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Introduction

In some ways, a cell resembles a plastic bag full of Jell-O. Its 
basic structure is a cell membrane filled with cytoplasm. The 
cytoplasm of a eukaryotic cell is like Jell-O containing mixed 
fruit. It also contains a nucleus and other organelles. 

Cell Membrane

The cell membrane is like the bag holding the Jell-O. It 
encloses the cytoplasm of the cell. It forms a barrier 
between the cytoplasm and the environment outside the 
cell. The function of the cell membrane is to protect and 
support the cell. It also controls what enters or leaves the 

cell. It allows only certain substances to pass through. It 
keeps other substances inside or outside the cell. 

Cell Wall rigid layer that surrounds the cell membrane 
of a plant cell or fungal cell and that supports 
and protects the cell

Cyto-
skeleton 

structure in a cell consisting of filaments and 
tubules that crisscross the cytoplasm and 
help maintain the cells shape

Central 
Vacuole 

large storage sac found in the cells of plants

Vocabulary

Cell Membrane Structure

Cytoplasm

Organelles

Lesson Summary

! The cell membrane consists of two layers of phospholipids. 
! The cytoplasm consists of watery cytosol and cell structures. 
! Eukaryotic cells contain a nucleus and other organelles 

Instructional Diagrams

The image below shows the 
Prokaryotic cell. A prokaryote is a 
single-celled organism that lacks 
a membrane-bound nucleus 
(karyon), mitochondria, or any 

other membrane-bound 
organelle. In the prokaryotes, all 
the intracellular water-soluble 
components (proteins, DNA and 
metabolites) are located together 

in the cytoplasm enclosed by the 
cell membrane, rather than in 
separate cellular compartments.

Questions

What is the outer surrounding part of the Nucleus?

a. Nuclear Membrane

b. Golgi Body

c. Cell Membrane

d. Nucleolus

Which component forms a barrier between the cytoplasm 
and the environment outside the cell?

a. J

b. L

c. X

d. U

Which statement about the cell membrane is false?

a. It encloses the cytoplasm

b. It protects and supports the cell

c. It keeps all external substances out of the cell

d. none of the above

1076 lessons from middle school curricula 78,338 sentences

3,455 images

26,260 questions
Life

Science
Earth

Science
Physical
Science

This diagram shows the anatomy 
of an Animal cell. Animal Cells 
have an outer boundary known 
as the plasma membrane. The 
nucleus and the organelles of the 

cell are bound by this membrane. 
The cell organelles have a vast 

range of functions to perform like 

hormone and enzyme production 

to providing energy for the cells. 

They are of various sizes and have 

irregular shapes. Most of the cells 

size range between 1 and 100 

micrometers and are visible only 

with help of microscope.

Figure 1. An overview of the Multi-modal Machine Comprehension (M3C) paradigm, statistics of the proposed Textbook Question An-

swering (TQA) dataset and an illustration of a lesson in it. TQA can be downloaded at http://textbookqa.org .

Abstract
We introduce the task of Multi-Modal Machine Com-

prehension (M3C), which aims at answering multimodal

questions given a context of text, diagrams and images.

We present the Textbook Question Answering (TQA) dataset

that includes 1,076 lessons and 26,260 multi-modal ques-

tions, taken from middle school science curricula. Our

analysis shows that a significant portion of questions re-

quire complex parsing of the text and the diagrams and rea-

soning, indicating that our dataset is more complex com-

pared to previous machine comprehension and visual ques-

tion answering datasets. We extend state-of-the-art meth-

ods for textual machine comprehension and visual question

answering to the TQA dataset. Our experiments show that

∗The majority of the work was done while the author was interning at

the Allen Institute for Artificial Intelligence

these models do not perform well on TQA. The presented

dataset opens new challenges for research in question an-

swering and reasoning across multiple modalities.

1. Introduction

Question answering (QA) has been a major research fo-

cus of the natural language processing (NLP) community

for several years and more recently has also gained signifi-

cant popularity within the computer vision community.

There have been several QA paradigms in NLP, which

can be categorized by the knowledge used to answer ques-

tions. This knowledge can range from structured and con-

fined knowledge bases (e.g., Freebase [4, 3]) to unstructured

and unbounded natural language form (e.g., documents on

the web [24]). A middle ground between these approaches

has been the popular paradigm of Machine Comprehension
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(MC) [20, 18], where the knowledge (often referred to as

the context) is unstructured, and restricted in size to a short

set of paragraphs.

Question answering in the vision community, referred

to as Visual Question Answering (VQA), has become popu-

lar, in part due to the availability of large image-based QA

datasets [17, 19, 29, 1, 30, 9]. In a sense, VQA is a ma-

chine comprehension task, where the question is in natural

language form, and the context is the image.

World knowledge is multi-modal in nature, spread across

text documents, images and videos. A system that can an-

swer arbitrary questions about the world must learn to com-

prehend these multi-modal sources of information. We thus

propose the task of Multi-Modal Machine Comprehension

(M3C), an extension of the traditional textual machine com-

prehension to multi-modal data. In this paradigm, the task

is to read a multi-modal context along with a multi-modal

question and provide an answer, which may also be multi-

modal in nature. This is in contrast with the conventional

question answering task, in which the context is usually

about a single modality (either language or vision).

In contrast to the VQA paradigm, M3C also has an ad-

vantage from a modelling perspective. VQA tasks typically

require common sense knowledge to answer many ques-

tions, in addition to the image itself. For example, the

question “Does this person have 20/20 vision?” from the

VQA dataset [1] requires the system to detect eye-glasses

and then use the common sense that a person with perfect

or 20/20 vision would typically not wear eye glasses. This

need for common sense makes the QA task more interest-

ing, but also leads to an unbounded knowledge resource.

Since automatically acquiring common sense knowledge is

a very difficult task (with a large body of ongoing research),

it is a common practice to train systems for VQA solely

on the training splits of these datasets. The resulting sys-

tems can thus only expect to answer questions that require

common sense knowledge implicitly contained within the

questions in the training splits. The knowledge required for

M3C on the other hand is bounded to the multi-modal con-

text supplied with the question. This makes the knowledge

acquisition more manageable and serves as a good test bed

for visual and textual reasoning.

Towards this goal, we present the Textbook Question

Answering (TQA) dataset drawn from middle school sci-

ence curricula (Figure 1). The textual and diagrammatic

content in middle school science reference fairly complex

phenomena that occur in the world [13]. Our analysis in

Section 4 shows that parsing this linguistic and visual con-

tent is fairly challenging and a significant proportion of

questions posed to students at this level require reasoning.

This makes TQA a good test bed for the M3C paradigm.

TQA consists of 1,076 lessons containing 78,338 sentences

and 3,455 images (including diagrams). Each lesson has

a set of questions which are answerable using the content

taught in the lesson. The TQA dataset has 26,260 questions

with 12,567 of them having an accompanying diagram, split

into training, validation and test at a lesson level.

We describe the Textbook Question Answering (TQA)

dataset in Section 3 and provide an in-depth analysis of the

lesson contexts, questions and answer sources in Section 4.

We also provide baselines in Section 5 using models that

have been proven to work well in other MC and VQA tasks.

These models extend attention mechanisms between query

and context, where the context (visual and textual) is fit

within a memory. Our experiments show that these models

do not work very well on TQA. This is presumably due to

the following reasons: The length of the context (lessons) is

very large and training an attention network (Memory Net-

works [26]) of this size is non-trivial; there are many dif-

ferent modalities of information that need to be combined

into the memory. Most questions cannot be answered by

simple lookup, require information from multiple sentences

and/or images, and require non-trivial reasoning; Current

approaches for multi-hop reasoning work well on synthetic

data like bAbI [25], but are hard to train in a general setting

such as this dataset. These challenges offered by the TQA

dataset make it a valuable resource for the vision and natural

language communities, and we encourage other researchers

to work on this challenging task. TQA can be downloaded

at http://textbookqa.org .

2. Background

Visual Question Answering There has been a surge of

interest in the field of language and vision over the past few

years, most notably in the area of visual question answering.

This has in part been motivated by the availability of large

image and video question answering datasets.

The DAQUAR dataset [16] was one of the earliest ques-

tion answering datasets in the image domain. Soon af-

ter, much larger datasets including COCO-QA [19], FM-

IQA [9], Visual Madlibs [29] and VQA [1] were released.

Each of these four datasets obtained images from Microsoft

COCO dataset [14]. While COCO-QA questions were auto-

matically generated, the remaining datasets used human an-

notators to write questions. In contrast to our TQA dataset,

in all these datasets the question is in a natural language

form, and the context is an image. More recently, Zhu et al.

released the Visual7W dataset [30] which contained mul-

tiple choice visual answers in addition to textual answers.

While most past works and datasets in the field of question

answering in language and vision focused on images, re-

searchers have also made inroads using videos. Tapaswi et

al. released the Movie-QA dataset [23] which requires the

system to analyze clips in the movie to answer questions.

They also provide movie-subtitles, plots and scripts as ad-

ditional information sources.
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The presented TQA dataset differs from the above

datasets in the following ways. First, the contexts as well as

the questions are multi-modal in nature. Second, in contrast

to the above VQA paradigm (learn from question-answer

pairs and test on question-answer pairs), TQA uses the pro-

posed paradigm of M3C (read a context and answer ques-

tions; learn from context-question-answer tuples and test on

context-question-answer tuples). In contrast to the VQA

paradigm which often requires unbounded common-sense

knowledge to answer many questions, the M3C paradigm

confines the knowledge required to the accompanying con-

text. Another big difference arises from the use of science

textbooks and science diagrams in TQA as compared to nat-

ural images in past datasets. Science diagrams often repre-

sent complex concepts, such as events or systems, that are

difficult to portray in a single natural image. Along with the

middle school science concepts explained in the lesson text,

these images lend themselves more easily to questions that

require reasoning. Hence TQA serves as a great QA test

bed with confined knowledge acquisition and reasoning.

Early works on visual question answering (VQA) in-

volved encoding the question using a Recurrent Neural

Network, encoding the image using a Convolutional Neu-

ral Network and combining them to answer the ques-

tion [1, 17]. Subsequently, attention mechanisms were suc-

cessfully employed in VQA, whereby either the question

in its entirety or the individual words attend to different

patches in the image [30, 27, 28]. More recently, [15]

employed attention both ways, between the text and the

image and showed its benefits. The winner of the recent

VQA workshop employed Multimodal Compact Bilinear

Pooling [8] at the attention layer instead of the commonly

used element wise product/concatenation mechanisms. Our

baselines show that networks with standard attention mod-

els do not perform very well on the TQA dataset and we

discuss the reasons with possible solutions in Section 5.

Machine Comprehension in NLP Akin to the availabil-

ity of several VQA datasets in computer vision, the NLP

community has introduced several machine comprehension

(MC) datasets over the past few years. Cloze datasets

(where the system is asked to fill in words that have been re-

moved from a passage) including CNN and DailyMail [10]

as well as Childrens Book Test [11] are a good proxy to the

traditional MC tasks and have the added benefit of being au-

tomatically produced. More traditional MC datasets such as

MCTest [20] were limited in size, but recently larger ones

such as the Stanford Question Answering (SQuAD) dataset

have been introduced with 100,000 questions.

Attention mechanisms, largely inspired by Bahdanau et

al. [2] have become very popular in textual MC systems.

There are several variations to using attention including dy-

namic attention [10, 6] where the attention weights at a time

step depend on attention weights at previous time steps. An-

other popular technique employed is based on Memory Net-

works [26, 27] with a multi-hop approach, where the atten-

tion layer is followed by a query summarization stage and

then fed into more rounds of attention on the memory.

The release of the SQuAD dataset has led to a number

of new approaches proposed for the task of MC. We ex-

tended the approach by Seo et al. [21], which currently lies

at position 2 on the SQuAD leaderboard, to adapt it to our

Multimodal MC task1. Our results show that on the text

questions, the absolute accuracy is lower than its achieved

numbers on the SQuAD dataset. This along with our anal-

ysis in Section 4 indicate that the TQA is quite challenging

and warrants further research.

3. TQA Dataset

We now describe the Textbook Question Answering

dataset and provide an in-depth analysis in Section 4.

3.1. Dataset Structure

The Textbook Question Answering (TQA) dataset is

drawn from middle school science curricula. It consists of

1,076 lessons from Life Science, Earth Science and Phys-

ical Science textbooks downloaded2 from http://www.

ck12.org. This material conforms to national and state

curriculum guidelines and is actively being used by teach-

ers and students in the United States and worldwide.

Lessons Figure 1 shows an overview of the dataset. Each

lesson consists of textual content, in the form of para-

graphs of text as well as visual content, consisting of di-

agrams and natural images. Each lesson also comes with a

Vocabulary Section which provides definitions of scientific

concepts introduced in that lesson and a Lesson Summary

which is typically restricted to five sentences and summa-

rizes the key concepts in that lesson. In total, the 1,076

lessons consist of 78,338 sentences and 3,455 images. In

addition, lessons also contain links to online Instructional

Videos (totalling 2,156 videos across all lessons) which ex-

plain concepts with more visual illustrations3.

Instructional Diagrams We found that textual content in

the textbooks was very comprehensive and sufficient to un-

derstand the concepts presented in the lesson. However, the

textual content and image captions did not comprehensively

describe the images presented the lessons. As a result, the

lessons were not sufficient to understand the concepts and

answer all questions with diagrams. We conjecture that this

knowledge gap is filled by teachers in the classrooms, ex-

plaining a concept and an accompanying diagram on the

1Code available at allenai.github.io/bi-att-flow
2All materials from the CK-12 website were downloaded in Aug 2016
3Instructional videos are not a part of the TQA dataset. We provide

these links as an extension to the dataset to encourage future research in

extracting content from instructional videos.
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whiteboard. To bridge this gap in the dataset, we added

a small set of diagrams (typically between three to five),

which we refer to as Instructional Diagrams, to lessons in

the textbooks that have diagram questions (Section 3.2). We

also add rich captions describing the scientific concepts il-

lustrated in the diagram. An example is shown in Figure 1.

Questions Each lesson has a set of multiple choice ques-

tions that address concepts taught in that lesson. The num-

ber of choices varies from two to seven. TQA has a total of

26,260 questions including 12,567 having an accompany-

ing diagram. We hereby refer to questions with a diagram

as diagram questions, and ones without as text questions.

Dataset Splits TQA is split into a training, validation and

test set at lesson level. The training set consists of 666

lessons and 15,154 questions, the validation set consists of

200 lessons and 5,309 questions and the test set consists

of 210 lessons and 5,797 questions. On occasions, multiple

lessons have an overlap in the concepts they teach. Care has

been taken to group these lessons before splitting the data,

so as to minimize the concept overlap between data splits.

(a) (b)

Figure 2. Distribution of textual and visual elements across the

lesson contexts in the TQA dataset. (a) Distribution of the number

of sentences (b) Distribution of the number of images (including

diagrams). Section 4.1 provides a discussion.

3.2. Dataset Curation

The lessons in the TQA dataset are obtained from the

Life Science, Earth Science and Physical Science Text-

books and Web Concepts downloaded from the CK-12 web-

site. Lessons contain text, images, links to instructional

videos, vocabulary definitions and lesson summaries. Ques-

tions are obtained from Workbooks and Quizzes from the

website. Additional diagram questions and instructional di-

agrams are obtained using crowd-sourcing.

Diagram Questions Our initial analysis showed that the

number of diagram questions was very small compared to

the number of text questions. In part, this is due to the fact

that diagram questions are harder to generate. To supple-

ment this set, we obtained a list of scientific topics from

each lesson, used these as queries to Google Image Search

and downloaded the top results. These were manually fil-

tered down to images that had content similar to the lessons.

We thus obtained 2,749 diagrams spread across 85 lessons.

Multiple choice questions for these diagrams were then ob-

tained using crowd-sourcing4. Each human subject was pro-

vided with the full lesson and a diagram and was asked to

write down a middle school science question that required

the diagram to answer it correctly, and was answerable us-

ing the provided lesson.

Instructional Diagrams We obtained a set of instruc-

tional diagrams per lesson using the same method as above,

de-duplicating diagrams that were already present in the

lessons and diagrams that accompanied questions. Rich

captions for this set of diagrams were also obtained using

crowd-sourcing. Each human subject was provided with ex-

amples of rich captions, the lesson and a diagram and was

asked to write down rich captions using the vocabulary and

scientific concepts explained in the lesson.

4. TQA Analysis

In this section we provide an analysis of the lesson

contexts, questions, answers and the information content

needed to answer questions in the TQA dataset.

4.1. Lesson Contexts

Figure 2 shows the distribution of the number of sen-

tences and images across the lessons in the dataset. About

50% of lessons have 5-10 images and more than 75% of

the lessons have more than 50 sentences. The length of the

lessons in TQA is typically higher than past MC datasets

such as SQuAD [18], making it difficult to add the entire

context into memory and then attending to it. This sug-

gests the need for either an Information Retrieval based pre-

processing step or a hierarchical model such as Hierarchi-

cal Memory Networks [5]. Furthermore, the multi-modal

nature of the contexts in lessons and questions poses new

challenges and warrants further research.

4.2. Questions

Text Questions Figure 3(a) shows the distribution of the

length of questions in the dataset. This distribution shows

that compared to VQA [1], TQA has longer questions (the

mode of the distribution here is 8 compared to 5 for VQA).

Figure 3(b) shows the distribution of the questions across

the W categories (what, where, when, who, why, how and

which). Interestingly, the Other category has a fair num-

ber of questions. Further analysis shows that a good frac-

tion of questions written down in standard workbooks are

assertive statements as opposed to interrogative statements.

This could be another reason why baseline models in Sec-

tion 5 perform poorly on the dataset.

Diagram Questions The diagrams in the questions of the

TQA dataset are similar to the diagrams in the questions

of the AI2D dataset presented by Kembhavi et al. [13] in

4We used MightyAI for all crowd-sourcing needs in this dataset.
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(a) (b) (c)

Figure 3. An analysis of questions in the TQA dataset. (a) Distribution of question length (b) Distribution across the 7W categories (c)

Distribution of the number of textboxes for diagrams in questions. Refer to Section 4.2 for further discussion.

(a) (b) (c) (d)

Figure 4. An analysis of the information scope needed to answer questions in the TQA dataset. ‘sent’, ‘para’, ‘ctxt’, ‘q’, ‘qd’, ‘img’ and

‘ext’ refer to sentence, paragraph, context, question, question in diagram, image and external. (a) Scope needed for text questions. (b)

Scope needed for diagram questions. (c) Of the questions that require a diagram, the degree of parsing required. (d) Of the questions that

require a diagram, the % of questions that can be answered with the OCR of the diagram alone. Section 4.3 provides more details.

terms of content and complexity. Kembhavi et al. propose

using diagram parse graphs to represent diagrams and use

a hierarchical representation of constituents and relation-

ships. We analysed AI2D and found that there is high cor-

relation between the complexity of a diagram (measured by

the number of constituents and relationships in the diagram)

and the number of text boxes located in that diagram. Fig-

ure 3(c) shows the distribution of the number of text boxes

across the diagrams in the questions in the TQA dataset as a

proxy to the distribution of diagram complexity. This shows

that the diagrams in the questions are quite complex and

further analysis below shows that a rich parsing of these di-

agrams is often needed to answer questions.

4.3. Knowledge Scope to Answer Questions

We also analyze the knowledge scope required to answer

questions in the dataset in Figure 4 for each question type.

This analysis was performed by human subjects on 250 ran-

domly sampled questions in each type.

Figure 4(a) shows the scope needed for text questions. A

significant number of text questions require multiple sen-

tences within a paragraph to be answered correctly, and

some questions require information spread across the en-

tire lesson. This is in contrast to past MC datasets like

SQuAD [18] where a majority of questions can be answered

by 1 sentence. Figure 4(b) shows the scope for diagram

questions. Most questions require parsing the question di-

agram, and of these, a significant number in addition need

text and images from the context. Figure 4(c) shows the de-

gree of diagram parsing required to answer questions, given

that the diagram is needed. Very few questions can be an-

swered with just a classification of the diagram, and more

than 50% need a rich structure to be parsed out of the di-

agram. Finally, Figure 4(d) shows that fewer than 5% of

diagrams can be trivially answered by just the raw OCR

text. An example of this case, is where just the correct an-

swer option lies within the text boxes in the image and the

wrong options are unrelated to the diagram. This analy-

sis shows that questions in the TQA dataset often require

multiple pieces of context information presented in multi-

ple modalities, rendering the dataset challenging.

4.4. Qualitative Examples

True/False Several multiple choice questions in the dataset

have just 2 choices: True and False. As one might expect

with middle school questions, these are not simple look-up

questions but require complex parsing and reasoning. Fig-

ure 5 shows 3 examples. The first requires relating too high

and below and also requires parsing multiple sentences. The

second requires parsing the flow chart in the diagram and

counting the steps. Counting is a notoriously hard task

for present day QA systems as has been seen in the VQA

dataset [1]. The third requires converting the numerical

phrase 2/3 to two thirds as opposed to two and three, and

then reasoning that two thirds is more than one-third.

Multiple Choice Figure 6 shows examples of questions
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There are … On top of Mount Everest, 
which is the tallest mountain on Earth, 

air pressure is only about one-third of 
the pressure at sea level.

Q: sounds that are too high in frequency 

for humans to hear are called infrasound

A: False

Q: first step in technological design 

process is to identify the problem. 

A: True

Figure 2.13 shows the steps of the 

technological design process.

Q: atmospheric pressure at top of 

mount Everest is about 2 / 3 pressure at 

sea level. A: False

A marching band is parading down 

the street. 

…

Human beings can normally hear 

sounds with a frequency between 

about 20 Hz and 20,000 Hz. Sounds 

with frequencies below 20 hertz are 

called infrasound. Sounds with 

frequencies above 20,000 hertz are 

called ultrasound. …

Figure 5. Most True/False questions in TQA require complex parsing and reasoning and are not simple lookup (Section 4.4)

in several interesting categories. (a) requires rich diagram

parsing along with a notion of carries. (b) multiple sen-

tences and paraphrasing are required. (c) both text and dia-

gram contexts help. (d) multiple sentences are required, and

then a notion of order is required. (e) multiple sentences and

a notion of All of the above are required to pool together re-

sults. Interestingly, this is quite a common scenario in the

dataset. (f) hypothetical question which are also common

to the dataset (g) question requiring analogies. (h) question

requiring simple math. It is clear that current state-of-the-

art QA models are not designed for such complex tasks, and

unsurprisingly, perform very poorly on this dataset.

5. Baselines

We now describe several baseline models and report their

performance on Diagram and Text questions in the TQA

dataset. These baselines are extensions of the current state-

of-the-art models for diagram question answering and tex-

tual reading comprehension respectively. We begin by de-

scribing the Text Only Model. The Text and Diagram Mod-

els have a very similar architecture and can be considered

as extensions to the Text Only Model.

5.1. Text Only Model

The Text Only Model is an extension to the architec-

ture of Memory Networks [26]. It only considers the tex-

tual portions of the questions and lesson contexts. As our

analysis in Figure 4 shows, in most cases, this information

should be sufficient for answering Text questions, but it is

not sufficient for answering Diagram questions. The input

to the model is a list of paragraphs from the lesson context,

the question sentence, and answer choices (2 for True/False

questions, 4-7 for Multiple Choice questions). The goal is

to output the correct answer among the answer choices.

It is often prohibitive to put all the paragraphs into a

GPU’s memory. For instance, a single paragraph of 512

words and a batch size of 32 can consume up to 12GB of

GPU RAM in a relatively simple architecture. Each les-

son often contains more than 1000 words, so a single GPU

cannot contain all words (or batch size should decrease,

which might degrade performance). A potential solution for

handling this issue is using Hierarchical Memory Networks

[5]. Here, we choose the most relevant paragraph among

the list. We adopt an information retrieval approach: we

compute the relevance of each paragraph and the question

using tf-idf score of each word, and obtain the paragraph

with the highest score of relevance.

Let M ∈ R
d×T represent the embedding of chosen para-

graph, where T is the number of words in the paragraph,

and d is the size of the embedding for each word. Similarly,

let U ∈ R
d×J and Ci ∈ R

d×K represent the embeddings

of the question and each choice (i-th choice), respectively.

Here, J is the number of the question words, and K is the

number of each answer choice sentence. Note that we use

padding and masking when necessary to account for differ-

ent word lengths among the answer choices.

We use Long Short-Term Memory (LSTM) [12] to em-

bed each sentence in the paragraph, question, and answer

choices. This provides neighboring context to each word.

We use (′) to indicate that an LSTM has been applied to

each modality (e.g. M′ is the LSTM output of M). We then

soft-select the word from the paragraph that is most relevant

to the question via an attention mechanism. Let Stj denote

the scalar similarity between t-th word of the paragraph and

j-th word of the question, computed by

Stj = M
′⊤

:tU
′
:j ,

where M
′
:t is the t-th column vector of M

′ (corre-

sponding to the LSTM output of t-th word). The atten-

tion weight on the paragraph words is obtained by a =
softmax(maxcol S) ∈ R

T , where the max is computed

over the column of S. Then the attended vector is the

weighted sum of the column vectors of M′:

m =
∑

t

atM
′
:t ∈ R

d,

which can be considered as the predicted answer for the

question. We compare the vector with each choice. More

concretely, we compute the similarity between the vector

and the sum of each C
′

i over the column:

ri = m
⊤
∑

k

C
′
i,:k ∈ R.
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Then the probability of each choice is the softmax of r, i.e.

ŷ = softmax(r) ∈ R
N , where N is the number of an-

swer choices. During training, we minimize the negative

log probability of the correct answer choice.

5.2. Text + Diagram Models

Text+Diagram Models follow the similar architecture to

that of Text Only Model. The only difference is the modal-

ity of question and lesson contexts in the memory. We

present two diagram baseline models: Text+Image, an ex-

tension of state of the art models in the VQA paradigm, and

Text+Diagram, an extension to the DSDP-NET model by

Kembhavi et al. [13] to answer diagram questions.

Text + Image The image is passed through a VGG net-

work [22] (pretrained on Imagenet [7]) and the outputs of

the last convolutional layer are added to the memory. The

output is a 7-by-7 grid of 512D image patch vectors. As a

simple baseline, these 49 vectors can be considered as the

context to which the question refers. This is similar to pop-

ular models employed in the VQA paradigm (for instance

[28]). Our extension involves treating each grid vector in

the same way as the LSTM output of the text paragraph in

Section 5.1. In order to match the dimension between the

LSTM outputs of the paragraph and the grid vectors, we

use 2 perceptron layers with tanh activation to map each

512D vector to d-dim vector. The transformed vectors are

concatenated to the LSTM outputs, so that the question can

attend on these image patches in addition to the sentences.

Text + DPG Diagram Parse Graph (DPG) encodes the

structured information of the diagram, obtained via parser

by [13]. As practiced by the authors, DPG can be trans-

lated into factual sentences that describe the graph via sev-

eral translation rules. For example, if “mouse” object and

“cat” object are connected in the DPG, then the translator

produces a sentence “mouse is connected to cat.”. It is the

model’s role to associate connection to its semantic ground-

ing eats. Then these produced sentences can be treated in

the same way as the paragraph sentences. The paragraph is

initially augmented with these generated sentences; the rest

follows the same procedures as in Section 5.1.

5.3. Machine Comprehension Model

We also report the performance of a recently released

MC model (BiDAF) [21] on text questions. BiDAF cur-

rently ranks second best on the SQuAD leaderboard and

has publicly available code. Since BiDAF was originally

designed to predict the answer span that lies in the given

paragraph (context), we modify its output layer to answer

Multiple Choice questions. In particular, the predicted an-

swer span is compared to each answer choice and the one

with the highest similarity is chosen as the final answer.

5.4. Baseline Results

Table 1 shows the performance of the four baseline mod-

els presented above. Interestingly, both the text models per-

form very poorly on T/F questions. Most T/F questions in

this dataset are not simple lookups but require paraphras-

ing, multiple sentences, reasoning to be answered correctly

(Refer to Figure 5), which standard attention models are

not good at. The text models perform better on Multiple

Choice questions with roughly 10% improvement over the

random baseline. Our analysis in Sec 4.3 and examples in

Figure 6 show that many multiple choice questions are com-

plex which explains the poor performance of the baselines.

On Diagram Multiple Choice (MC) questions, we ob-

serve that the Text+Image model gives no value beyond the

Text only model, but the Text+DPG model performs slightly

better than the Text Only Model. This is consistent with the

findings in Kembhavi et al. in the AI2D dataset [13]. Our

analysis in Section 4.3 shows that most diagram questions

require a rich diagram parse and often require information

across the lesson. Akin to our findings for Text Questions,

the standard attention framework in these baselines are un-

able to handle this level of complexity.

We conjecture that this is mainly due to: (a) contexts in

TQA are usually long compared to other MC datasets; (b)

fitting multi-modal sources into a single memory introduces

new challenges; (c) questions usually require reasoning or

show large lexical variations with the context. This intro-

duces new challenges for multi-hop reasoning algorithms

beyond synthetic datasets.

Model Inspired By Text T/F Text MC Diagram MC All

Random N/A 50.0 22.7 25.0 28.4

Text Only MemoryNet [26] 50.2 32.9 29.9 33.8

Text + Image VQA [1] N/A N/A 29.9 33.8

Text + DPG DSDP-NET [13] N/A N/A 31.3 34.6

BiDAF BiDAF [21] 50.4 32.2 30.1 33.7

Table 1. Baseline Results (% Accuracies). Refer to Section 5.

6. Conclusion

In this paper, we introduce a new task of M3C as an ex-

tension of MC and VQA. We present the TQA dataset as

a testbed to evaluate the M3C task. The TQA dataset con-

sists of 1,076 lessons with 26,260 multi-modal questions.

Our experiments show that extensions of the state-of-the-art

methods for MC and VQA perform poorly on this dataset,

confirming the challenges introduced by this dataset. Future

work involves designing systems that can address the M3C

task in the TQA dataset.

Acknowledgements: This work is in part supported

by ONR N00014-13-1-0720, NSF IIS-1338054, NSF-

1652052, NRI-1637479, NSF IIS-1616112, Allen Dis-

tinguished Investigator Award, Google Research Faculty

Award, Samsung GRO Award and the Allen Institute for

Artificial Intelligence.

5005



(a) Rich Diagram Parsing (b) Multiple Sentences

(c) Text and Diagram (d) Order of Events

(e) ‘N of Above’ Answer (f) Hypothetical Question

(g) Analogy (h) Simple Math

Q: Assume that a wire has 1.5 ohms of resistance. If the wire is connected 

to two 1.5-volt batteries, how much current will flow through the wire?

a. 3.0 amps

b. 2.3 amps

c. 2.0 amps

d. 1.0 amps

Ohms Law

Voltage, … Current (amps) = Voltage (volts) Resistance (ohms)

Using Ohms Law to Calculate Current

…If the wire has a resistance of 3 ohms, how much current is flowing 

through the wire? Current = 12 volts = 4 amps 3 ohms You Try It! 

Q: Einsteins concept of gravity is similar to what happens when you 

place a bowling ball on the surface of a trampoline. in this analogy, if the 

bowling ball represents earth, then the surface of the trampoline 

represents

a) space-time.

b) earths gravity.

c) earths mass.

d) none of the above

Einstein Explained It All

In the early 1900s, Albert Einstein… 

showed that gravity is a result of the 

warping, or curving, of space and 

time, which made …. relativity.

Q: What organ(s) do amphibians use to obtain oxygen?

a. gills

b. lungs

c. skin

d. all of the above

Amphibian Skin

… America to poison the tips of their hunting arrows. Amphibian skin 

contains keratin, a protein that is also found in the outer covering of most 

other four-legged vertebrates. The keratin in amphibians is not too tough 

to allow gases and water to pass through their skin. Most amphibians 

breathe with gills as larvae and with lungs as adults. However, extra 

oxygen is absorbed through the skin.

Light

Radio waves have the longest wavelengths and lowest frequencies of all 

electromagnetic waves. … On the right side of the diagram are X rays 

and gamma rays. They have the shortest wavelengths and highest 

frequencies of all electromagnetic waves.

Q: put in order of how convection currents in the mantle move. i. the 

material that moved up cools and sinks back down into the mantle. ii. the 

bottom layer of the mantle material rises and spreads horizontally. iii. the 

mantle material near the core is heated. iv. the bottom layer of the mantle 

becomes less dense.

a) iv, iii, ii, i

b) iii, iv, ii, i

c) i, ii, iii, iv

d) iii, i, iv, ii

Q: when are most of nadh and fadh2 generated

a) during glycolysis

b) during the krebs cycle

c) during the electron transport chain

d) during cellular respiration

The Krebs Cycle

In the presence of oxygen, under aerobic conditions, pyruvate enters the 

mitochondria to proceed into the Krebs cycle. The second stage of cellular 

respiration is the transfer of the energy in pyruvate, which is the energy 

initially in glucose, into two energy carriers, NADH and FADH2 . A small 

amount of ATP is also made during this process. This process occurs in a 

continuous cycle, named after its discover, Hans Krebs. The Krebs cycle uses 

a 2-carbon molecule (acetyl-CoA) derived from pyruvate and produces 

carbon dioxide.

Q: Which of the following choices lists electromagnetic waves from lower 

to higher frequencies?

a. Radio waves, infrared light, microwaves

b. Ultraviolet light, infrared light, X rays

c. Infrared light, ultraviolet light, gamma rays

d. Visible light, microwaves, ultraviolet light

Q: If the population of beetle larva decreases, what happens with the 

snail population?

a. Decreases

b. Increases

c. Decreases slightly

d. Stays the same

Q: This is the long narrow tube that carries food from the pharynx to 

the stomach.

a. mouth

b. salivary glands

c. liver

d. esophagus

Heat Flow

Scientists know … 2. Convection: … Convection in the mantle is the 

same as convection in a pot of water on a stove. …

Figure 6. Examples of interesting questions categories in TQA. Green-colored text indicates the correct answer. Red-outlined yellow box

illustrates a portion of the lesson textual context useful to answer the question. (Refer to Section 4.4)
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