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Abstract

Deep learning has shown to be effective for robust and

real-time monocular image relocalisation. In particular,

PoseNet [22] is a deep convolutional neural network which

learns to regress the 6-DOF camera pose from a single im-

age. It learns to localize using high level features and is

robust to difficult lighting, motion blur and unknown cam-

era intrinsics, where point based SIFT registration fails.

However, it was trained using a naive loss function, with

hyper-parameters which require expensive tuning. In this

paper, we give the problem a more fundamental theoreti-

cal treatment. We explore a number of novel loss functions

for learning camera pose which are based on geometry and

scene reprojection error. Additionally we show how to au-

tomatically learn an optimal weighting to simultaneously

regress position and orientation. By leveraging geometry,

we demonstrate that our technique significantly improves

PoseNet’s performance across datasets ranging from indoor

rooms to a small city.

1. Introduction

Designing a system for reliable large scale localisa-

tion is a challenging problem. The discovery of the po-

sitioning system in mammalian brains, located in the hip-

pocampus, was awarded the 2014 Nobel prize in Physiol-

ogy or Medicine [36, 32]. It is an important problem for

computer vision too, with localisation technology essential

for many applications including autonomous vehicles, un-

manned aerial vehicles and augmented reality. State of the

art localisation systems perform very well within controlled

environments [24, 34, 12, 33, 44]. However, we are yet to

see their wide spread use in the wild because of their inabil-

ity to cope with large viewpoint or appearance changes.

Many of the visual localisation systems use point land-

marks such as SIFT [30] or ORB [40] to localise. These

features perform well for incremental tracking and estimat-

ing ego-motion [33]. However, these point features are not

able to create a representation which is sufficiently robust to

challenging real-world scenarios. For example, point fea-

6-DoF Camera Pose

Single RGB Input Image

Figure 1: PoseNet [22] is trained end-to-end to estimate the cam-

era’s six degree of freedom pose from a single monocular image.

In this paper we show how to apply a principled loss function

based on the scene’s geometry to learn camera pose without any

hyper-parameters.

tures are often not robust enough for localising across dif-

ferent weather, lighting or environmental conditions. Addi-

tionally, they lack the ability to capture global context, and

require robust aggregation of hundreds of points to form a

consensus to predict pose [57].

To address this problem, we introduced PoseNet [22, 19]

which uses end-to-end deep learning to predict camera pose

from a single input image. It was shown to be able lo-

calise more robustly using deep learning, compared with

point features such as SIFT [30]. PoseNet learns a represen-

tation using the entire image context based on appearance

and shape. These features generalise well and can localise

across challenging lighting and appearances changes. It is

also fast, being able to regress the camera’s pose in only a

few milliseconds. It is very scalable as it does not require

a large database of landmarks. Rather, it learns a mapping

from pixels to a high dimensional space linear with pose.

The main weakness of PoseNet [22] was that despite

its scalability and robustness it did not produce metric ac-

curacy which is comparable to other geometric methods
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[44, 49]. In this paper we argue that a contributing factor

to this was because PoseNet naively applied a deep learning

model end-to-end to learn camera pose. In this work, we

reconsider this problem with a grounding in geometry. We

wish to build upon the decades of research into multi-view

geometry [14] to improve our ability to use deep learning to

regress camera pose.

The main contribution of this paper is improving the per-

formance of PoseNet with geometrically formed loss func-

tions. It is not trivial to simply regress position and rota-

tion quantities using supervised learning. PoseNet required

a weighting factor to balance these two properties, but was

not tolerant to the selection of this hyperparameter. In Sec-

tion 3.3 we explore loss functions which remove this hy-

perparameter, or optimise it directly from the data. In Sec-

tion 3.3.4 we show how to train directly from the scene ge-

ometry using the reprojection error.

In Section 4 we demonstrate our system on an array

of datasets, ranging from individual indoor rooms, to the

Dubrovnik city dataset [26]. We show that our geometric

approach can improve PoseNet’s efficacy across many dif-

ferent datasets – narrowing the deficit to traditional SIFT

feature-based algorithms. For outdoor scenes ranging from

50, 000m2 to 2km2 we can achieve relocalisation accura-

cies of a few meters and a few degrees. In small rooms we

are able to achieve accuracies of 0.2− 0.4m.

2. Related work

Large scale localisation research can be divided into two

categories; place recognition and metric localisation. Place

recognition discretises the world into a number of land-

marks and attempts to identify which place is visible in a

given image. Traditionally, this has been modelled as an

image retrieval problem [6, 9, 53, 45] enabling the use of

efficient and scalable retrieval approaches [35, 38] such as

Bag-of-Words (BoW) [47], VLAD [17, 10], and Fisher vec-

tors [18]. Deep learning models have also been shown to

be effective for creating efficient descriptors. Many ap-

proaches leverage classification networks [39, 13, 3, 52],

and fine tune them on localisation datasets [4]. Other work

of note is PlaNet [55] which trained a classification network

to localise images on a world scale. However, all these net-

works must discretise the world into places and are unable

to produce a fine grained estimate of 6-DOF pose.

In contrast, metric localisation techniques estimate the

metric position and orientation of the camera. Tradition-

ally, this has been approached by computing the pose from

2D-3D correspondences between 2D features in the query

image and 3D points in the model, which are determined

through descriptor matching [7, 28, 27, 42, 49]. This as-

sumes that the scene is represented by a 3D structure-from-

motion model. The full 6 degree-of-freedom pose of a query

image can be estimated very precisely [44]. However these

methods require a 3D model with a large database of fea-

tures and efficient retrieval methods. They are expensive to

compute, often do not scale well, and are often not robust to

changing environmental conditions [54].

In this work, we address the more challenging problem

of metric localisation with deep learning. PoseNet [22] in-

troduced the technique of training a convolutional neural

network to regress camera pose. It combines the strengths

of place recognition and localisation approaches: it can

globally relocalise without a good initial pose estimate, and

produces a continuous metric pose. Rather than building a

map (or database of landmark features), the neural network

learns features whose size, unlike a map, does not require

memory linearly proportional to the size of the scene.

Later work has extended PoseNet to use RGB-D input

[25], learn relative ego-motion [31], improve the context of

features [54], localise over video sequences [8] and interpret

relocalisation uncertainty with Bayesian Neural Networks

[19]. Additionally, [54] demonstrate PoseNet’s efficacy on

featureless indoor environments, where they demonstrate

that SIFT based structure from motion techniques fail in the

same environment.

Although PoseNet is scalable and robust [22], it does not

produce sufficiently accurate estimates of Pose compared

to traditional methods [44]. It was designed with a naive

regression loss function which trains the network end-to-

end without any consideration for geometry. This problem

is the focus of this paper – we do not want to throw away

the decades of research into multi view geometry [14]. We

improve PoseNet’s performance by learning camera pose

with a fundamental treatment of scene geometry.

3. Model for camera pose regression

In this section we describe the details of the convolu-

tional neural network model we train to estimate camera

pose directly from a monocular image, I . Our network out-

puts an estimate, p̂, for pose, p, given by a 3-D camera po-

sition x̂ and orientation q̂. We use a quaternion to represent

orientation, for reasons discussed in Section 3.2. Pose p is

defined relative to an arbitrary global reference frame. In

practice we centre this global reference frame at the mean

location of all camera poses. We train the model with su-

pervised learning using pose labels, p = [x,q], obtained

through structure from motion, or otherwise (Section 4.1).

3.1. Architecture

Our pose regression formulation is capable of being ap-

plied to any neural network trained through back propaga-

tion. For the experiments in this paper we adapt a state of

the art deep neural network architecture for classification,

GoogLeNet [51], as a basis for developing our pose regres-

sion network. This allows us to use pretrained weights,

for example from a model trained to classify images in the
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ImageNet dataset [11]. We observe that these pretrained

features regularise and improve performance in PoseNet

through transfer learning [37]. Although, to generalise

PoseNet, we may apply it to any deep architecture designed

for image classification as follows:

1. Remove the final linear regression and softmax layers

used for classification

2. Append a linear regression layer. This fully connected

layer is designed to output a seven dimensional pose

vector representing position (3 dimensions) and orien-

tation (4 dimensional quaternion)

3. Insert a normalisation layer to normalise the four di-

mensional quaternion orientation vector to unit length

3.2. Pose representation

An important consideration when designing a machine

learning system is the representation space of the output.

We can easily learn camera position in Euclidean space

[22]. However, learning orientation is more complex. In

this section we compare a number of different parametri-

sations used to express rotational quantities; Euler angles,

axis-angle, SO(3) rotation matrices and quaternions [2].

We evaluate their efficacy for deep learning.

Firstly, Euler angles are easily understandable as an in-

terpretable parametrisation of 3-D rotation. However, they

have two problems. Euler angles wrap around at 2π radi-

ans, having multiple values representing the same angle.

Therefore they are not injective, which causes them to be

challenging to learn as a uni-modal scalar regression task.

Additionally, they do not provide a unique parametrisation

for a given angle and suffer from the well-studied problem

of gimbal lock [2]. The axis-angle representation is another

three dimensional vector representation. However like Eu-

ler angles, it too suffers from a repetition around the 2π
radians representation.

Rotation matrices are a over-parametrised representation

of rotation. For 3-D problems, the set of rotation matrices

are 3×3 dimensional members of the special orthogonal Lie

group, SO(3). These matrices have a number of interesting

properties, including orthonormality. However, it is diffi-

cult to enforce the orthogonality constraint when learning a

SO(3) representation through back-propagation.

In this work, we chose quaternions as our orientation rep-

resentation. Quaternions are favourable because arbitrary

four dimensional values are easily mapped to legitimate ro-

tations by normalizing them to unit length. This is a simpler

process than the orthonormalization required of rotation

matrices. Quaternions are a continuous and smooth repre-

sentation of rotation. They lie on the unit manifold, which

is a simple constraint to enforce through back-propagation.

Their main downside is that they have two mappings for

each rotation, one on each hemisphere. However, in Sec-

tion 3.3.1 we show how to adjust the loss function to com-

pensate for this.

3.3. Loss function

This far, we have described the structure of the pose rep-

resentation we would like our network to learn. Next, we

discuss how to design an effective loss function to learn to

estimate the camera’s 6 degree of freedom pose. This is a

particularly challenging objective because it involves learn-

ing two distinct quantities - rotation and translation - with

different units and scales.

This section defines a number of loss functions and ex-

plores their efficacy for camera pose regression. We be-

gin in Section 3.3.2 by describing the original weighted loss

function which was proposed by PoseNet [22]. We improve

on this in Section 3.3.3 by introducing a novel loss function

which can learn the weighting between rotation and transla-

tion automatically, using an estimate of the homoscedastic

task uncertainty. Further, in Section 3.3.4 we describe a

loss function which combines position and orientation as a

single scalar using the reprojection error geometry. In Sec-

tion 4.2 we compare the performance of these loss func-

tions, and discusses their trade-offs.

3.3.1 Learning position and orientation

We can learn to estimate camera position by forming a

smooth, continuous and injective regression loss in Eu-

clidean space, Lx(I) = ‖x− x̂‖γ , with norm given by γ
([22] used the L2 Euclidean norm).

However, learning camera orientation is not as simple.

In Section 3.2 we described a number of options for repre-

senting orientation. Quaternions are an attractive choice for

deep learning because they are easily formulated in a con-

tinuous and differentiable way. The set of rotations lives

on the unit sphere in quaternion space. We can easily map

any four dimensional vector to a valid quaternion rotation

by normalising it to unit length. [22] demonstrates how to

learn to regress quaternion values:

Lq(I) =

∥

∥

∥

∥

q−
q̂

‖q̂‖

∥

∥

∥

∥

γ

(1)

Using a distance norm, γ, in Euclidean space makes no ef-

fort to keep q on the unit sphere. We find, however, that

during training, q becomes close enough to q̂ such that the

distinction between spherical distance and Euclidean dis-

tance becomes insignificant. For simplicity, and to avoid

hampering the optimization with unnecessary constraints,

we chose to omit the spherical constraint. The main prob-

lem with Quaternions is that they are not injective because

they have two unique values (from each hemisphere) which

map to a single rotation. This is because quaternion, q, is

identical to −q. To address this, we constrain all quater-

nions to one hemisphere such that there is a unique value

for each rotation.
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3.3.2 Simultaneously learning position and orientation

The challenging aspect of learning camera pose is design-

ing a loss function which is able to learn both position and

orientation. Initially, we proposed a method to combine po-

sition and orientation into a single loss function with a linear

weighted sum [22], shown in (2):

Lβ(I) = Lx(I) + βLq(I) (2)

Because x and q are expressed in different units, a scal-

ing factor, β, is used to balance the losses. This hyper-

parameter attempts to keep the expected value of position

and orientation errors approximately equal.

Interestingly, we observe that a model which is jointly

trained to regress the camera’s position and orientation per-

forms better than separate models trained on each task indi-

vidually. Figure 2 shows that with just position, or just ori-

entation information, the network was not able to determine

the function representing camera pose with as great accu-

racy. The model learns a better representation for pose when

supervised with both translation and orientation labels. We

also experimented with branching the network lower down

into two separate components to regress position and orien-

tation. However, we found that it too was less effective, for

similar reasons: separating into distinct position and ori-

entation features denies each the information necessary to

factor out orientation from position, or vice versa.

However the consequence of this was that the hyper-

parameter β required significant tuning to get reasonable

results. In the loss function (2) a balance β must be struck

between the orientation and translation penalties (Figure 2).

They are highly coupled as they are regressed from the same

model weights. We found β to be greater for outdoor scenes

as position errors tended to be relatively greater. Following

this intuition it is possible to fine tune β using grid search.

For the indoor scenes it was between 120 to 750 and out-

door scenes between 250 to 2000. This is an expensive task

in practice, as each experiment can take days to complete.

It is desirable to find a loss function which removes this hy-

perparameter. Therefore, the remainder of this section ex-

plores different loss functions which aim to find an optimal

weighting automatically.

3.3.3 Learning an optimal weighting

Ideally, we would like a loss function which is able to learn

position and orientation optimally, without including any

hyper parameters. For this reason, we propose a novel loss

function which is able to learn a weighting between the po-

sition and orientation objective functions. We formulate it

using homoscedastic uncertainty which we can learn us-

ing probabilistic deep learning [20]. Homoscedastic uncer-

tainty is a measure of uncertainty which does not depend

on the input data, as opposed to heteroscedastic uncertainty
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Figure 2: Relative performance of position and orientation regres-

sion on a single model with a range of scale factors for an indoor

scene from the King’s College scene in Cambridge Landmarks, us-

ing the loss function in (2). This demonstrates that learning with

the optimum scale factor leads to the network uncovering a more

accurate pose function.

which is a function of the input data [20]. Rather, it captures

the uncertainty of the task itself. In [21] we show how to use

this insight to combine losses for different tasks in a prob-

abilistic manner. Here we show how to apply this to learn

camera position and orientation (with a Laplace likelihood):

Lσ(I) = Lx(I)σ̂
−2

x + log σ̂2

x + Lq(I)σ̂
−2

q + log σ̂2

q (3)

where we optimise the homoscedastic uncertainties, σ̂2

x, σ̂2

q ,

through backpropagation with respect to the loss function.

These uncertainties are free scalar values, not model out-

puts. They represent the homoscedastic (task) noise.

This loss consists of two components; the residual re-

gressions and the uncertainty regularization terms. We learn

the variance, σ2, implicitly from the loss function. As the

variance is larger, it has a tempering effect on the residual

regression term; larger variances (or uncertainty) results in

a smaller residual loss. The second regularization term pre-

vents the network from predicting infinite uncertainty (and

therefore zero loss). As we expect quaternion values to have

much smaller values (they are constrained to the unit man-

ifold), their noise, σ2

q should be much smaller than the po-

sition noise, σ2

x, which can be many meters in magnitude.

As σ2

q should be much smaller than σ2

x, orientation regres-

sion should be weighted much higher than position – with a

similar effect to β in (2).

In practice, we learn ŝ := log σ̂2 because it is more nu-

merically stable [21]:

Lσ(I) = Lx(I) exp(−ŝx)+ŝx+Lq(I) exp(−ŝq)+ŝq (4)

This is more numerically stable than regressing the vari-

ance, σ2, because the loss avoids a potential division by

zero. The exponential mapping also allows us to regress

unconstrained scalar values, where exp(−si) is resolved to

the positive domain giving valid values for variance. We

find that this loss is very robust to our initialisation choice
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for the homoscedastic task uncertainty values. Only an ap-

proximate initial guess is required, we arbitrarily use initial

values of ŝx = 0.0, ŝq = −3.0, for all scenes.

3.3.4 Learning from geometric reprojection error

Perhaps a more desirable loss is one that does not require

balancing of rotational and positional quantities at all. Re-

projection error of scene geometry is a representation which

combines rotation and translation naturally in a single scalar

loss [14]. Reprojection error is given by the residual be-

tween 3-D points in the scene projected onto a 2-D image

plane using the ground truth and predicted camera pose. It

therefore converts rotation and translation quantities into

image coordinates. This naturally weights translation and

rotation quantities depending on the scene and camera ge-

ometry.

To formulate this loss, we first define a function, π,

which maps a 3-D point, g, to 2-D image coordinates,

(u, v)T :

π(x,q,g) 7→

(

u
v

)

(5)

where x and q represent the camera position and orienta-

tion. This function, π, is defined as:





u′

v′

w′



 = K(Rg + x),

(

u
v

)

=

(

u′/w′

v′/w′

)

(6)

where K is the intrinsic calibration matrix of the camera,

and R is the mapping of q to its SO(3) rotation matrix,

q
4×1

7→ R3×3.

We formulate this loss by taking the norm of the repro-

jection error between the predicted and ground truth camera

pose. We take the subset, G′, of all 3-D points in the scene,

G, which are visible in the image I . The final loss (7) is

given by the mean of all the residuals from points, gi ∈ G′:

Lg(I) =
1

|G′|

∑

gi∈G′

‖π(x,q,gi)− π(x̂, q̂,gi)‖γ (7)

where x̂ and q̂ are the predicted camera poses from

PoseNet, with x and q the ground truth label, with norm,

γ, which is discussed in Section 3.3.5.

Note that because we are projecting 3-D points using

both the ground truth and predicted camera pose we can

apply any arbitrary camera model, as long as we use the

same intrinsic parameters for both cameras. Therefore for

simplicity, we set the camera intrinsics, K, to the identity

matrix – camera calibration is not required.

This loss implicitly combines rotation and translational

quantities into image coordinates. Minimising reprojec-

tion error is often the most desirable balance between these

quantities for many applications, such as augmented reality.

The key advantage of this loss is that it allows the model

to vary the weighting between position and orientation, de-

pending on the specific geometry in the training image. For

example, training images with geometry which is far away

would balance rotational and translational loss differently

to images with geometry very close to the camera.

Interestingly, when experimenting with the original

weighted loss in (2) we observed that the hyperparameter

β was an approximate function of the scene geometry. We

observed that it was a function of the landmark distance and

size in the scene. Our intuition was that the optimal choice

for β was approximating the reprojection error in the scene

geometry. For example, if the scene is very far away, then

rotation is more significant than translation and vice versa.

This function is not trivial to model for complex scenes with

a large number of landmarks. It will vary significantly with

each training example in the dataset. By learning with re-

projection error we can use our knowledge of the scene ge-

ometry more directly to automatically infer this weighting.

Projecting geometry through a projection model is a

differentiable operation involving matrix multiplication.

Therefore we can use this loss to train our model with

stochastic gradient descent. It is important to note that

we do not need to know the intrinsic camera parameters to

project this 3-D geometry. This is because we apply the

same projection to both the model prediction and ground

truth measurement, so we can use arbitrary values.

It should be noted that we need to have some knowledge

of the scene’s geometry in order to have 3-D points to repro-

ject. The geometry is often known; if our data is obtained

through structure from motion, RGBD data or other sensory

data (see Section 4.1). Only points from the scene which

are visible in the image I are used to compute the loss. We

also found it was important for numerical stability to ignore

points which are projected outside the image bounds.

3.3.5 Regression norm

An important choice for these losses is the regression norm,

‖ ‖γ . Typically, deep learning models use an L1 = ‖ ‖
1

or

L2 = ‖ ‖
2
. We can also use robust norms such as Huber’s

loss [16] and Tukey’s loss [15], which have been success-

fully applied to deep learning [5]. For camera pose regres-

sion, we found that they negatively impacted performance

by over-attenuating difficult examples. We suspect that for

more noisy datasets these robust regression functions might

be beneficial. With the datasets used in this paper, we found

the L1 norm to perform best and therefore use use γ = 1.

It does not increase quadratically with magnitude or over-

attenuate large residuals.
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(a) 7 Scenes Dataset - 43,000 images from seven scenes in small indoor environments [46].

(b) Cambridge Landmarks Dataset - over 10,000 images from six scenes around Cambridge, UK [22].

(c) Dubrovnik 6K Dataset - 6,000 images from a variety of camera types in Dubrovnik, Croatia [29].

Figure 3: Example images randomly chosen from each dataset. This illustrates the wide variety of settings and scales and the challenging

array of environmental factors such as lighting, occlusion, dynamic objects and weather which are captured in each dataset.

Dataset Type Scale Imagery Scenes Train Images Test Images 3-D Points Spatial Area

7 Scenes [46] Indoor Room RGB-D sensor (Kinect) 7 26,000 17,000 - 4×3m

Cambridge Landmarks [22] Outdoor Street Mobile phone camera 6 8,380 4,841 2,097,191 100×500m

Dubrovnik 6K [26] Outdoor Small town Internet images (Flikr) 1 6,044 800 2,106,456 1.5×1.5km

Table 1: Summary of the localisation datasets used in this paper’s experiments. These datasets are all publicly available. They

demonstrate our method’s performance over a range of scales for both indoor and outdoor applications.

4. Experiments

To train and benchmark our model on a number of

datasets we rescale the input images such that the short-

est side is of length 256. We normalise the images so that

input pixel intensities range from −1 to 1. We train our

PoseNet architecture using an implementation in Tensor-

Flow [1]. All models are optimised end-to-end with ADAM

[23] using the default parameters and a learning rate of

1 × 10−4. We train each model until the training loss con-

verges. We use a batch size of 64 on a NVIDIA Titan X

(Pascal) GPU, training takes approximately 20k - 100k iter-

ations, or 4 hours - 1 day.
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Cambridge Landmarks, King’s College [22] Dubrovnik 6K [29]

Median Error Accuracy Median Error Accuracy

Loss function x [m] q [◦] < 2m, 5◦ [%] x [m] q [◦] < 10m, 10◦ [%]

Linear sum, β = 500 (2) 1.52 1.19 65.0% 13.1 4.68 30.1%

Learn weighting with homoscedastic uncertainty (3) 0.99 1.06 85.3% 9.88 4.73 41.7%

Reprojection loss does not converge

Learn weighting pretraining 7→ Reprojection loss (7) 0.88 1.04 90.3% 7.90 4.40 48.6%

Table 2: Comparison of different loss functions. We use an L1 distance for the residuals in each loss. Linear sum combines position and

orientation losses with a constant scaling parameter β [19] and is defined in (2). Learn weighting is the loss function in (3) which learns to

combine position and orientation using homoscedastic uncertainty. Reprojection error implicitly combines rotation and translation by using

the reprojection error of the scene geometry as the loss (7). We find that homoscedastic uncertainty is able to learn an effective weighting

between position and orientation quantities. The reprojection loss was not able to converge from random initialisation. However, when

used to fine-tune a network pretrained with (3) it yields the best results.

4.1. Datasets

Deep learning performs extremely well on large datasets.

However annotating ground truth labels on these datasets is

often expensive or very labour intensive. We can leverage

structure from motion [48], or similar algorithms [46], to

autonomously generate training labels (camera poses) from

image data [22]. We use three datasets to benchmark our

approach. These datasets are summarised in Table 1 and ex-

ample imagery is shown in Figure 3. We use these datasets

to demonstrate our method’s performance across a range of

settings and scales. We endeavour to demonstrate the gen-

eral applicability of the approach.

Cambridge Landmarks [22] provides labelled video

data to train and test pose regression algorithms in an out-

door urban setting. It was collected using a smart phone

and structure from motion was used to generate the pose la-

bels [56]. Significant urban clutter such as pedestrians and

vehicles were present and data was collected from many

different points in time representing different lighting and

weather conditions. Train and test images are taken from

distinct walking paths and not sampled from the same tra-

jectory making the regression challenging.

7 Scenes [46] is an indoor dataset which was collected

with a Kinect RGB-D sensor. Ground truth poses were

computed using Kinect Fusion [46]. The dataset contains

seven scenes which were captured around an office build-

ing. Each scene typically consists of a single room. The

dataset was originally created for RGB-D relocalization. It

is extremely challenging for purely visual relocalization us-

ing SIFT-like features, as it contains many ambiguous tex-

tureless features.

Dubrovnik 6K [26] is a dataset consisting of 6,044 train

and 800 test images which were obtained from the internet.

They are taken from Dubrovnik’s old town in Croatia which

is a UNESCO world heritage site. The images are predom-

inantly captured by tourists with a wide variety of camera

types. Ground truth poses for this dataset were computed

using structure from motion.

4.2. Comparison of loss functions

In Table 2 we compare different combinations of losses

and regression norms. We compare results for a scene in the

Cambridge Landmarks dataset [22] and the Dubrovnik 6K

dataset [26], which has imagery from a range of cameras.

We find that modelling homoscedastic uncertainty with

the loss in (3) is able to effectively learn a weighting be-

tween position and orientation. It outperforms the constant

weighting used in loss (2). The reprojection loss in (7) is

unable to train the model from a random initialisation. We

observe that the model gets stuck in a poor local minima,

when using any of the regression norms. However, the re-

projection loss is able to improve localisation performance

when using weights pretrained with any of the other losses.

For example, we can take the best performing model using

the loss from (3) and fine tune with the reprojection loss

(7). We observe that this loss is then able to converge ef-

fectively. This shows that the reprojection loss is not robust

to large residuals. This is because reprojected points can

be easily placed far from the image centre if the network

makes a poor pose prediction. Therefore, we recommend

the following two-step training scheme:

1. Train the model using the loss in (3), learning the

weighting between position and orientation.

2. If the scene geometry is known (for example from

structure from motion or RGBD camera data) then

fine-tune the model using the reprojection loss in (7).

4.3. Benchmarking localisation accuracy

In Table 3 we show that our geometry based loss

outperforms the original PoseNet’s naive loss function

[22]. We observe a consistent and significant improvement

across both indoor 7 Scenes outdoor Cambridge Landmarks

datasets. We conclude that we can simultaneously learn

both position and orientation more effectively by consid-

ering scene geometry. The improvement is notably more

pronounced for the 7Scenes dataset. We believe this is

due to the significantly larger amount of training data for
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Area or Active Search PoseNet Bayesian PoseNet PoseNet (this work) PoseNet (this work)

Scene Volume (SIFT) [43] (β weight) [22] PoseNet [19] Spatial LSTM [54] Learn σ2 Weight Geometric Reprojection

Great Court 8000m2 – – – – 7.00m, 3.65◦ 6.83m, 3.47◦

King’s College 5600m2 0.42m, 0.55◦ 1.66m, 4.86◦ 1.74m, 4.06◦ 0.99m, 3.65◦ 0.99m, 1.06◦ 0.88m, 1.04◦

Old Hospital 2000m2 0.44m, 1.01◦ 2.62m, 4.90◦ 2.57m, 5.14◦ 1.51m, 4.29◦ 2.17m, 2.94◦ 3.20m, 3.29◦

Shop Façade 875m2 0.12m, 0.40◦ 1.41m, 7.18◦ 1.25m, 7.54◦ 1.18m, 7.44◦ 1.05m, 3.97◦ 0.88m, 3.78◦

St Mary’s Church 4800m2 0.19m, 0.54◦ 2.45m, 7.96◦ 2.11m, 8.38◦ 1.52m, 6.68◦ 1.49m, 3.43◦ 1.57m, 3.32◦

Street 50000m2 0.85m, 0.83◦ – – – 20.7m, 25.7◦ 20.3m, 25.5◦

Chess 6m3 0.04m, 1.96◦ 0.32m, 6.60◦ 0.37m, 7.24◦ 0.24m, 5.77◦ 0.14m, 4.50◦ 0.13m, 4.48◦

Fire 2.5m3 0.03m, 1.53◦ 0.47m, 14.0◦ 0.43m, 13.7◦ 0.34m, 11.9◦ 0.27m, 11.8◦ 0.27m, 11.3◦

Heads 1m3 0.02m, 1.45◦ 0.30m, 12.2◦ 0.31m, 12.0◦ 0.21m, 13.7◦ 0.18m, 12.1◦ 0.17m, 13.0◦

Office 7.5m3 0.09m, 3.61◦ 0.48m, 7.24◦ 0.48m, 8.04◦ 0.30m, 8.08◦ 0.20m, 5.77◦ 0.19m, 5.55◦

Pumpkin 5m3 0.08m, 3.10◦ 0.49m, 8.12◦ 0.61m, 7.08◦ 0.33m, 7.00◦ 0.25m, 4.82◦ 0.26m, 4.75◦

Red Kitchen 18m3 0.07m, 3.37◦ 0.58m, 8.34◦ 0.58m, 7.54◦ 0.37m, 8.83◦ 0.24m, 5.52◦ 0.23m, 5.35◦

Stairs 7.5m3 0.03m, 2.22◦ 0.48m, 13.1◦ 0.48m, 13.1◦ 0.40m, 13.7◦ 0.37m, 10.6◦ 0.35m, 12.4◦

Table 3: Median localization results for the Cambridge Landmarks [22] and 7 Scenes [46] datasets. We compare the performance of

various RGB-only algorithms. Active search [43] is a state-of-the-art traditional SIFT keypoint based baseline. We demonstrate a notable

improvement over PoseNet’s [22] baseline performance using the learned σ2 and reprojection error proposed in this paper, narrowing the

margin to the state of the art SIFT technique.

each scene in this dataset, compared with Cambridge Land-

marks. We also outperform the improved PoseNet archi-

tecture with spatial LSTMs [54]. However, this method

is complimentary to the loss functions in this paper, and it

would be interesting to explore the union of these ideas.

We observe a difference in relative performance between

position and orientation when optimising with respect to re-

projection error (7) or homoscedastic uncertainty (3). Over-

all, optimising reprojection loss improves rotation accuracy,

sometimes at the expense of some positional precision.

4.4. Comparison to SIFTfeature approaches

Table 3 also compares to a state-of-the-art traditional

SIFT feature based localisation algorithm, Active Search

[43]. This method outperforms PoseNet, and is effec-

tive in feature-rich outdoor environments. However, in the

7Scenes dataset this deficit is less pronounced. The indoor

scenes contain much fewer point features and there is signif-

icantly more training data. As an explanation for the deficit

in these results, PoseNet only uses 256× 256 pixel images,

while SIFT based methods require images of a few mega-

pixels in size [43]. Additionally, PoseNet is able to localise

an image in 5ms, scaling constantly with scene area, while

traditional SIFT feature approaches require over 100ms,

and scale with scene size [43].

In Table 4 we compare our approach on the Dubrovnik

dataset to other geometric techniques which localise by reg-

istering SIFT features [30] to a large 3-D model [26]. Al-

though our method improves significantly over the original

PoseNet model, it is still yet to reach the fine grained accu-

racy of these methods [50, 57, 41, 29]. We hypothesise that

this is due to a lack of training data, with only 6k images

across the town. However, our algorithm is significantly

Position Orientation

Method Mean [m] Median [m] Mean [◦] Median [◦]

PoseNet (this work) 40.0 7.9 11.2 4.4

APE [50] - 0.56 - -

Voting [57] - 1.69 - -

Sattler, et al. [41] 14.9 1.3 - -

P2F [29] 18.3 9.3 - -

Table 4: Localisation results on the Dubrovnik dataset [26],

comparing to a number of state-of-the-art point-feature tech-

niques. Our method is the first deep learning approach to bench-

mark on this challenging dataset. We achieve comparable perfor-

mance, while our method only requires a 256×256 pixel image

and is much faster to compute.

faster than these approaches. Furthermore, it is worth not-

ing that PoseNet only sees a 256 × 256 resolution image,

while these methods register the full size images, often with

a few million pixels.

5. Conclusions

We have investigated a number of loss functions for

learning to regress position and orientation simultaneously

with scene geometry. We present an algorithm for training

PoseNet which does not require any hyper-parameter tun-

ing. We demonstrate PoseNet’s efficacy on three large scale

datasets. We observe a large improvement of results com-

pared to the original loss proposed by PoseNet, narrowing

the performance gap to traditional point-feature approaches.

For many applications which require localization, such

as mobile robotics, video data is readily available. Ulti-

mately, we would like to extend the architecture to video

input with further use of multi-view stereo [14].
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