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Abstract

Regularization-based image restoration has remained an

active research topic in image processing and computer vi-

sion. It often leverages a guidance signal captured in dif-

ferent fields as an additional cue. In this work, we present a

general framework for image restoration, called deeply ag-

gregated alternating minimization (DeepAM). We propose

to train deep neural network to advance two of the steps in

the conventional AM algorithm: proximal mapping and β-

continuation. Both steps are learned from a large dataset

in an end-to-end manner. The proposed framework enables

the convolutional neural networks (CNNs) to operate as a

regularizer in the AM algorithm. We show that our learned

regularizer via deep aggregation outperforms the recent

data-driven approaches as well as the nonlocal-based meth-

ods. The flexibility and effectiveness of our framework are

demonstrated in several restoration tasks, including single

image denoising, RGB-NIR restoration, and depth super-

resolution.

1. Introduction

Image restoration is a process of reconstructing a clean

image from a degraded observation. The observed data is

assumed to be related to the ideal image through a forward

imaging model that accounts for noise, blurring, and sam-

pling. However, a simple modeling only with the observed

data is insufficient for an effective restoration, and thus a

priori constraint about the solution is commonly used. To

this end, the image restoration is usually formulated as an

energy minimization problem with an explicit regulariza-

tion function (or regularizer). Recent work on joint restora-

tion leverages a guidance signal, captured from different de-

vices, as an additional cue to regularize the restoration pro-

cess. These approaches have been successfully applied to

various applications including joint upsampling [11], cross-

field noise reduction [32], dehazing [31], and intrinsic im-
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age decomposition [8].

The regularization-based image restoration involves the

minimization of non-convex and non-smooth energy func-

tionals for yielding high-quality restored results. Solving

such functionals typically requires a huge amount of itera-

tions, and thus an efficient optimization is preferable where

the runtime is crucial. One of the most popular optimiza-

tion methods is the alternating minimization (AM) algo-

rithm [34] that introduces auxiliary variables. The energy

functional is decomposed into a series of subproblems that

is relatively simple to optimize, and the minimum with re-

spect to each of the variables is then computed. For the im-

age restoration, the AM algorithm has been widely adopted

with various regularization functions, e.g., total variation

[34], L0 norm [36], and Lp norm (hyper-Laplacian) [16].

It is worth noting that these functions are all handcrafted

models. The hyper-Laplacian of image gradients [16] re-

flects the statistical property of natural images relatively

well, but the restoration quality of gradient-based regular-

ization methods using the handcrafted model is far from

that of the state-of-the-art approaches [9, 30]. In general,

it is non-trivial to design an optimal regularization function

for a specific image restoration problem.

Over the past few years, several attempts have been

made to overcome the limitation of handcrafted regular-

izer by learning the image restoration model from a large-

scale training data [9, 30, 38]. In this work, we propose

a novel method for image restoration that effectively uses

a data-driven approach in the energy minimization frame-

work, called deeply aggregated alternating minimization

(DeepAM). Contrary to existing data-driven approaches

that just produce the restoration results from the convolu-

tional neural networks (CNNs), we design the CNNs to im-

plicitly learn the regularizer of the AM algorithm. Since

the CNNs are fully integrated into the AM procedure, the

whole networks can be learned simultaneously in an end-to-

end manner. We show that our simple model learned from

the deep aggregation achieves better results than the recent

data-driven approaches [9,17,30] as well as the state-of-the-

art nonlocal-based methods [10, 12].
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Our main contributions can be summarized as follows:

• We design the CNNs to learn the regularizer of the AM

algorithm, and train the whole networks in an end-to-

end manner.

• We introduce the aggregated (or multivariate) mapping

in the AM algorithm, which leads to a better restora-

tion model than the conventional point-wise proximal

mapping.

• We extend the proposed method to joint restoration

tasks. It has broad applicability to a variety of restora-

tion problems, including image denoising, RGB/NIR

restoration, and depth super-resolution.

2. Related Work

Regularization-based image restoration Here, we pro-

vide a brief review of the regularization-based image

restoration. The total variation (TV) [34] has been widely

used in several restoration problems thanks to its convex-

ity and edge-preserving capability. Other regularization

functions such as total generalized variation (TGV) [4]

and Lp norm [16] have also been employed to penalize

an image that does not exhibit desired properties. Beyond

these handcrafted models, several approaches have been at-

tempted to learn the regularization model from training data

[9, 30]. Schmidt et al. [30] proposed a cascade of shrink-

age fields (CSF) using learned Gaussian RBF kernels. In

[9], a nonlinear diffusion-reaction process was modeled by

using parameterized linear filters and regularization func-

tions. Joint restoration methods using a guidance image

captured under different configurations have also been stud-

ied [3, 11, 17, 31]. In [3], an RGB image captured in dim

light was restored using flash and non-flash pairs of the

same scene. In [11, 15], RGB images was used to assist the

regularization process of a low-resolution depth map. Shen

et al. [31] proposed to use dark-flashed NIR images for the

restoration of noisy RGB image. Li et al. used the CNNs to

selectively transfer salient structures that are consistent in

both guidance and target images [17].

Use of energy minimization models in deep network

The CNNs lack imposing the regularity constraint on ad-

jacent similar pixels, often resulting in poor boundary lo-

calization and spurious regions. To deal with these issues,

the integration of energy minimization models into CNNs

has received great attention [24–26, 37]. Ranftl et al. [24]

defined the unary and pairwise terms of Markov Random

Fields (MRFs) using the outputs of CNNs, and trained net-

work parameters using the bilevel optimization. Similarly,

the mean field approximation for fully connected condi-

tional random fields (CRFs) was modeled as recurrent neu-

ral networks (RNNs) [37]. A nonlocal Huber regularization
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Figure 1: Illustrations of the regularization function Φ (left)

and the corresponding proximal mapping (right). The main

purpose of this mapping is to remove Duk with a small

magnitude, since they are assumed to be caused by noise.

Instead of such handcrafted regularizers, we implicitly pa-

rameterize the regularization function using the deep aggre-

gation, leading to a better restoration algorithm.

was combined with CNNs for a high quality depth restora-

tion [25]. Riegler et al. [26] integrated anisotropic TGV into

the top of deep networks. They also formulated the bilevel

optimization problem and trained the network in an end-to-

end manner by unrolling the TGV minimization. Note that

the bilevel optimization problem is solvable only when the

energy minimization model is convex and is twice differ-

entiable [24]. The aforementioned methods try to integrate

handcrafted regularization models into top of the CNNs. In

contrast, we design the CNNs to parameterize the regular-

ization process in the AM algorithm.

3. Background and Motivation

The regularization-based image reconstruction is a pow-

erful framework for solving a variety of inverse problems

in computational imaging. The method typically involves

formulating a data term for the degraded observation and a

regularization term for the image to be reconstructed. An

output image is then computed by minimizing an objective

function that balances these two terms. Given an observed

image f and a balancing parameter λ, we solve the corre-

sponding optimization problem1:

argmin
u

λ

2
‖u− f‖

2
+Φ(Du). (1)

Du denotes the [Dxu,Dyu], where Dx (or Dy) is a discrete

implementation of x-derivative (or y-derivative) of the im-

age. Φ is a regularization function that enforces the out-

put image u to meet desired statistical properties. The un-

constrained optimization problem of (1) can be solved us-

ing numerous standard algorithms. In this paper, we fo-

cus on the additive form of alternating minimization (AM)

1For the super-resolution, we treat f as the bilinearly upsampled image

from the low-resolution input.
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(a) Noisy input (b) TV [34] (c) CSF [30] (d) Ours (e) Reference

Figure 2: Examples of single image denoising: (a) input image, (b) TV [34], (c) CSF [30], and (d) ours. (e) is obtained after

one step of the AM iteration using Du∗ with λ = 5, where u∗ is a noise-free image. Our deeply aggregated AM outperforms

existing point-wise mapping operators.

method [34], which is the ad-hoc for a variety of problems

in the form of (1).

3.1. Alternating Minimization

The idea of AM method is to decouple the data and reg-

ularization terms by introducing a new variable v and to

reformulate (1) as the following constrained optimization

problem:

min
u,v

λ

2
‖u− f‖

2
+Φ(v), subject to v = Du. (2)

We solve (2) by using the penalty technique [34], yielding

the augmented objective function.

min
u,v

λ

2
‖u− f‖

2
+Φ(v) +

β

2
‖Du− v‖

2
, (3)

where β is the penalty parameter. The AM algorithm con-

sists of repeatedly performing the following steps.

vk+1 = argmin
v

Φ(v) + βk

2

∥

∥Duk − v
∥

∥

2
,

uk+1 = argmin λ
2

u

‖u− f‖
2
+ βk

2

∥

∥Du− vk+1
∥

∥

2
,

βk+1 = αβk,

(4)

where α > 1 is a continuation parameter. When β is large

enough, the variable v approaches Du, and thus (3) con-

verges to the original formulation (1).

3.2. Motivation

Minimizing the first step in (4) varies depending on the

choices of the regularization function Φ and β. This step

can be regarded as the proximal mapping [22] of Duk as-

sociated with Φ. When Φ is the sum of L1 or L0 norm, it

amounts to soft or hard thresholding operators (see Fig. 1

and [22] for various examples of this relation). Such map-

ping operators may not unveil the full potential of the op-

timization method of (4), since Φ and β are chosen man-

ually. Furthermore, the mapping operator is performed for

each pixel individually, disregarding spatial correlation with

neighboring pixels.

Building upon this observation, we propose the new

approach in which the regularization function Φ and the

penalty parameter β are learned from a large-scale training

dataset. Different from the point-wise proximal mapping

based on the handcrafted regularizer, the proposed method

learns and aggregates the mapping of Duk through CNNs.

4. Proposed Method

In this section, we first introduce the DeepAM for a sin-

gle image restoration, and then extend it to joint restoration

tasks. In the following, the subscripts i and j denote the

location of a pixel (in a vector form).

4.1. Deeply Aggregated AM

We begin with some intuition about why our learned and

aggregated mapping is crucial to the AM algorithm. The

first step in (4) maps Duk with a small magnitude into zero

since it is assumed that they are caused by noise, not an

original signal. Traditionally, this mapping step has been

applied in a point-wise manner, not to mention whether it is

learned or not. With Φ(v) =
∑

i φ(vi), Schmidt et al. [30]

modeled the point-wise mapping function as Gaussian RBF

kernels, and learned their mixture coefficients2. Contrar-

ily, we do not presume any property of Φ. We instead train

the multivariate mapping process (Duk → vk+1) associ-

ated with Φ and β by making use of the CNNs. Figure 2

shows the denoising examples of TV [34], CSF [30], and

ours. Our method outperforms other methods using the

point-wise mapping based on handcrafted model (Fig. 2(b))

or learned model (Fig. 2(c)) (see the insets).

We reformulate the original AM iterations in (4) with the

2When Φ(v) =
∑

i
φ(vi), the first step in (4) is separable with respect

to each vi. Thus, it can be modeled by point-wise operation.
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Figure 3: One iteration of our model consists of four major components: deep aggregation network, guidance network, γ-

parameter network, and reconstruction layer. The spatially varying γ is estimated by exploiting features from intermediate

layers of the deep aggregation network. All of these sub-networks are cascaded by iterating (5) and (6), and the final output

is then entered into the loss layer.

following steps3.

(

vk+1, γk+1
)

⇐ DCNN (uk, wk
u), (5)

uk+1 = argmin
u

‖Γk+1(u− f)‖2 + ‖Du− vk+1‖2, (6)

where DCNN (·, wk
u) denotes a convolutional network pa-

rameterized by wk
u and Γk+1 = diag(γk+1). Note that β

is completely absorbed into the CNNs, and fused with the

balancing parameter γ (which will also be learned). vk+1

is estimated by deeply aggregating uk through CNNs. This

formulation allows us to turn the optimization procedure in

(1) into a cascaded neural network architecture, which can

be learned by the standard back-propagation algorithm [20].

The solution of (6) satisfies the following linear system:

Luk+1 = Γk+1f +DT vk+1, (7)

where the Laplacian matrix L = (Γk+1 +DTD). It can be

seen that (7) plays a role of naturally imposing the spatial

and appearance consistency on the intermediate output im-

age uk+1 using a kernel matrix Aij = L−1
ij [37]. The linear

system of (7) becomes the part of deep neural network (see

Fig. 3). When γ is a constant, the block Toeplitz matrix L is

diagonalizable with the fast Fourier transform (FFT). How-

ever, in our framework, the direct application of FFT is not

feasible since γ is spatially varying for the adaptive regular-

ization. Fortunately, the matrix L is still sparse and positive

semi-definite as the simple gradient operator D is used. We

adopt the preconditioned conjugate gradient (PCG) method

to solve the linear system of (7). The incomplete Cholesky

factorization [1] with zero fill is used for the preconditioner.

3The gradient operator D is absorbed into the CNNs.

(a) u1 (b) u2 (c) u3

(d) ‖v1‖ (e) ‖v2‖ (f) ‖v3‖

Figure 4: The denoising results obtained by our DeepAM

(trained with K = 3 iterations jointly in Fig 3). See the text

for details.

Very recently, Chan et al. [7] replaced the proximal map-

ping in (4) with an off-the-shelf image denoising algorithm

Dσ , e.g., nonlocal means [5], as follows:

vk+1 ⇐ Dσ(Duk+1). (8)

Although this is conceptually similar to our aggregation ap-

proach4, the operator Dσ in [7] still relies on the handcrafted

model. Figure 3 shows the proposed learning model for im-

age restoration tasks. The DeepAM, consisting of deep ag-

gregation network, γ-parameter network, guidance network

(which will be detailed in next section), and reconstruction

layer, is iterated K times, followed by the loss layer.

4Aggregation using neighboring pixels are commonly used in state-of-

the-arts denoising methods.
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Figure 4 shows the denoising result of our method. Here,

it is trained with three passes of DeepAM. The input im-

age is corrupted by Gaussian noise with standard deviation

σ = 25. We can see that as iteration proceeds, the high-

quality restoration results are produced. The trained net-

works in the first and second iterations remove the noise,

but intermediate results are over smoothed (Figs. 4(a) and

(b)). The high-frequency information is then recovered

in the last network (Fig. 4(c)). To analyze this behavior,

let us date back to the existing soft-thresholding operator,

vk+1
i = max{|Duk|i − 1/βk, 0}sign(Du)i in [34]. The

conventional AM method sets β as a small constant and

increases it during iterations. When β is small, the range

of v is shrunk, penalizing large gradient magnitudes. The

high-frequency details of an image are recovered as β in-

creases. Interestingly, the DeepAM shows very similar be-

havior (Figs. 4(d)-(f)), but outperforms the existing methods

thanks to the aggregated mapping through the CNNs, as will

be validated in experiments.

4.2. Extension to Joint Restoration

In this section, we extend the proposed method to joint

restoration tasks. The basic idea of joint restoration is to

provide structural guidance, assuming structural correlation

between different kinds of feature maps, e.g., depth/RGB

and NIR/RGB. Such a constraint has been imposed on the

conventional mapping operator by considering structures of

both input and guidance images [15]. Similarly, one can

modify the deeply aggregated mapping of (5) as follows:

(

vk+1, γk+1
)

⇐ DCNN ((uk ⊗ g), wk
u), (9)

where g is a guidance image and ⊗ denotes a concatena-

tion operator. However, we find such early concatenation to

be less effective since the guidance image mixes heteroge-

neous data. This coincides with the observation in the liter-

ature of multispectral pedestrian detection [18]. Instead, we

adopt the halfway concatenation similar to [17,18]. Another

sub-network DCNN (g, wk
g ) is introduced to extract the ef-

fective representation of the guidance image, and it is then

combined with intermediate features of DCNN (uk, wk
u).

4.3. Learning Deeply Aggregated AM

Network architecture We observed that when training

the CNNs using the input and denoised images directly, a

deeper network does not necessarily produce better results.

However, our network produces a sparse gradient map in-

stead of the denoised image itself as shown in Fig. 4. This

allows our network to be easily trained since it does not

need to carry the input information through the whole net-

work. Based on this observation, we chose to use deeper ar-

chitectures with small convolutional kernels, achieving best

performances.
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Figure 5: Figure in left shows the convergence of the PCG

solver. A small number of PCG iterations are enough for

the back-propagation. The results of the MATLAB back-

slash is plotted in the origin. The table in right compares

the runtime of PCG with 10 iterations and direct solver.

The deep aggregation network consists of 10 convolu-

tional layers with 3×3 filters (a receptive field is of 21×21).

Each hidden layer of the network has 64 feature maps.

Since v contains both positive and negative values, the rec-

tified linear unit (ReLU) is not used for the last layer. The

input distributions of all convolutional layers are normal-

ized to the standard Gaussian distribution [21]. The output

channel of the deep aggregation network is 2 for the hori-

zontal and vertical gradients. We also extract the spatially

varying γ by exploiting features from the eighth convolu-

tional layer of the deep aggregation network. The ReLU

is used for ensuring the positive values of γ. For joint im-

age restoration, the guidance network consists of 3 convo-

lutional layers, where the filters operate on 3 × 3 spatial

region. It takes the guidance image g as an input, and ex-

tracts a feature map which is then concatenated with the

third convolutional layer of the deep aggregation network.

Training The DeepAM is learned via standard back-

propagation algorithm [20]. We do not require the compli-

cated bilevel formulation [24, 26]. Given M training image

pairs {f (p), g(p), t(p)}Mp=1, we learn the network parameters

by minimizing the L1 loss function.

L =
1

M

∑

p

‖u(p) − t(p)‖1, (10)

where t(p) and u(p) denote the ground truth image and the

output of the last reconstruction layer in (7), respectively.

We use the stochastic gradient descent (SGD) to minimize

the loss function of (10). The derivative for the back-

propagation is obtained as follows:

∂L(p)

∂u(p)
= sign(u(p) − t(p)). (11)

To learn the parameters in the network, we need the deriva-

tives of the loss L(p) with respect to v(p) and γ(p). Letting

6423



(a) Noisy input (b) BM3D [10] (c) EPLL [38] (d) MLP [6] (e) TRD [9] (f) WNNM [12] (g) DeepAM(3)

Figure 6: Denoising examples with σ =50. (from left to right) noisy input, BM3D [10], EPLL [38], MLP [6], TRD [9],

WNNM [12], and DeepAM(3). The input image is from the BSD68 [27].

Table 1: The PSNR results on 12 images (σ = 25). The CSF [30] and TRD [9] run 5 stages with 7× 7 kernels.

C. Man House Pepp. Starf. Fly Airpl. Parrot Lena Barb. Boat Man Couple

BM3D [10] 29.47 32.99 30.29 28.57 29.32 28.49 28.97 32.03 30.73 29.88 29.59 29.70

CSF [30] 29.51 32.41 30.32 28.87 29.69 28.80 28.91 31.87 28.99 29.75 29.68 29.50

EPLL [38] 29.21 32.14 30.12 28.48 29.35 28.66 28.96 31.58 28.53 29.64 29.57 29.46

MLP [6] 29.36 32.53 30.20 28.88 29.73 28.84 29.11 32.07 29.17 29.86 29.79 29.68

TRD [9] 29.71 32.62 30.57 29.05 29.97 28.95 29.22 32.02 29.39 29.91 29.83 29.71

WNNM [12] 29.63 33.39 30.55 29.09 29.98 28.81 29.13 32.24 31.28 29.98 29.74 29.80

DeepAM(3) 29.97 33.35 30.89 29.43 30.27 29.03 29.41 32.52 29.52 30.23 30.07 30.15

b = Γf +DT
x vx +DT

y vy , ∂L(p)

∂b(p)
can be derived from (7):

L
∂L(p)

∂b(p)
=

∂L(p)

∂u(p)
. (12)

We implement b with sum layer which takes v as input, and

thus ∂L(p)

∂v(p) can be expressed as follows:

∂L(p)

∂v(p)
=

[

DxL
−1 ∂L

(p)

∂u(p)
, DyL

−1 ∂L
(p)

∂u(p)

]

. (13)

Similarly for ∂L(p)

∂γ(p) , we have:

∂L(p)

∂γ(p)
=

(

L−1 ∂L
(p)

∂u(p)

)

◦ (f (p) − u(p)), (14)

where “◦” is an element-wise multiplication. Since the loss

L(p) is a scalar value, ∂L(p)

∂γ(p) and ∂L(p)

∂v(p) are N × 1 and N × 2

vectors, respectively, where N is total number of pixels.

More details about the derivations of (13) and (14) are avail-

able in the supplementary material. The system matrix L is

shared in (13) and (14), thus its incomplete factorization is

performed only once.

Figure 5 shows the convergence of the PCG method for

solving the linear system of (12). We find that a few PCG

iterations are enough for the backpropagation. The average

residual on 20 images is 1.3×10−6, after 10 iterations. The

table in Fig. 5 compares the runtime of PCG iterations and

MATLAB backslash (on 256×256 image). The PCG with

10 iterations is about 5 times faster than the direct linear

system solver.

5. Experiments

We jointly train our DeepAM for 20 epochs. From here

on, we call DeepAM(K) the method trained through a cas-

cade of K DeepAM iterations. The MatConvNet library [2]

(with 12GB NVIDIA Titan GPU) is used for network con-

struction and training. The networks are initialized ran-

domly using Gaussian distributions. The momentum and

weight decay parameters are set to 0.9 and 0.0005, respec-

tively. We do not perform any pre-training (or fine-tuning).

The proposed method is applied to single image denoising,

depth super-resolution, and RGB/NIR restoration. The re-

sults for the comparison with other methods are obtained

from source codes provided by the authors.

5.1. Single Image Denoising

We learned the DeepAM(3) from a set of 105, 32 × 32
patches sampled from 200 training images of the BSD300

[19]. Here K was set to 3 as the performance of the

DeepAM(K) converges after 3 iterations (refer to Table 2).

The noise levels were set to σ = 15, 25, and 50. We com-

pared against a variety of recent state-of-the-art techniques,

including BM3D [10], WNNM [12], CSF [30], TRD [9],

EPLL [38], and MLP [6]. The first two methods are based
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Table 2: Average PSNR/SSIM on 68 images from [27] for image denoising with σ = 15, 25, and 50.

σ
PSNR / SSIM

BM3D [10] MLP [6] CSF [30] TRD [9] DeepAM(1) DeepAM(2) DeepAM(3)

15 31.12 / 0.872 - 31.24 / 0.873 31.42 / 0.882 31.40 / 0.882 31.65 / 0.885 31.68 / 0.886

25 28.61 / 0.801 28.84 / 0.812 28.73 / 0.803 28.91 / 0.815 28.95 / 0.816 29.18 / 0.824 29.21 / 0.825

50 25.65 / 0.686 26.00 / 0.708 - 25.96 / 0.701 25.94 / 0.701 26.20 / 0.714 26.24 / 0.716

(a) RGB image (b) ground truth (c) NMRF [23] (d) TGV [11] (e) DJF [17] (f) DeepAM(2)

Figure 7: Depth super-resolution examples (×8): (a) RGB image, (b) ground truth, (c) NMRF [23], (d) TGV [11], (e)

DJF [17], and (f) DeepAM(2).

on the nonlocal regularization and the others are learning-

based approaches.

Table 1 shows the peak signal-to-noise ratio (PSNR) on

the 12 test images [10]. The best results for each image

are highlighted in bold. The DeepAM(3) yields the highest

PSNR results on most images. We could find that our deep

aggregation used in the mapping step outperforms the point-

wise mapping of the CSF [30] by 0.3∼0.5dB. Learning-

based methods tend to have better performance than hand-

crafted models. We, however, observed that the methods

[10, 12] based on the nonlocal regularization usually work

better on images that are dominated by repetitive textures,

e.g., ‘House’ and ‘Barbara’. The nonlocal self-similarity is

a powerful prior on regular and repetitive texture, but it may

lead to inferior results on irregular regions.

Figure 6 shows denoising results using one image from

the BSD68 dataset [27]. The DeepAM(3) visually outper-

forms state-of-the-art methods. Table 2 summarizes an ob-

jective evaluation by measuring average PSNR and struc-

tural similarity indexes (SSIM) [35] on 68 images from the

BSD68 dataset [27]. As expected, our method achieves a

significant improvement over the nonlocal-based method as

well as the recent data-driven approaches.

5.2. Depth Superresolution

Modern depth sensors, e.g. MS Kinect, provide dense

depth measurement in dynamic scene, but typically have a

Table 3: Average BMP (δ =3) on 449 images from the

NYU v2 dataset [33] and on 10 images from the Middle-

bury dataset [29].

BMP (δ =3): NYU v2 [33] / Middlebury [29]

Method ×4 ×8 ×16

NMRF [23] 1.41 / 4.56 4.21 / 7.59 16.25 / 13.22

TGV [11] 1.58 / 5.72 5.42 / 8.82 17.89 / 13.47

SD filter [13] 1.27 / 2.41 3.56 / 5.97 15.43 / 12.18

DJF [17] 0.68 / 3.75 1.92 / 6.37 5.82 / 12.63

DeepAM(2) 0.57 / 3.14 1.58 / 5.78 4.63 / 10.45

low resolution. A common approach to tackle this problem

is to exploit a high-resolution (HR) RGB image as guid-

ance. We applied our DeepAM(2) to this task, and evaluated

it on the NYU v2 dataset [33] and Middlebury dataset [29].

The NYU v2 dataset [33] consists of 1449 RGB-D image

pairs of indoor scenes, among which 1000 image pairs were

used for training and 449 image pairs for testing. Depth val-

ues are normalized within the range [0,255]. To train the

network, we randomly collected 105 RGB-D patch pairs of

size 32× 32 from training set. A low-resolution (LR) depth

image was synthesized by nearest-neighbor downsampling

(×4, ×8, and ×16). The network takes the LR depth image,

which is bilinearly interpolated into the desired HR grid,

and the HR RGB image as inputs.

6425



(a) IR image (b) RGB image (c) Cross-field [31]

(d) DJF [17] (e) DeepAM
(2)
σ=25 (f) DeepAM

(2)
σ=50

Figure 8: RGB/NIR restoration for real-world examples:

(a) RGB image, (b) NIR image, (c) Cross-field [31], (d)

DJF [17], (e) DeepAM(2) trained with σ = 25, and (f)

DeepAM(2) trained with σ = 50. The result of (c) is from

the project webpage of [31].

Figure 7 shows the super-resolution results of NMRF

[23], TGV [11], deep joint image filtering (DJF) [17], and

DeepAM(2). The TGV model [11] uses an anisotropic dif-

fusion tensor that solely depends on the RGB image. The

major drawback of this approach is that the RGB-depth co-

herence assumption is violated in textured surfaces. Thus,

the restored depth image may contain gradients similar to

the color image, which causes texture copying artifacts

(Fig. 7(d)). Although the NMRF [23] combines several

weighting schemes, computed from RGB image, segmen-

tation, and initially interpolated depth, the texture copying

artifacts are still observed (Fig. 7(c)). The NMRF [23] pre-

serves depth discontinuities well, but shows poor results in

smooth surfaces. The DJF [17] avoids the texture copying

artifacts thanks to faithful CNN responses extracted from

both color image and depth map (Fig. 7(e)). However, this

method lacks the regularization constraint that encourages

spatial and appearance consistency on the output, and thus

it over-smooths the results and does not protect thin struc-

tures. Our DeepAM(2) preserves sharp depth discontinu-

ities without notable artifacts as shown in Fig. 7(f). The

quantitative evaluations on the NYU v2 dataset [33] and

Middlebury dataset [29] are summarized in Table 3. The ac-

curacy is measured by the bad matching percentage (BMP)

[29] with tolerance δ =3.

5.3. RGB/NIR Restoration

The RGB/NIR restoration aims to enhance a noisy RGB

image taken under low illumination using a spatially aligned

NIR image. The challenge when applying our model to the

RGB/NIR restoration is the lack of the ground truth data for

training. For constructing a large training data, we used the

indoor IVRL dataset consisting of 400 RGB/NIR pairs [28]

Table 4: The PSNR results with 5 RGB/NIR pairs from

[14]. The noisy RGB images are generated by adding the

synthetic Gaussian noise.

(a) ♯1 (b) ♯2 (c) ♯3 (d) ♯4 (e) ♯5

PSNR

σ = 50 BM3D [10] SD filter [13] Cross-field [31] DeepAM(2)

Sequence 1 31.86 30.97 31.45 32.84

Sequence 2 27.62 26.13 27.59 28.10

Sequence 3 28.08 28.06 28.47 30.43

Sequence 4 26.85 25.65 26.91 28.13

Sequence 5 26.52 26.11 26.98 26.94

Average 28.19 27.38 28.28 29.28

that were recorded under daylight illumination5. Specifi-

cally, we generated noisy RGB images by adding the syn-

thetic Gaussian noise with σ = 25 and 50, and used 300

image pairs for training.

In Table 4, we performed an objective evaluation us-

ing 5 test images in [14]. The DeepAM(2) gives bet-

ter quantitative results than other state-of-the-art methods

[10, 13, 31]. Figure 8 compares the RGB/NIR restoration

results of Cross-field [31], DJF [17], and our DeepAM(2)

on the real-world example. The input RGB/NIR pair was

taken from the project website of [31]. This experiment

shows the proposed method can be applied to real-world

data, although it was trained from the synthetic dataset. It

was reported in [14] that the restoration algorithm designed

(or trained) to work under a daylight condition could also

be used for both daylight and night conditions.

6. Conclusion

We have explored a general framework called the

DeepAM, which can be used in various image restoration

applications. Contrary to existing data-driven approaches

that just produce the restoration result from the CNNs, the

DeepAM uses the CNNs to learn the regularizer of the AM

algorithm. Our formulation fully integrates the CNNs with

an energy minimization model, making it possible to learn

whole networks in an end-to-end manner. Experiments

demonstrate that the deep aggregation in the mapping step

is the critical factor of the proposed learning model. As fu-

ture work, we will further investigate an adversarial loss in

pixel-level prediction tasks.

5This dataset [28] was originally introduced for semantic segmentation.
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