
Local Binary Convolutional Neural Networks

Felix Juefei-Xu

Carnegie Mellon University

felixu@cmu.edu

Vishnu Naresh Boddeti

Michigan State University

vishnu@msu.edu

Marios Savvides

Carnegie Mellon University

msavvid@ri.cmu.edu

Abstract

We propose local binary convolution (LBC), an efficient

alternative to convolutional layers in standard convolutional

neural networks (CNN). The design principles of LBC are

motivated by local binary patterns (LBP). The LBC layer

comprises of a set of fixed sparse pre-defined binary convolu-

tional filters that are not updated during the training process,

a non-linear activation function and a set of learnable lin-

ear weights. The linear weights combine the activated filter

responses to approximate the corresponding activated fil-

ter responses of a standard convolutional layer. The LBC

layer affords significant parameter savings, 9x to 169x in

the number of learnable parameters compared to a standard

convolutional layer. Furthermore, the sparse and binary na-

ture of the weights also results in up to 9x to 169x savings in

model size compared to a standard convolutional layer. We

demonstrate both theoretically and experimentally that our

local binary convolution layer is a good approximation of a

standard convolutional layer. Empirically, CNNs with LBC

layers, called local binary convolutional neural networks

(LBCNN), achieves performance parity with regular CNNs

on a range of visual datasets (MNIST, SVHN, CIFAR-10, and

ImageNet) while enjoying significant computational savings.

1. Introduction

Deep learning has been overwhelmingly successful in a

broad range of applications, such as computer vision, speech

recognition / natural language processing, machine trans-

lation, bio-medical data analysis, and many more. Deep

convolutional neural networks (CNN), in particular, have

enjoyed huge success in tackling many computer vision

problems over the past few years, thanks to the tremendous

development of many effective architectures, AlexNet [21],

VGG [30], Inception [33] and ResNet [12, 13] to name a

few. However, training these networks end-to-end with fully

learnable convolutional kernels (as is standard practice) is (1)

computationally very expensive, (2) results in large model

size, both in terms of memory usage and disk space, and

(3) prone to over-fitting, under limited data, due to the large

number of parameters.

On the other hand, there is a growing need for deploying,

both for learning and inference, these systems on resource

constrained platforms like, autonomous cars, robots, smart-

phones, smart cameras, smart wearable devices, etc. To

address these drawbacks, several binary versions of CNNs

have been proposed [6, 5, 28] that approximate the dense

real-valued weights with binary weights. Binary weights

bear dramatic computational savings through efficient imple-

mentations of binary convolutions. Complete binarization of

CNNs, though, leads to performance loss in comparison to

real-valued network weights.

In this paper, we present an alternative approach to reduc-

ing the computational complexity of CNNs while performing

as well as standard CNNs. We introduce the local binary

convolution (LBC) layer that approximates the non-linearly

activated response of a standard convolutional layer. The

LBC layer comprises of fixed sparse binary filters (called

anchor weights), a non-linear activation function and a set of

learnable linear weights that computes weighted combina-

tions of the activated convolutional response maps. Learning

reduces to optimizing the linear weights, as opposed to op-

timizing the convolutional filters. Parameter savings of at

least 9× to 169× can be realized during the learning stage

depending on the spatial dimensions of the convolutional

filters (3 × 3 to 13 × 13 sized filters respectively), as well

as computational and memory savings due to the sparse na-

ture of the binary filters. CNNs with LBC layers, called

local binary convolutional neural networks (LBCNN)1, have

much lower model complexity and are as such less prone to

over-fitting and are well suited for learning and inference of

CNNs in resource-constrained environments.

Our theoretical analysis shows that the LBC layer is a

good approximation for the non-linear activations of stan-

dard convolutional layers. We also demonstrate empirically

that CNNs with LBC layers performs comparably to reg-

ular CNNs on a range of visual datasets (MNIST, SVHN,

CIFAR-10, and ImageNet) while enjoying significant sav-

ings in terms of the number of parameters during training,

1Implementation and future updates will be available at http://

xujuefei.com/lbcnn.

1 19

http://xujuefei.com/lbcnn
http://xujuefei.com/lbcnn

computations, as well as memory requirements due to the

sparse and pre-defined nature of our binary filters, in com-

parison to dense learnable real-valued filters.

Related Work: The idea of using binary filters for con-

volutional layers is not new. BinaryConnect [6] has been

proposed to approximate the real-valued weights in neural

networks with binary weights. Given any real-valued weight,

it stochastically assigns +1 with probability p that is taken

from the hard sigmoid output of the real-valued weight, and

−1 with probability 1−p. Weights are only binarized during

the forward and backward propagation, but not during the

parameter update step, in which high-precision real-valued

weights are necessary for updating the weights. Therefore,

BinaryConnect alternates between binarized and real-valued

weights during the network training process. Building upon

BinaryConnect [6], binarized neural network (BNN) [5] and

quantized neural network (QNN) [14] have been proposed,

where both the weights and the activations are constrained to

binary values. These approaches lead to drastic improvement

in run-time efficiency by replacing most 32-bit floating point

multiply-accumulations by 1-bit XNOR-count operations.

Both BinaryConnect and BNN demonstrate the efficacy

of binary networks on MNIST, CIFAR-10, and SVHN

dataset. Recently, XNOR-Net [28] builds upon the design

principles of BNN and proposes a scalable approach to learn-

ing binarized networks for large-scale image recognition

tasks, demonstrating high performance on the ImageNet

classification task. All the aforementioned approaches uti-

lize high-precision real-valued weights during weight update,

and achieve efficient implementations using XNOR bit count.

XNOR-Net differs from BNN in the binarization method and

the network architecture. In addition to network binarization,

model compression and network quantization techniques

[15, 35, 10, 2, 7, 11, 31, 8] are another class of techniques

that seek to address the computational limitations of CNNs.

However, the performance of such methods are usually upper

bounded by the uncompressed and unquantized models.

Our proposed LBCNN is notably different from fully

binarized neural networks and draws inspiration from local

binary patterns. LBCNN, with a hybrid combination of fixed

and learnable weights offers an alternate formulation of a

fully learnable convolution layer. By only considering sparse

and binary weights for the fixed weights, LBCNN is also able

to take advantage of all the efficiencies, both statistical and

computational, afforded by sparsity and weight binarization.

We demonstrate, both theoretically and empirically, that

LBCNN is a very good approximation of a standard learnable

convolutional layer.

2. Forming LBP with Convolutional Filters

Local binary patterns (LBP) is a simple yet very power-

ful hand-designed descriptor for images rooted in the face

recognition community. LBP has found wide adoption in

0

0

01

1

1

01

C C

0

0

0

0

0

00

0

0 0

0

0

0 0

0

11

1

1

1 1

1 1

1C C

Figure 1: (L-R) 3 × 3 patch and its LBP encoding, 5 × 5 patch and its

LBP encoding.

many other computer vision, pattern recognition, and image

processing applications [27].

The traditional LBP operator [18, 25, 19, 17] operates

on image patches of size 3 × 3, 5 × 5, etc. The LBP de-

scriptor is formed by sequentially compare the intensity of

the neighboring pixels to that of the central pixel within the

patch. Neighbors with higher intensity value, compared to

the central pixel, are assigned a value of 1 and 0 otherwise.

Finally, this bit string is read sequentially and mapped to

a decimal number (using base 2) as the feature value as-

signed to the central pixel. These aggregate feature values

characterize the local texture in the image. The LBP for the

center pixel (xc, yc) within a patch can be represented as

LBP(xc, yc) =
∑L−1

n=0 s(in, ic) · 2
n where in denotes the

intensity of the nth neighboring pixel, ic denotes the inten-

sity of the central pixel, L is the length of the sequence, and

s(·) = 1 if in ≥ ic and s(·) = 0 otherwise. For example, a

N ×N neighborhood consists of N2− 1 neighboring pixels

and therefore results in a N2 − 1 long bit string. Figure 1

shows examples of LBP encoding for a local image patch of

size 3× 3 and 5× 5.

Different parameters and configurations of the LBP for-

mulation can result in drastically different feature descriptors.

We now present a few variations that can help generalize the

basic LBP descriptor:

Base: A base of two is commonly used to encode the LBP

descriptor. Consequently the weights for encoding the LBP

bit string are constrained to powers of two. Relaxing these

constraints and allowing the weights to take any real value

can potentially generalize the LBP descriptor.

Pivot: The physical center of the neighborhood is typically

chosen as the pivot for comparing the intensity of the pixels

in the patch. Choosing different locations in the patch as

the pivot can enable LBP to encode different local texture

patterns. Furthermore, the comparative function s(·) can be

a function of multiple pivots resulting in a more fine-grained

encoding of the local texture.

Ordering: LBP encodes the local texture of a patch by choos-

ing a specific order of pixels to partially preserve the spatial

information of the patch. For a fixed neighborhood size and

pivot, different choice of the ordering the neighbors results

in different encoding of the local texture.

All the aforementioned variations i.e., the choice of pivot,

the base, and the order of the encoding neighbors, are usually

20

Weighted

sum of all the

bit maps

-1

1

-11

-1

1

-1

1

-1

1

-1 1

-1

1

-1

1

Figure 2: Reformulation of the LBP encoding using convolutional filters.

determined empirically and depend on the application. Being

able to generalize these factors of variations in a learnable

framework is one of the motivations and inspiration behind

the design of LBCNN as discussed next.

First, let us reformulate the LBP encoding more efficiently

using convolutional filters. Traditional implementations of

encoding LBP features use a 3× 3 window to scan through

the entire image in an overlapping fashion. At each 3 × 3
patch, the encoding involves (1) compute the difference be-

tween the pivot and the neighboring pixels (or pairs of pixels

more generally), (2) a non-linear thresholding operation map-

ping the pixel differences to binary values, and (3) pooling

the binary values through a weighed sum.

Now, a simple convolution of the entire image with

eight 3 × 3 convolutional filters, followed by simple bi-

narization can achieve the same goal, as shown in Fig-

ure 2. Each convolution filter is a 2-sparse difference fil-

ter. The 8 resulting bit maps after binarization are also

shown. Standard formulations of LBP are simply a weighted

sum of all the bit maps using a pre-defined weight vec-

tor v = [27, 26, 25, 24, 23, 22, 21, 20]. Therefore, stan-

dard LBP feature extraction can be reformulated as y =
∑8

i=1 σ(bi ∗ x) · vi, where x ∈ Rd is vectorized version of

the original image, bi’s are the sparse convolutional filters,

σ is the non-linear binarization operator, the Heaviside step

function in this case, and y ∈ Rd is the resulting LBP image.

By appropriately changing the linear weights v, the base

and the ordering of the encoding can be varied. Similarly by

appropriately changing the non-zero (+1 and -1) support in

the convolutional filters allows us to change the pivot. The

reformulation of LBP as described above forms the basis of

the proposed LBC layer.

3. LBCNN

3.1. Local Binary Convolution Module

Somewhat surprisingly, the reformulation of traditional

LBP descriptor described above possess all the main com-

ponents required by convolutional neural networks. For

instance, in LBP, an image is first filtered by a bank of con-

volutional filters followed by a non-linear operation through

a Heaviside step function. Finally, the resulting bit maps are

linearly combined to obtain the final LBP glyph, which can

serve as the input to the next layer for further processing.

This alternate view of LBP motivates the design of the

local binary convolution (LBC) layer as an alternative of a

standard convolution layer. Through the rest of this paper

neural networks with the LBC layer are referred to as local

binary convolutional neural networks (LBCNN)2. As shown

in Figure 3, the basic module of LBCNN consists of m pre-

defined fixed convolutional filters (anchor weights) bi, i ∈
[m]. The input image xl is filtered by these LBC filters to

generate m difference maps that are then activated through

a non-linear activation function, resulting in m bit maps.

To allow for back propagation through the LBC layer, we

replace the non-differentiable Heaviside step function in LBP

by a differentiable activation function (sigmoid or ReLU).

Finally, the m bit maps are lineally combined by m learnable

weights Vl,i, i ∈ [m] to generate one channel of the final

LBC layer response. The feature map of the LBC layer

serves as the input xl+1 for the next layer. The LBC layer

responses to a generalized multi-channel input xl can be

expressed as:

xt
l+1 =

m∑

i=1

σ

(
∑

s

bst
i ∗ xs

l

)

· Vt
l,i (1)

where t is the output channel and s is the input channel. It

is worth noting that the final step computing the weighted

sum of the activations can be implemented via a convolution

operation with filters of size 1×1. Therefore, each LBC layer

consists of two convolutional layers, where the weights in the

first convolutional layer are fixed and non-learnable while

the weights in the second convolutional layer are learnable.

The number of learnable parameters in the LBC layer

(with the 1 × 1 convolutions) are significantly less than

those of a standard convolutional layer for the same size

of the convolutional kernel and number of input and output

channels. Let the number of input and output channels be

p and q respectively. With a convolutional kernel of size of

h×w, a standard convolutional layer consists of p · h ·w · q
learnable parameters. The corresponding LBC layer consists

of p · h ·w ·m fixed weights and m · q learnable parameters

(corresponding to the 1 × 1 convolution), where m is the

number of intermediate channels of the LBC layer, which is

essentially the number of LBC filters. The 1×1 convolutions

act on the m activation maps of the fixed filters to generate

the q-channel output. The ratio of the number of parameters

in CNN and LBC is:
param. in CNN

param. in LBCNN
=

p · h · w · q

m · q
=

p · h · w

m

For simplicity, assuming p = m reduces the ratio to h · w.

2In this paper we assume convolutional filters do not have bias terms.

21

