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Abstract

Building robust classifiers trained on data susceptible to

group or subject-specific variations is a challenging pattern

recognition problem. We develop hierarchical Bayesian

neural networks to capture subject-specific variations and

share statistical strength across subjects. Leveraging re-

cent work on learning Bayesian neural networks, we build

fast, scalable algorithms for inferring the posterior distri-

bution over all network weights in the hierarchy. We also

develop methods for adapting our model to new subjects

when a small number of subject-specific personalization

data is available. Finally, we investigate active learning al-

gorithms for interactively labeling personalization data in

resource-constrained scenarios. Focusing on the problem of

gesture recognition where inter-subject variations are com-

monplace, we demonstrate the effectiveness of our proposed

techniques. We test our framework on three widely used ges-

ture recognition datasets, achieving personalization perfor-

mance competitive with the state-of-the-art.

1. Introduction

The problem of automatically recognizing human ges-

tures has been an active area of computer vision and pattern

recognition research. Gesture recognition enables natural

and intuitive modes of interaction between human and com-

puter, and therefore has numerous applications in a wide

range of fields such as robotics, surveillance, and gaming.

A generic gesture classifier, trained on examples of ges-

tures pooled together from all subjects in the training set,

is expected to be robust to variations with which gestures

are performed by end-users. However, when the signal ob-

tained from gestures performed by different users exhibit

high variance, such systems have difficulty generalizing.

Consider, for example, a vocabulary of gestures used by

members of a household to control a smart-home device.

Although each individual may perform the gestures consis-

tently, it is likely that the gestures are performed with user-

specific idiosyncrasies which may lead to large inter-subject

Figure 1. Graphical model representation of our hierarchical

Bayesian model. Shaded nodes indicate observed random vari-

ables. We parameterize group-specific conditional distributions

p(yn | zn = g, f(xn,Wg)), where Wg is the set of group-specific

weights parameterizing a Bayesian neural network f . The class

label, yn, also depends on zn, which indicates the group mem-

bership of data instance n. It is shaded blue to indicate that it is

observed during training, but may be unobserved at test time.

variations in gesture performance. Designing systems ro-

bust to such variations is a challenging problem.

Personalizing gesture recognition systems using subject-

specific training data provides a promising approach to alle-

viating such difficulties. In this paper, focusing on personal-

ization, we build hierarchical Bayesian classifiers (Figure 1)

that adapt to new subjects using subject-specific conditional

distributions (Figure 2). Different from existing hierarchical

Bayesian models, we parameterize the conditional distribu-

tions via multi-layered Bayesian neural networks. They al-

low us to learn potentially complex functional relationships

between a subject’s gestures and class labels from a modest

number of training examples. Furthermore, by explicitly

modeling uncertainty in weights, Bayesian neural networks

are able to provide well calibrated estimates of posterior un-

certainty along with predicted class labels. Leveraging re-

cent progress on scalable stochastic variational inference,

we develop algorithms for learning the posterior distribu-

tion over all network weights in the hierarchy. We further
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a) Hierarchical Bayesian Neural Network b) Personalization 

Figure 2. (a) Given gesture examples produced by g subjects, we train a classifier using a hierarchical framework, where Wg is the set

of group-specific weights parameterizing a Bayesian neural network. The different shapes correspond to different gesture classes and the

different colors represent the subjects who produced those examples. (b) Given few instances of training data from a new subject, we

personalize our model to learn weights specific to the new subject.

use the inferred posterior to drive active learning algorithms

that guide interactive labeling of personalization gestures

given a small pool of unlabeled subject-specific gestures.

We systematically test various aspects of the proposed mod-

els and algorithms on three challenging gesture recogni-

tion datasets — the MSRC-12 Kinect Gesture Dataset [10],

the 2013 ChaLearn Gesture Challenge Dataset [8] and the

NATOPS gesture dataset [29]. We find that even with rel-

atively shallow two hidden layer networks, our approach is

competitive with the state-of-the-art gesture personalization

systems. We also empirically demonstrate that even with

naive fully factorized variational inference, Bayesian neu-

ral networks provide uncertainty estimates that are useful

for guiding active learning procedures.

In summary, we make three contributions in this paper.

First, we develop hierarchical Bayesian neural networks for

personalized gesture recognition in the presence of inter-

subject variations. Second, we adapt reduced variance ver-

sions of stochastic variational inference for learning the pos-

terior distribution over model parameters. Third, we utilize

the inferred posterior to drive an active learning procedure

that consistently improves over naive personalization. Our

results demonstrate the effectiveness of the proposed mod-

els and algorithms for gesture recognition.

2. Related Work

Gesture recognition systems using various machine

learning methods including nearest-neighbors based on dy-

namic time warped (DTW) distances [1], hidden Markov

models (HMM) [30], hidden conditional random fields

(HCRF) [28], random forests [16] and deep neural networks

[23], have been proposed. Although related, our main focus

is on the task of personalized classification of gestures.

Personalization approaches have been developed for

speech [27], handwriting [7, 17], facial action unit recog-

nition [6] and gestures [15]. Work on domain adaptation

that either adapts model parameters [33] or feature repre-

sentations [26] is closely related to these approaches. Our

work draws on previous efforts in hierarchical Bayesian do-

main adaptation [9]. We extend this line of work by parame-

terizing group/domain-specific conditional distributions via

more flexible Bayesian neural networks in place of simpler

log-linear models.

A particular challenge faced by personalization systems

is the small amounts of subject-specific data available for

personalization. Yao et al. [34] tackled this by recasting the

problem into one of selecting the best performing model

from a portfolio of pre-trained models. Since no new learn-

ing occurs, the approach is very data efficient. However,

they find it to be outperformed by baselines where the mod-

els are partially or fully re-trained given new personaliza-

tion instances. We deal with data paucity by resorting to

Bayesian neural networks. Pioneering work on Bayesian

neural networks can be traced back to [5, 21, 22]. Re-

cent progress in deep learning along with advances in scal-

able inference has reinvigorated interest in them. Hierar-

chical Bayesian neural networks have previously been pro-

posed [13, 20]. However, they rely on expensive Markov

chain Monte-Carlo inference and fail to scale to even mod-

erate sized architectures. In contrast, we exploit stochas-

tic variational methods [3, 32] that scale to both large ar-

chitectures and large datasets. Previous work has devel-

oped such algorithms for Bayesian neural network [3] and

Bayesian logistic regression [32] models. We introduce a

stochastic variational formulation for hierarchical Bayesian

neural networks. Further, we exploit the inferred posterior

over weights to guide active learning [14] methods that sig-

nificantly improve performance of the system in scenarios

where labeling data is expensive.
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Figure 3. Examples of gestures from MSRC-12 dataset (left), ChaLearn 2013 dataset (middle) and the NATOPS dataset (right)

3. Hierarchical Bayesian Neural Networks

Given a dataset D = {xn, yn}
N
n=1, containing N ges-

ture xn ∈ R
D, and label yn ∈ Y pairs, we aim to learn

the functional mapping from gestures to class labels and to

make class predictions for previously unseen gestures x∗.

Further, we focus on the case where D is generated by G

distinct subjects.

To preserve subject-specific effects we endow each sub-

ject with its own conditional distribution, allowing the

gesture-label mapping to vary among subjects. The con-

ditional distributions are parameterized via multi-layered

feedforward neural networks, which enables the model to

capture potentially complex mappings between gestures

and labels. Assuming the distribution factorizes over data

instances, we have,

p(y | W, z,x) =
N∏
n=1

G∏
g=1

p(yn | f(Wg, xn))
1[zn=g]. (1)

Here, zn is a G-dimensional categorical random variable in-

dicating the subject membership of data instance n. We as-

sume that the subject indicators z = {zn}
N
n=1 are observed

during training. During testing we are able to reason about

the class label y∗ of a held-out feature x∗ even when the

corresponding subject membership z∗ is unobserved. We

wish to learn W = {W1, . . . ,WG}, where Wg is the set of

subject-specific weights parameterizing a neural network f
whose hidden layers employ rectified linear activations and

whose output layer is constrained to be linear. We note here

that the function f can be any differentiable function.

We place factorized Gaussian priors on Wg with inde-

pendent subject-specific variances to model our prior as-

sumption that each subject’s functional mapping is an in-

dependently corrupted version of a common latent mapping

(parameterized by W0),

p(Wg | W0, τg) =

L∏
l=1

Vl−1∏
i=1

Vl∏
j=1

N (wgij,l | w
0
ij,l, τ

−1
g ). (2)

We further place uninformative priors — zero mean Gaus-

sians with a large fixed variance τ−1
0 on the weight means

W0,

p(W0 | τ0) =
L∏
l=1

Vl−1∏
i=1

Vl∏
j=1

N (w0
ij,l | 0, τ

−1
0 ). (3)

Here, Vl denotes the number of units in layer l and l = 0
corresponds to the input layer.

The subject specific variances τ−1
g control the amount of

deviation from the mean exhibited by the subject’s gesture-

label mapping. Specifying them manually can be diffi-

cult and authors in the past [34] have resorted to setting

them via cross-validation. Although cross-validation pro-

cedures can be effective for simpler models, they are unten-

able here. Such a procedure would involve searching over

G-dimensional continuous spaces, re-training the model for

each parameter candidate. Instead, we place hyper-priors on

the variances and infer them jointly with W. The Gamma

distribution is the conjugate prior over the precision of a

Gaussian distribution and hence a popular choice [2]. How-

ever, recent work [11] has shown it to be unsuitable for

specifying uninformative priors in hierarchical models. Fol-

lowing [11], we instead use the half-normal distribution

with a large fixed variance v to specify uninformative priors

over subject-specific standard deviations τ
−1/2
g ,

p(γg | v) = N (γg | 0, v); τ−1/2
g = |γg|, (4)

where we have introduced an auxiliary variable γg and

used the property, if a ∼ N (0, σ2), then |a| ∼
Half-Normal(0, σ2). It also immediately follows that

τ−1
g = γ2g . In the next section, we will see that the aux-

iliary variable formulation simplifies inference. Finally, we

model the observed class labels as categorically distributed

random variables,

yn | W, xn, zn ∼ Cat(yn | S(f(Wzn , xn))), (5)
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where S(a) = exp{a}/
∑
k exp{ak} is the softmax func-

tion that maps the real valued output of f to the probability

simplex. We can summarize the joint distribution specified

by the model as,

p(W0,W, T ,y | x, z, τ0, v) = p(W0 | τ−1
0 )

G∏
g=1

p(γg | v)p(Wg | W0, τ
−1
g )

N∏
n=1

G∏
g=1

p(yn | f(Wg, xn))
1[zn=g],

(6)

where T = {γ1, . . . , γG}. The hierarchical Bayesian neu-

ral network explicitly captures inter-subject variances by al-

lowing the subject-specific conditional distribution of data

from different subjects to systematically vary from each

other. At the same time, they share statistical strength across

subjects — samples observed for a particular subject not

only provide information about that subject’s distribution

but also about other subject-specific distributions.

4. Scalable Learning and Inference

Learning our model involves inferring the posterior dis-

tribution p(W0,W, T | D, z, γ0, v) over model param-

eters. Unfortunately, the nonlinear activations employed

by the networks in the hierarchy render this posterior in-

tractable forcing us to resort to approximate inference tech-

niques. Leveraging recent advances in scalable approximate

Bayesian learning, we use variational inference to learn a

tractable approximation to the posterior. We restrict the ap-

proximating family to the following form,

q(W0,W,T | φ) = q(W0|φ0)
G∏
g=1

q(Wg|φg)q(γg|φγg ),

(7)

where φ = {φ0, φ1, . . . , φG, φγ1 , . . . , φγG} represents the

variational free parameters. We approximate the weight

posteriors with fully factorized Gaussian distributions,

q(W0|φ0) =
L∏
l=1

Vl−1∏
i=1

Vl∏
j=1

N (w0
ij,l | µ

0
ij,l, ψ

0
ij,l),

q(Wg|φg) =
L∏
l=1

Vl−1∏
i=1

Vl∏
j=1

N (wgij,l | µ
g
ij,l, ψ

g
ij,l).

(8)

The auxiliary variable γg affects the model only through its

absolute value |γg|. Thus, we can also restrict the posterior

of γg to q(γg|φγg ) = N (γg | µγg , ψγg ), a Gaussian family.

We optimize the variational parameters to minimize

the Kullback-Leibler divergence KL(q||p) between the true

posterior and the variational approximation by maximizing

the expected lower bound (ELBO),

L(φ) = Eqφ [ln p(W0,W, T ,y | x, z, γ0, v)]

− Eqφ [ln q(W0,W, T | φ)],
(9)

with respect to the variational free parameters φ.

The non-conjugacy between the neural network param-

eterized categorical distributions and the Gaussian priors

cause the expectations in the ELBO to be intractable. This

precludes the availability of traditional fixed point updates.

Instead, following recent work [32, 3, 19, 24], we approx-

imate the intractable expectations with unbiased Monte-

Carlo estimates,

L̂(φ) =
1

S

S∑
s=1

ln p(Ws
0 ,W

s, T s,y | x, z, γ0, v)

− Eqφ [ln q(W0,W, T | φ)],

Ws
0 ,W

s, T s ∼ q(W0,W, T | φ).

(10)

The gradient ∇φL(φ) is then approximated with the noisy

but unbiased estimate ∇φL̂(φ). Computing ∇φL̂(φ) re-

quires gradients with respect to the means and variances of

the Gaussian variational approximations. The non-centered

parameterization proposed in [19], w ∼ N (µ, ψ) ⇔ ǫ ∼
N (0, 1), w = µ+ ψ1/2ǫ, allows us to differentiate through

the Monte-Carlo approximation,

∇µ,σEqw [g(w)] ⇔∇µ,ψEN (ǫ|0,1)[g(µ+ ψ1/2ǫ)]

=EN (ǫ|0,1)[∇µ,ψg(µ+ ψ1/2ǫ)]

=
1

S

∑
s

∇µ,ψg(µ+ ψ1/2ǫs); ǫs ∼ N (0, 1),

(11)

for any differentiable function g. With the unbiased gradi-

ent estimates in hand, Equation 9 can be optimized through

stochastic gradient ascent [4].

4.1. Local Reparameterization

Although stochastic gradient ascent is guaranteed to

asymptotically converge to a local optimum, its non asymp-

totic performance is contingent on the variance of the un-

biased gradient estimates. While the gradient estimate in

Equation 11 has been previously used to learn Bayesian

neural networks [3], we find the variance of this estimator

too high to effectively learn our hierarchical model.

To address this issue, we note that the weights in a

layer only influence the ELBO (L(φ)) through the layer’s

pre-activations. Instead of estimating the ELBO by sam-

pling the variational posterior on the weights one could in-

stead sample the implied variational distribution on the con-

siderably smaller number of pre-activations. This is the

“local reparameterization trick” introduced in [18], where

the authors show that the corresponding gradient estimates

have provably lower variance. For factorized Gaussian

variational posteriors over weights, the corresponding pre-

activation distributions are also easy-to-compute factorized
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Gaussians. The pre-activation bil, of the ith node of layer l

is distributed as N (µTwil
a, σ2T

wil
a2), where a is the input to

layer l, µwil
and σ2

wil
are the means and variances of the

variational posterior over weights associated with node i.

We find that local reparameterization provides signif-

icant computational cost savings, accuracy improvements

and is crucial for effectively learning hierarchical Bayesian

neural networks.

4.2. Predictions

Given a held-out gesture x∗ from an observed subject z∗,

the posterior predictive distribution over classes is given by,

p(y∗ | x∗,D)

=

∫
p(y∗|W, z∗, x∗)p(W0,W, T | D)dW0dWdT

≈

∫
p(y∗ | W, z∗, x∗)q(Wz∗ | φ̂z∗)dWz∗ ,

(12)

where the approximation in the second line follows from

the variational approximation and φ̂z∗ denotes the optimal

variational parameters. In our experiments, we evaluate the

integral using a Monte-Carlo estimate.

Next, we consider the case when subject (z∗) and class

(y∗) memberships are both unobserved and need to be in-

ferred. Classifying x∗ involves performing an additional

inference of its subject membership. Since this inference

needs to be performed at test time for each data instance, it

is imperative that the inference be fast. To facilitate fast and

accurate inference of the subject memberships, we use an

inference network [25, 12] hθ, another multi-layered fully

connected neural network with weights θ and a G dimen-

sional softmax output layer. We learn this inference net-

work by utilizing all examples from the training set where

z is observed. This inference network paramterizes the ap-

proximate posterior q(z | x). Because z is observed during

training, training of the subject inference network can occur

independently of other variational parameters. At test time,

inferring a distribution over the unknown subject member-

ships, q(z∗ | x∗, θ̂) = Cat(z∗ | hθ̂(x∗)), simply involves a

single forward pass through the network, where θ̂ denotes

the estimated weights. Our use of an inference network is in

sharp contrast to traditional mean field methods where each

datapoint is assigned an independent variational parameter

that is optimized via several iterations of expensive opti-

mization, at test time. In the presence of a new subject, we

add an output node to the subject inference network. How-

ever, we find that only updating the weights associated with

the new node is sufficient and the network need not be re-

trained.

Marginalizing over the joint posterior predictive distri-

bution, we get the predictive distribution over class labels:

p(y∗ | x∗,D) =

G∑
z∗=1

p(y∗, z∗ | x∗,D)

=

G∑
z∗=1

∫
p(y∗|W, z∗, x∗)p(W0,W, z∗, T | D)dW0dWdT

≈
G∑

z∗=1

q(z∗ | x∗, θ̂)

∫
p(y∗ | W, z∗, x∗)q(Wz∗ | φ̂z∗)dW.

(13)

The integral over W is estimated via a Monte-Carlo approx-

imation, p(y∗ | x∗) ≈
∑G
z∗=1 q(z∗ | x∗, θ̂)

1
T

∑
t p(y∗ |

Wt, z∗, x∗),W
t ∼ q(W | φ̂z∗ , θ̂).

5. Personalization

In this section, we focus on incorporating data from a

new, previously unseen subject and adapting the model to

the new subject. We call this process personalization and

focus on the cases when a small number of data instances

from the new subject are made available for training. De-

noting gestures from new subject G+ 1 as DG+1, we learn

a subject-specific model WG+1 | DG+1. The learning can

be performed efficiently by observing that {Wg}
G+1
g=1 are

conditionally independent given W0. Thus, given a model

trained on D, we only update WG+1 while keeping the es-

timates {Wg}
G
g=1 | D and W0 | D fixed. We could addi-

tionally update the posteriors {Wg}
G
g=1 | D ∪ DG+1 and

W0 | D ∪ DG+1. However, typically only a small number

of adaptation instances DG+1 are available — too few to

have a sizeable effect on the posteriors {Wg}
G
g=1 | D and

W0 | D.

5.1. Active Learning

Collecting and labeling personalization gestures can be

expensive. For example, consider a system designed to rec-

ognize specialized gestures such as those made by naval

aircraft handlers onboard aircraft carriers. Not only is the

process of collecting additional gestures likely to be chal-

lenging, labeling the gestures requires specialized domain

knowledge and can be prohibitively expensive. To best uti-

lize limited labeling resources, we next describe an active

learning procedure to guide the selection of gestures to la-

bel, given a small pool of unlabeled adaptation examples.

Having access to the posterior distribution over weights,

rather than just point estimates, allows us to use Bayesian

active learning by disagreement (BALD) — a state-of-the-

art active learning algorithm [14]. Given a pool of unla-

beled gestures Xpool from subject g and a model trained on

D, BALD sequentially selects gestures xl, such that,

xl = argmax
x∈Xpool

H[y | x,D]− EWg∼p(Wg|D)H[y | x,Wg],

(14)
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Figure 4. The mean logarithm of the expected lower bound (ELBO) versus the number of training epochs, for 15 random 75-25 splits of the

ChaLearn dataset, when the model uses local reparameterization (lprm) and when it doesn’t (no lrpm) for different HBNN architectures:

HBNN with one hidden layer (left), HBNN with two hidden layers (middle) and HBNN with three hidden layers (right).

where H[t] = −
∫
p(t)log p(t)dt. As noted by Houlsby

et al. [14], Eq. 14 lends itself to an intuitive explanation:

BALD seeks a data instance xl for which the model, averag-

ing over all weights, is uncertain about y (high H[y | x,D])
but individual settings of the weights have high certainty

in their predictions (low EWg∼p(Wg|D)H[y | x,Wg]) —

i.e., when the posterior weights disagree the most. Ap-

proximation methods to efficiently evaluate Eq. 14 are avail-

able for certain classes of models, but do not extend to our

multi-class classification problem. We therefore resort to

a Monte-Carlo approach. We empirically found that, even

with a modest number of samples, the approximations sig-

nificantly improve upon selecting gestures uniformly at ran-

dom.

6. Experimental Results

We used three datasets to test our framework, all of

which contain skeletal data of the subjects performing the

gestures. The MSRC-12 Kinect Gesture Dataset contains

12 different gestures performed by 30 different subjects for

a total of ∼4900 gesture instances (Figure 3 left). The ges-

tures were recorded using the Microsoft Kinect.

The 2013 Chalearn Gesture Challenge dataset contains

examples of 20 gestures collected from 36 different sub-

jects. Like Yao et al. [34], we experimented with the Train-

ing and Validation data containing ∼11000 samples. The

gestures in the dataset, recorded using the Microsoft Kinect,

represent common communication signals used in the Ital-

ian language (Figure 3 middle).

The NATOPS dataset [29] consists of 24 unique aircraft

handling signals performed by 20 different subjects, where

each gesture has been performed 20 times by all subjects

(Figure 3 right). A 12-dimensional vector of body features

(angular joint velocities for the right and left elbows and

wrists), as well as an 8 dimensional vector of hand features

(probability values for hand shapes for the left and right

hands) collected by Song et al. [29] are provided as fea-

tures for all frames of all videos in the dataset.

For controlled comparisons with previous work [34], we

used identical feature representations — raw x,y,z world co-

ordinates for 20 body joints in the MSRC-12 and Chalearn

datasets. For NATOPS, we used the 20 dimensional features

made available in [29], per frame. We extracted frames by

sampling uniformly in time and concatenated the per-frame

features to produce 600-dimensional input feature vectors

for all three datasets. This allowed us to use a common

model architecture for the three different datasets. In our ex-

periments, we trained a Hierarchical Bayesian Neural Net-

work with varying number of hidden layers, each with 400

activation nodes. We set the hyper-parameters v to 100 and

τ−1
0 to 1000 and used RMSprop [31] to optimize the ELBO.

6.1. Benefits of Local Reparameterization

To investigate the effectiveness of the locally re-

parameterized ELBO gradients, we trained an HBNN with

1, 2 and 3 hidden layers, each layer with 400 activation

nodes, for 100 epochs replicated over 15 random 75/25

splits of the ChaLearn dataset. Fig. 4 displays the ELBO

evolution over the course of training with and without local

reparameterization (lprm). We found that for all three archi-

tectures, the models using locally re-parameterized gradi-

ents made better progress, achieving higher expected lower

bounds with the gap in performance increasing with depth.

6.2. Gesture Recognition

Next, we demonstrate the flexibility afforded by param-

eterizing the group-specific conditional distributions with

Bayesian neural networks. For all datasets, we trained a

HBNN with two hidden layers with 400 units each and

benchmark against two strong baselines: a multinomial re-

gression version of our hierarchical Bayesian framework

(HBMR), and a two hidden layer non-hierarchical Bayesian

neural network that pools data from all subjects into a sin-
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Figure 5. The mean F1-scores for different versions of our Hierarchical Bayesian gesture classifier. For all three datasets (MSRC-12

dataset (left) and Chalearn 2013 dataset (middle) and NATOPS dataset (right)), we trained a Hierarchical Bayesian Multinomial Regression

classifier (HBMR) and a Hierarchical Bayesian Neural Network (HBNN) and used them to predict the class labels of the test data. For

HBNN, when group membership of the test data is known, we used the weights belonging to the corresponding group to make a prediction

(HBNN (Known Z)). When group membership of the test data is unknown, we present results obtained with Naive Bayesian Model

Averaging (HBNN-NBMA) and Weighted Bayesian Model Averaging (HBNN-WBMA). We compared our results with a baseline BNN

trained with data from all subjects pooled into one group, whose mean is depicted in the figures as a dashed black line.

gle group. We trained all models for 50 epochs on 5 ran-

dom 75/25 replications of the data. Fig. 5 presents the

corresponding results. First, focusing on the case when

subject memberships are known (HBNN-Known Z and

HBMR-Known Z), we found that the non-linear HBNN

models significantly improved upon their (conditionally)

linear counterparts HBMR models across the three datasets.

HBNNs also outperformed the non-hierarchical Bayesian

neural networks on all three datasets clearly demonstrat-

ing the benefits of employing subject-specific models over

pooled ones. Interestingly, HBMR only outperformed the

non-hierarchical Bayesian neural network on the MSRC

dataset. This suggests that compared to capturing complex

non-linear relationships between gestures and labels, mod-

eling subject-specific idiosyncrasies is less important for

the NATOPS and Chalearn datasets. Further comparisons

with existing gesture recognition systems are available in

the supplement.

Unknown Subject Memberships. We studied the effec-

tiveness of our proposed subject membership inference net-

work. When the membership of a test gesture is unknown

we compared two methods for predicting its class label —

naive Bayesian model averaging (HBNN-NBMA) where

we uniformly averaged the posterior predictive distributions

of all subjects and, weighted Bayesian model averaging

(HBNN-WBMA), where the weights were determined by

the subject membership inference network. On the MSRC-

12 and NATOPS datasets, we found that HBNN-WBMA

significantly outperformed HBNN-NBMA. On ChaLearn,

both methods performed similarly but HBNN-WBMA ex-

hibited lower variance across splits. Together, these results

demonstrate that the use of a recognition network is helpful

when subject-memberships are not known at test time.

We note that apriori knowledge of the subject-

membership of a gesture leads to better predictive perfor-

mance on all but the ChaLearn dataset. The ChaLearn

dataset is more challenging due to less rigidly defined ges-

tures. This results in more variability in gestures and weak-

ens our assumption that each subject performs a given

gesture consistently and differently from other individuals.

This may explain why knowing the subject memberships

does not translate into significant performance improve-

ments.

6.3. Personalization

Finally, we present experiments demonstrating the per-

sonalization ability of HBNN models. Given a limited num-

ber of training instances from the new subject, we learned

model parameters tuned to the subject. For all datasets,

we used a leave-one-subject-out cross validation scheme,

where we personalized models pre-trained on G − 1 sub-

jects and used a pool of seven (fifteen for NATOPS) ran-

domly selected gestures per class from the test subject for

personalization. Both pre-trained and personalized models

contained two layers, with 400 units each, and were trained

for 50 epochs. We considered two schemes for incorporat-

ing gestures from the personalization pool: RAND, where

data from the training pool of the test subject was added uni-

formly at random, and BALD where data from the training

pool was selected using uncertainty-based sampling (Eq.

14). For each test subject, we repeated the experiment five

times, randomly selecting the pool of personalization ges-

tures in each replicate.

We benchmarked these methods against a strong non-

personalized baseline — a non-hierarchical BNN (with two

400-unit hidden layers) trained with data from all subjects
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Figure 6. The mean F1-scores for different personalization schemes plotted against the number of personalization instances per gesture.

We observe that personalization using BALD outperforms personalization using RAND when the number of personalization instances is

greater than 1 for the MSRC-12 dataset (left), 3 for the ChaLearn 2013 dataset (middle) and 4 for the NATOPS dataset (right). Our results

also compare favorably with the personalization methods presented by Yao et al. [34], who reported their results for the MSRC-12 and

ChaLearn 2013 datasets. We compare the personalization results with a baseline BNN trained with all training data pooled into one group,

whose mean is depicted in the figures as a dashed black line.

except the test (personalization) subject pooled together.

The results in Fig. 6 show that with as few as two and

three gesture examples per subject, HBNN outperformed

the baseline on MSRC and NATOPS. On ChaLearn, BALD

with five gesture examples per class performed as well as

the non-personalized baseline.

It may be surprising to note that personalization base-

line on ChaLearn (Fig. 6) resulted in higher F1 scores than

the non-personalized baseline presented in Fig. 5. However,

the baseline in Fig 5 corresponds to a model trained on sam-

ples from all subjects but with the training set size limited

to 75% while the model in Fig 6 was trained on 35 out of

36 subjects corresponding to 97% of the dataset. For the

ChaLearn data intra-subject variability in gestures dwarfs

inter-subject variations. Thus, observing more of the dataset

as opposed to gestures from the same subject leads to better

performance. This is also why HBNNs need more (4) per-

sonalization examples for ChaLearn than the other datasets.

Comparing BALD with RAND, we found that BALD

improves personalization performance on all three datasets,

when the number of training instances exceeded one, three

and four for MSRC, NATOPS and ChaLearn datasets. This

is an interesting result which suggests that even our naive

mean field approximation provides predictive uncertainty

estimates of sufficient fidelity that lead to BALD’s uncer-

tainty based sampling outperforming RAND’s uniform at

random sampling. Moreover, our experiments suggest that

when labeling resources are limited, BALD based active

learning is an attractive option for building personalized

classification systems. We do note that BALD and RAND

perform similarly when very few personalization instances

are available. This may be due to the uncertainty estimates

being poor in the very few personalization instances regime.

We compared our approach to the existing state-of-the-

art in gesture personalization [34] on MSRC and ChaLearn

datasets (Fig. 6). Yao et al. [34] presented three personal-

ization methods: full personalization, which refers to fully

re-training random forest classifiers given personalization

data, adaptive personalization, which refers to adapting the

parameters of pre-trained random forests given personaliza-

tion data, and a portfolio approach, where a library of ran-

dom forest classifiers are pre-trained and the best perform-

ing portfolio member is used to classify data from a new

subject. We observe that on MSRC, both RAND and BALD

outperformed all of the competing methods when the num-

ber of personalization instances per gesture class is greater

than two. On ChaLearn, BALD outperformed portfolio and

adaptive schemes and is within noise of full personalization

after observing five personalization instances.

7. Conclusions

We developed a personalized gesture recognition system

using a hierarchical Bayesian neural network and described

algorithms for performing posterior inference. We illus-

trated the benefits of the hierarchical model over baselines

that ignore subject-specific gesture variations and demon-

strated the scalability of the model’s capacity to learn com-

plex feature-label mappings. Finally, we used the inferred

posterior distributions over weights to guide active learn-

ing procedures for personalizing pre-trained models to new

users. Our posterior driven active learning algorithm consis-

tently outperformed selecting gestures at random. Further

extensions of this work may include expanding this formu-

lation to simultaneously localize as well as classify gestures

from an input stream, as well as testing this framework on

personalization challenges in other domains.
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