that class to generate better segmentation

masks. In the last stage, the SNNs of all classes are assem-

bled into one Deep Convolutional Neural Network (DCNN)

by training the DCNN with the predicted multi-label seg-

mentation masks from the SNNs. The DCNN, after the last

training stage, outperforms current state-of-the-art weakly

supervised semantic segmentation algorithms on the PAS-

CAL VOC 2012 segmentation benchmark [7] by a notable

margin.

In summary, our main contributions are:

• We propose to collect three sets of useful web images

for supervising segmentation. The first set contains

images with white background, the second set contains

images with common background scenes, and the third

set contains realistic images of each class.

• We present a novel three-stage pipeline to train seman-

tic segmentation models using the three collected web

image sets. The segmentation performance progres-

sively improves following the training pipeline.

• Our DCNN, after the three training stages, achieves

state-of-the-art performance on the PASCAL VOC

2012 segmentation benchmark, outperforming the pre-

vious weakly supervised semantic segmentation algo-

rithms by more than 3 percent.

• The SNNs from the first two training stages produce

state-of-the-art results in an object segmentation appli-

cation.

2. Related Work

Weakly Supervised Semantic Segmentation Our method

belongs to the family of weakly supervised semantic seg-

mentation algorithms that require only image tag annota-

tion. Here we review the CNN-based approaches as these

methods [13, 14, 15, 16, 17, 18, 19, 20, 21, 22] provide good

segmentation quality on the challenging PASCAL VOC

benchmark. Early works [13, 14, 16] extend the Multiple-

Instance Learning (MIL) [24] framework for weakly su-

pervised semantic segmentation, where the loss functions

are built on the image tags level. They adopt different ap-

proaches, e.g., maximum pool [13] or Log-Sum-Exp [14],

to pool pixel-level probability predictions into image-level

losses. No object location information is considered in these

frameworks, thus resulting in coarse segmentation masks.

Recent methods [18, 19, 20, 21, 22] investigate how to au-

tomatically infer the location of each class without pixel-

wise annotations. [20] and [19] both build their location

cues by inversing the pre-trained classification network [25]

on ImageNet [26]. The difference is that [20] builds gen-

eral objectness measure for all classes while [19] focuses on

class-specific saliency maps. Similar location cues are used

in [18] in the form of the seed loss. They further integrate

the seed loss with another two losses that encode more lo-

cation information. The bottom up segment proposals [27]

are used as another approach to obtain location information

of each class in [21,22]. Instead of inferring rough location

cues for each class using objectness or saliency maps, we

train a shallow segmentation network from web images to

automatically generate segmentation masks for each class.

Using these segmentation masks, we further train a DCNN

that achieves the state-of-the-art results for semantic seg-

mentation.

Webly Supervised Computer Vision The idea of utilizing

web images for supervising computer vision algorithms has

been explored in several tasks, such as object classification

[28], object detection [29], object parts localization [30] and

object segmentation [17,31,32,33]. Recently, Wei et al. [17]

also propose to use web images to train CNNs for semantic

segmentation. While we extract two sets of images that dis-

tinctly separate foreground and background, [17] employs

Flickr images that may have cluttered backgrounds. In addi-

tion, we apply an iterative refinement step that significantly

boosts the performance. Our method achieves better accu-

racy (4.2% mIoU better on the PASCAL VOC 2012 test

set) than their approach while using significantly less web

images for supervision.

Fully Supervised Semantic Segmentation For complete-

ness sake, we also quickly review some fully supervised

semantic segmentation methods [1, 2, 3, 4, 5, 6] that rely

on pixel-wise annotations for training. No surprise, they

report excellent performance on the standard segmenta-

tion benchmark. These methods build upon the Fully

Convolutional Network (FCN) architecture [1] to perform

end-to-end training. Techniques like Conditional Random
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Figure 2: The proposed three-stage training pipeline. (a) Stage one: initial training of the SNN using hypercolumn features

from Wk and C. (b) Stage two: iterative refinement of the SNN on realistic images Rk. (c) Stage three: all SNNs are

assembled into one DCNN for end-to-end training and testing.

Field (CRF) [2,3,4], deconvolution [5] and Boundary Neu-

ral Fields (BNF) [6] are further combined with the FCN.

However, since pixel-wise annotations are costly and time-

consuming to obtain, the scalability of these methods is lim-

ited.

3. Web image sets

Billions of images have been published online with rich

context information. By cleverly querying, analyzing, and

extracting images from this giant collection, we propose

a novel pipeline that learns semantic segmentation models

with only image tag supervision. In this section, we de-

scribe how we query the web image collection and what

types of web images we retrieve to supervise semantic seg-

mentation.

For a class k, three sets of web images are collected that

cover the visual appearance of the objects of the class and

the backgrounds. A white background set (denoted as Wk)

is built by querying the text-based image search engine,

e.g., Google or Microsoft Bing, with the query “<class>

on white background”. Images retrieved with this query

mostly have salient objects in front of a clean background

and are thus easy to segment. We segment these images

with a dense conditional random field (CRF) [34], using

saliency maps from [35] as the unary term. Sample im-

ages from the Wk set and the corresponding segmentation

masks are shown in Figure 3. Since images from Wk are

relatively easy to segment, the quality of the segmentation

masks, which are generated by saliency and CRF algorithms

without using human annotations, is thus acceptable. Ex-

periments in Sec. 5 show that using these masks, our seg-

mentation networks achieve reliable segmentation perfor-

mance.

Figure 3: Sample images from Wcar and the correspond-

ing segmentation masks generated from saliency combined

with a dense CRF.

Images in the Wk set encode the foreground information

of class k while the backgrounds are missing. We thus col-

lect another set of images C that is unlikely to contain the

classes of interest but contains common background scenes,
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like sky, sea, grass, etc. C can be built by retrieving images

from image sharing websites, e.g., Flickr or Imgur1, with

common background keywords. Another approach is to use

existing online datasets that mostly contain common back-

ground scenes, such as the Holiday dataset [36].

The third set Rk contains images of class k depicting

realistic scenes. Rk can be constructed by crawling image

sharing websites with the given class name or using existing

datasets that already cover the class. Example images for

these three sets are shown in Figure 1. Note that each class

has a separate Wk and Rk set while sharing the same C set

since the C set contains the common backgrounds for most

classes.

4. Training the network

Based on the three sets of web images, we propose a

novel three-stage training pipeline to learn the semantic seg-

mentation models, as shown in Figure 2. For each class k, a

Shallow Neural Network (SNN) is initially trained to output

class-specific segmentation masks, using the hypercolumn

features from Wk (images with clean foreground) and C

(images with common background information). The SNN

then gets iteratively refined on the realistic images in Rk. In

the last stage, a DCNN is trained using the multi-label seg-

mentation masks generated by the SNNs of all the classes.

4.1. Stage 1: Initial training

We denote Ω = {1, 2, ..., N} as the set of class names

where N is the number of classes. For each class k ∈ Ω, a

SNN, whose parameters is denoted as Θk, is trained using

the images in Wk and C. Since objects in Wk are sur-

rounded by white background, the foreground pixels from

Wk, denoted as Wf

k
, thus represent the visual appearance

of class k. Correspondingly, the pixels in C represent the

visual appearance of the common backgrounds. We use

hypercolumn features [23] extracted from the pre-trained

VGG16 network [25] to encode the visual appearance. For

each pixel xk
i from W

f

k
or C, we compute its hypercolumn

feature:

hk
i = H(xk

i ) (1)

Here H represents the operation to compute hypercolumn

features. We then use the hypercolumn features from C

and W
f

k
to train the SNN, as shown in Figure 2(a).

Θk is trained to minimize the binary crossentropy loss:

min
θk

X

i

−
⇣

tki log
(

f(hk
i , θk)

)

+(1−tki )log
(

1−f(hk
i , θk)

)

⌘

(2)

Here f(hk
i , θk) represents the SNN output. The SNN takes

in the hypercolumn feature hk
i and outputs the probability

1www.flickr.com and www.imgur.com

of xk
i belongs to class k.

tki =

(

0, if xk
i is from C

1, if xk
i is from W

f

k

(3)

An equal number of hypercolumn features are randomly ex-

tracted from C and W
f

k
, forming a balanced set for train-

ing the SNN. After initial training, the SNN of class k can

predict the probability of a pixel belonging to class k, effec-

tively outputting a class-specific mask for an image.

The combination of hypercolumn features and the SNN

is effectively similar to the functionality of the Fully Con-

volutional Network (FCN) [1]. We separate these two steps

to easily balance the class distribution and to parallelize the

training for different classes. Moreover, since the network

to extract hypercolumn features is pre-trained and shared,

we only need to store Θk for a new class. Θk is relatively

small for a shallow network (around 3.6 MB per class in

our experiment), enabling efficient storage and retrieval for

a large number of classes.

4.2. Stage 2: Refinement

Θk is initially trained to separate the objects of class

k from the common backgrounds. However, the realistic

background of class k may be different from the common

backgrounds. We thus further iteratively refine Θk on real-

istic images, as shown in Figure 2(b). We make use of mul-

tiple CRF iterations to improve our SNNs. CRF has been

shown to be helpful for semantic segmentation as it recov-

ers missing parts and refines the boundaries in the segmen-

tation masks [2,18,20]. Unlike most methods that apply one

time CRF as post-processing, we apply CRF in each refine-

ment iteration and learn to update the SNNs according to

the CRF-refined masks. Consequently, the SNNs are forced

to gradually learn to generate more complete segmentation

masks with better boundaries.

Assume xk
i represents the ith pixel in the collection of

pixels from the realistic image set Rk. hk
i and yki are its

corresponding hypercolumn feature and label (0 for back-

ground and 1 for foreground). We refine Θk by minimizing

the loss:

min
θk

X

i

−
⇣

yki log
(

f(hk
i , θk)

)

+(1−yki )log
(

1−f(hk
i , θk)

)

⌘

(4)

Given the parameters Θk of the SNN, the labels {yki } are

predicted by minimizing the dense CRF energy function:

min
{yk

i
}

X

i

φk
i (y

k
i ) +

X

i,j

φk
i,j(y

k
i , y

k
j ) (5)

where the SNN’s output is adopted for the unary term:

φk
i (y

k
i ) = −log

⇣

yki f(h
k
i ,Θk)+(1−yki )

(

1−f(hk
i ,Θk)

)

⌘

(6)
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The pairwise term is set to be the standard color and spa-

tial distance as in [34]. An Expectation-Maximization (EM)

algorithm is adopted to iteratively optimize Equation 4 and

Equation 5. In each iteration, we first update the labels of

all pixels {yki } by minimizing Equation 5 using the method

in [34]. Then the parameters Θk get updated by minimizing

Equation 4 using back propagation. The new parameters

Θk are used in Equation 5 to obtain the new {yki } as the

beginning of a new iteration. Figure 4 shows the evolving

of the labels {yki } through iterations. One can clearly see

that the segmentation masks predicted by the SNNs pro-

gressively improve over iterations, recovering missing parts

and producing better boundaries. We found that 2 refine-

ment iterations already significantly boost the performance

while still being efficient in training time. More iterations

result in minor performance gain but longer training time.

Figure 4: Improved segmentation masks by evolving the

labels {yki } through iterations.

4.3. Stage 3: Assembling of classes

The SNNs are trained independently for each class. To

perform semantic segmentation for multiple classes, in this

stage we assemble all SNNs into one deep convolution neu-

ral network (DCNN), as shown in Figure 2(c).

We use the DCNN architecture proposed in [2] due to

its outstanding performance and good documentation. The

DCNN is a fully convolutional neural network that takes in

an image and directly predicts a multi-label segmentation

mask. We train the DCNN on all realistic images in {Rk}.

Since no pixel-wise human annotations are provided for

training, we use the SNNs to automatically generate multi-

label segmentation masks as supervision. Specifically, if

one image in {Rk} is labeled with tags C j Ω, the pre-

dicted label yi for the ith pixel is:

yi = argmax
k∈{0}∪C

f(hk
i ,Θk) (7)

f(h0

i ,Θ0) = 1−max
k∈C

f(hk
i ,Θk) (8)

Effectively, the combined multi-label segmentation mask is

produced by taking the pixel-wise maximum of the proba-

bility maps across all labels, including background (repre-

sented as label 0). The background probability is set as one

minus the maximum foreground probability.

After generating the multi-label segmentation masks us-

ing the SNNs, we treat them as the groundtruth segmenta-

tion masks and perform end-to-end training of the DCNN.

These multi-label segmentation masks are not human anno-

tations but automatically generated masks from our SNNs,

which only require image tags during training. Therefore,

the fully supervised DCNN training in [2] is transformed to

weakly supervised in our framework.

5. Experiments

5.1. Setup

Datasets We validate our algorithm on the standard PAS-

CAL VOC 2012 segmentation benchmark [7]. Following

[13, 14, 16, 18, 19, 20, 21, 22], we augment it with the extra

annotations from [37], resulting in an augmented training

(trainaug) set of 10,582 images, a validation set of 1,449

images, and a test set of 1,456 images, covering 20 classes.

We report the standard Intersection over Union (IoU) value

on both validation and test set.

For the three-stage training, we build {Wk} by querying

Google with the 20 classes (using the strategy explained in

Section 3) and obtain on average 340 images per class (6807

images in total). The Holiday dataset [36], which contains

1491 holiday images, serves as the C set since these images

cover some common background scenes, e.g., sky, moun-

tains, grass. We use the trainaug set of PASCAL VOC 2012

as {Rk} since they are all realistic images of the 20 classes.

The pixel-wise annotations of the trainaug set are not used.

During the first two stages of training, all images are resized

such that the larger dimension equals 340. In stage three,

images are used in their original size according to [2].

Training and Testing The hypercolumn features during

training are extracted from the conv1 2 (64 channels),

conv2 2 (128 channels), conv3 3 (256 channels), conv4 3

(512 channels) and conv5 3 (512 channels) layers of the

pre-trained VGG16 model, resulting in a 1472 dimensional

vector. In the first training stage, each image of Wk con-

tributes 1000 randomly selected hypercolumn features. An

equal number of hypercolumn features are randomly se-

lected from C, forming a balanced set for initial training.

In the refinement stage, 1000 hypercolumn features are ran-

domly selected from both the foreground and the back-

ground regions of each image in Rk.

The SNN is set as a fully connected network with 4 lay-

ers (1472 → 512 → 256 → 64 → 1).We set Relu activation

in between hidden layers and Sigmoid activation after the

last layer. The network is trained with the Adam optimizer

(lr = 0.0002) for 50 epochs in the initial training stage and
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20 epochs in each refinement iteration. The CRF parame-

ters are set through cross-validation on 100 separate valida-

tion images [2]. The segmentation performance is robust to

the CRF parameters. All the experiments are conducted on

a NVIDIA TITAN X GPU with 12GB momory. Training

each SNN takes approximately 10 Min for initial training

and 20 Min per refinement iteration. This part is imple-

mented in the Theano framework [38]. The third training

stage is performed using Deeplab code [2], which is based

on the Caffe framework [39]. The parameters of Deeplab

training are set according to [2].

5.2. Performance of each stage

Since we use Web images to supervise semantic

Segmentation, we call our method WebS. Table 1 illustrates

the performance of our method at different training stages

on the validation set of the PASCAL VOC 2012 dataset.

Table 1: Performance on the PASCAL VOC 2012

validation set of our method at different stages.

Method mIoU

WebS-i 46.4

WebS-i1 51.6

WebS-i2 53.4

To properly evaluate the semantic segmentation perfor-

mance for all classes, the third stage of assembling all SNNs

into a DCNN is always applied. WebS-i represents the

model that directly combines stage one with stage three,

bypassing the refinement stage. WebS-i1 and WebS-i2 are

the models trained through all three stages, with one refine-

ment iteration and two refinement iterations, respectively.

The WebS-i model’s mIoU of 46.4% is already compara-

ble with several state-of-the-art weakly supervised seman-

tic segmentation methods [11, 13, 14, 16, 19], see Table 4.

This demonstrates the effectiveness of our collected web

images ({Wk} and C) for semantic segmentation. The

performance progressively improves after each refinement

iteration. The first iteration increases the performance by

5.2% to 51.6%, already producing the best performance

for weakly supervised semantic segmentation. The WebS-

i2 model further improves the performance by 1.8% for a

mIoU value of 53.4%. This fact clearly demonstrates the

benefits of adopting CRF in our refinement stage.

Qualitative results of the three models are shown in Fig-

ure 5 and supplementary material. We can observe that

the WebS-i model produces rough locations of the objects

while missing some parts. Each refinement iteration reveals

more details of the objects. The WebS-i2 model produces

accurate segmentation masks with fine-grained boundaries,

even for some non-trivial objects like the partially occluded

dog in the 3rd row and the person riding on the horse in the

5th row. This is attributed to the fact that during each iter-

ation, the CRF recovers missing parts of the objects based

on the low-level statistics, like color, and produces better

boundaries. Consequently, the SNNs learned from the CRF-

refined masks also produce more accurate predictions. In

the last image, our method fails to segment the train from

the rail since these two objects often occur together. This is

a typical failure case for most weakly-supervised methods,

as also discussed in [18].

5.3. Number of images in Wk and Rk

We further evaluate the impact of the number of images

in {Wk} and {Rk} on the segmentation performance. In

Table 2, we present the performance of the WebS-i2 model

with different number of training images. With only 2,000

images for the {Wk} and 2,000 images for the {Rk} (100

images per class), our method achieves a mIoU of 45.9%,

already better than [11, 13, 16, 19], which are supervised

with the whole trainaug set of the PASCAL VOC (10,582

images). It is even 9.3% better than [14], refer to Table 4,

which uses an additional 700K images from ILSVRC [26].

Clearly by adding more images for supervision, the perfor-

mance of our method improves. We project that our per-

formance can be further improved by collecting more web

images. Using only 6,807 Google images2, 1,491 Holiday

images and the 10,582 PASCAL VOC images, our method

outperforms all state-of-the-art methods by a notable mar-

gin. Compared to [17] which also uses web images to su-

pervise semantic segmentation, our method requires sub-

stantially less images ( [17] uses 41K Flickr images as well

as the trainaug set of PASCAL VOC), but still produces bet-

ter results on both the validation set (+3.6% mIoU) and the

test set (+4.1% mIoU).

Table 2: Performance on the PASCAL VOC 2012

validation set of the WebS-i2 model using different

numbers of training images.

#images in {Wk} #images in {Rk} mIoU

2,000 2,000 45.9

2,000 10,582 48.9

4,000 10,582 51.5

6,807 2,000 50.6

6,807 6,000 51.0

6,807 10,582 53.4

5.4. Comparison with weakly supervised methods

In this subsection, we compare our method with other

CNN based weakly supervised semantic segmentation al-

gorithms. Table 4 and Table 5 show the performance

on the PASCAL VOC 2012 validation and test set, re-

spectively. Here we only compare with methods that re-

quire no additional human annotations except image tags

2due to Google search limit and copyright protection.
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Figure 5: Qualitative results on the PASCAL VOC 2012 validation set of our method before and after refinement iterations.

Better viewed on screen.

[11,13,14,16,17,18,19,20]. For completeness, the compari-

son with methods that require additional human annotations

can be found in the supplementary material. Our method

produces excellent results on both the validation and test

set of the PASCAL VOC, outperforming all state-of-the-art

weakly-supervised semantic segmentation methods. On the

validation set, we improve over the previous state-of-the-art

SEC [18] method by 2.7% and achieve best scores on 12

out of 21 classes (including background) among all meth-

ods. Similar results are observed on the test set, where the

evaluation is performed by the PASCAL VOC evaluation

server. Our method achieves 3.6% higher mIoU than the

state-of-the-art approaches, producing best scores on 14 out

of 21 classes.

5.5. Object Segmentation using SNNs

We also investigated the performance of our class-

specific SNNs in an object segmentation task, where the

Table 3: Comparison between our SNNs and other object

segmentation methods on the OD dataset.

Method Car Horse Airplane mIoU

Joulin et al. [40] 37.2 30.2 15.4 27.6

Joulin et al. [41] 35.2 29.5 11.7 25.5

Rubinstein et al. [31] 64.4 51.7 55.8 57.3

Chen et al. [33] 64.9 33.4 40.3 46.2

SNN-i 67.7 52.4 53.8 58.0

SNN-i1 74.5 59.6 55.4 63.2

SNN-i2 76.1 61.7 56.5 64.8
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Table 4: Performance on the PASCAL VOC 2012 validation set of semantic segmentation methods using only image tag

supervision. * represents applying the dense CRF [34] as post-processing.

Method bg aero bic bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

MIL-FCN [13] - - - - - - - - - - - - - - - - - - - - - 24.9

EM-Adapt [11] - - - - - - - - - - - - - - - - - - - - - 38.2

MIL-sppxl* [14] 77.2 37.3 18.4 25.4 28.2 31.9 41.6 48.1 50.7 12.7 45.7 14.6 50.9 44.1 39.2 37.9 28.3 44.0 19.6 37.6 35.0 36.6

CCCN* [16] 68.5 25.5 18.0 25.4 20.2 36.3 46.8 47.1 48.0 15.8 37.9 21.0 44.5 34.5 46.2 40.7 30.4 36.3 22.2 38.8 36.9 35.3

DCSM* [19] 76.7 45.1 24.6 40.8 23.0 34.8 61.0 51.9 52.4 15.5 45.9 32.7 54.9 48.6 57.4 51.8 38.2 55.4 32.2 42.6 39.6 44.1

BFBP* [20] 79.2 60.1 20.4 50.7 41.2 46.3 62.6 49.2 62.3 13.3 49.7 38.1 58.4 49.0 57.0 48.2 27.8 55.1 29.6 54.6 26.6 46.6

STC* [17] 84.5 68.0 19.5 60.5 42.5 44.8 68.4 64.0 64.8 14.5 52.0 22.8 58.0 55.3 57.8 60.5 40.6 56.7 23.0 57.1 31.2 49.8

SEC* [18] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1 45.4 45.3 50.7

ours:

WebS-i2* 84.3 65.3 27.4 65.4 53.9 46.3 70.1 69.8 79.4 13.8 61.1 17.4 73.8 58.1 57.8 56.2 35.7 66.5 22.0 50.1 46.2 53.4

Table 5: Performance on the PASCAL VOC 2012 test set of semantic segmentation methods using only image tag supervi-

sion. * represents applying the dense CRF [34] as post-processing.

Method bg aero bic bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

MIL-FCN [13] - - - - - - - - - - - - - - - - - - - - - 25.7

EM-Adapt [11] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6

MIL-sppxl* [14] 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8

CCCN* [16] - 24.2 19.9 26.3 18.6 38.1 51.7 42.9 48.2 15.6 37.2 18.3 43.0 38.2 52.2 40.0 33.8 36.0 21.6 33.4 38.3 35.6

DCSM* [19] 78.1 43.8 26.3 49.8 19.5 40.3 61.6 53.9 52.7 13.7 47.3 34.8 50.3 48.9 69.0 49.7 38.4 57.1 34.0 38.0 40.0 45.1

BFBP* [20] 80.3 57.5 24.1 66.9 31.7 43.0 67.5 48.6 56.7 12.6 50.9 42.6 59.4 52.9 65.0 44.8 41.3 51.1 33.7 44.4 33.2 48.0

STC* [17] 85.2 62.7 21.1 58.0 31.4 55.0 68.8 63.9 63.7 14.2 57.6 28.3 63.0 59.8 67.6 61.7 42.9 61.0 23.2 52.4 33.1 51.2

SEC* [18] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7

ours:

WebS-i2* 85.8 66.1 30.0 64.1 47.9 58.6 70.7 68.5 75.2 11.3 62.6 19.0 75.6 67.2 72.8 61.4 44.7 71.5 23.1 42.3 43.6 55.3

user provides the labels of the classes they want to seg-

ment in an image. Note that this task is different from typ-

ical semantic segmentation where the labels of the images

are not given during testing. We evaluate the performance

on the Object Discovery (OD) dataset [31], a dataset con-

taining three classes (airplane, car, horse) with 100 images

per class. The SNNs are applied to generate segmentation

masks using the strategy explained in Section 4.3. The la-

bels of the images are used to retrieve the correct SNN while

generating the masks, as shown in Figure 2(c).

We compare the mIoU values with state-of-the-art object

segmentation methods [31, 33, 40, 41] in Table 3. SNN-i,

Inputs [40] [41] [31] [33] SNN-i2 Groundtruth

Figure 6: Sample results of our method and other state-of-

the-art approaches on the OD dataset.

SNN-i1 and SSN-i2 are our SNNs after the initial training,

the first refinement iteration, and the second refinement iter-

ation, respectively. Our SNN-i2 method improves over the

previous state-of-the-art method by a large margin (7.5%).

Even the SNN-i model already achieves state-of-the-art per-

formance, again demonstrating the effectiveness of our web

image sets for supervising segmentation models.

We show sample results of our method compared with

previous approaches in Figure 6 and the supplementary ma-

terial. While previous approaches either miss parts of the

objects or segment some background regions as the objects,

our SNNs successfully segment out the whole objects with

accurate boundaries.

6. Conclusion

We propose a novel three-stage training pipeline to
progressively learn the semantic segmentation model
from three sets of web images. We demonstrate that
our method outperforms the previous state-of-the-art
weakly supervised semantic segmentation algorithms on
the PASCAL VOC 2012 benchemark. The class-specific
shallow neural networks (SNNs) learned in the first two
training stages also produce excellent results when used in
object segmentation. Note that when learning the SNNs,
no pixel-wise human annotations are used. Adopting these
SNNs, many fully supervised computer vision methods,
such as semantic segmentation [1, 2, 3, 6] and object
detection [42], can be easily transformed into a weakly
supervised framework, which is in line with our future plan.
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