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Abstract

We investigate the problem of estimating the dense 3D

shape of an object, given a set of 2D landmarks and silhou-

ette in a single image. An obvious prior to employ in such

a problem is a dictionary of dense CAD models. Employing

a sufficiently large enough dictionary of CAD models, how-

ever, is in general computationally infeasible. A common

strategy in dictionary learning to encourage generalization

is to allow for linear combinations of dictionary elements.

This too, however, is problematic as most CAD models can-

not be readily placed in global dense correspondence. In

this paper, we propose a two-step strategy. First, we employ

orthogonal matching pursuit to rapidly choose the “clos-

est” single CAD model in our dictionary to the projected

image. Second, we employ a novel graph embedding based

on local dense correspondence to allow for sparse linear

combinations of CAD models. We validate our framework

experimentally in both synthetic and real world scenario

and demonstrate the superiority of our approach to both 3D

mesh reconstruction and volumetric representation.

1. Introduction

Reconstructing the 3D geometry of objects from 2D

images is a fundamental task in computer vision. With

the remarkable success in Structure from Motion (SfM),

which is now capable of reconstructing entire cities us-

ing large-scale photo collections [1] and real-time visual

SLAM on embedded and mobile devices [14], the com-

puter vision community is starting to explore the possibility

of constructing a 3D model of an object from a single im-

age [17, 20, 11, 21, 18]. Since estimating 3D geometry from

a single view is an inherently ill-posed problem, all of these

approaches need to employ some sort of 3D prior. An in-

creasingly popular type of 3D prior are CAD models due to:

(i) their ubiquity online (e.g. 3D warehouse), and (ii) their

dense level of detail.

A 3D CAD model is made up of verticies and edges. Un-
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Figure 1. A toy example of our proposed local dense correspon-

dence graph. The node represents an CAD model shown besides it

and the edge (solid) denotes dense correspondence. The graph is

not fully connected (shown in dashed lines) since global dense cor-

respondence do not exist. However, in some subgraphs, all nodes

are connected by a center, e.g. F connects to all nodes in subgraph

{A, B, C, D, E, F}. This indicates that a dictionary with CAD

models as elements can be established in such subgraphs using

local dense correspondence, which is at the heart of our paper.

fortunately, most CAD models, even those coming from the

same object category, (e.g. chair, table, etc.), do not have

verticies in correspondence or even typically share the same

edge topology. This can be somewhat alleviated through

the manual annotation of common 3D landmarks, but even

this can be cumbersome due to the inherent lack of global

correspondences for certain object categories. For exam-

ple, as shown in Figure 1, the table C and G share the same

coarse landmarks (i.e. shape skeleton) but differ substan-

tially on their finer details such that no meaningful dense

correspondence can be established. Figure 1 shows eight

tables from A to H and the solid lines depict which pairs

of CAD models that can be brought into dense correspon-

14857



dence with one another. One can see that the graph is not

fully connected, verifying the nonexistence of global dense

correspondence for this object category. However, we ob-

serve that some subgraphs (e.g. subgraph {A, B, C, D, E,

F}) are fully connected by a center (F in this case). This

indicates that a dense dictionary can be established in such

subgraphs based on these local dense correspondence. This

insight is the core of our paper.

In this paper, we make the following contributions:

• We propose a novel graph embedding based on the lo-

cal dense correspondence between 3D models, and we

demonstrate that in each subgraph a dense shape dic-

tionary can be established and a sparse linear combina-

tion can be used to create a deformable dense model.

• We propose a two-step coarse-to-fine strategy which

can first rapidly select a subgraph by landmark regis-

tration and second refine camera position and create a

dense model by fitting both landmarks and silhouette.

• Finally, we show empirically the utility of our ap-

proach for estimating fine geometry for various object

categories from a single image. Qualitative and quanti-

tative results are reported on both synthetic and natural

images compared with volumetric representation.

2. Related Work

Reconstructing the 3D geometry of a 2D projected object

from a known category is receiving increasing attention in

the field of computer vision. Due to intra-category variation

(e.g. sedan, coupe, SUV in car category) we consider the

shape of each instance to be inherently deformable and non-

rigid. A common strategy for representing this deformable

prior is through the employment of a 3D dictionary of shape

instances. Kong et al. [9, 10] recently proposed a method

for learning such a 3D dictionary solely from an ensemble

of 2D landmark projections stemming from a known ob-

ject category. Although this work was capable of handling

highly deformable objects, due to the non-convex charac-

teristics of the group-sparse dictionary learning problem, it

was overly sensitive to initialization and landmark noise.

An alternative strategy for learning a robust 3D dictio-

nary is to leverage the increasing availability of 3D CAD

models. Zhou et al. [20] learned a dictionary from a 3D

shape dataset and proposed a convex relaxation technique

to estimate the pose and shape parameters simultaneously

given a single image of 2D projected landmarks. Non-

dictionary strategies have also been entertained, most no-

tably Wu et al. [18] trained a deep network to infer 3D

points from 2D landmarks. Despite their promising results,

all these works, are only capable to reconstruct the sparse

3D skeleton for the objects of interest. This limitation can

be mostly attributed to the difficulty of establishing global

dense correspondence between CAD models of the same

object category (as argued in the introduction).

For the problem of dense 3D shape reconstruction, no-

table examples include [7] and [13] both of which extended

the above methods by employing optical flow in order to

establish denser correspondences. Both of these methods

restricted themselves to less-deformable objects, e.g. faces

and surfaces, thus limiting generalization to the task of 3D

object reconstruction.

More recently, Vicente et al. [16] proposed a framework

utilizing landmarks and silhouette to establish dense convex

hulls for the Pascal VOC imageset. The approach first ini-

tializes camera positions using rigid structure from motion,

and then applies a novel visual hull reconstruction method

to the set of images which are considered to share the same

shape but different viewpoints by assuming such image sur-

rogates always exist in large image sets. A fundamental

issue to this approach, however, is that the inferred 3D re-

construction is rigid. To handle this drawback, Kar et al. [8]

employed a novel dense surface model originating from Ac-

tive Shape Models (ASMs) [6] to estimate a deformable

dense hull for each single image. Although impressive, their

approach is limiting as the process smooths over important

fine details in the reconstructed 3D geometry. Further both

the works require a large number of images stemming from

the same object category.

Another family of works related to our paper is to em-

ploy a volumetric representation through the employment

of deep neural networks [5, 12]. Despite achieving remark-

able results, the volumetric representation itself is problem-

atic due to its low spatial resolution caused by the compu-

tational complexity of training a network with such large

3D signals. A major advantage of our proposed approach

is that the 3D mesh representation of CAD models (using

edges and vertices) is more able to preserve important 3D

detail - as compared to such volumetric methods. A full

comparison of these two representations can be found in

our experimental portion.

3. Overview

Given a single image of a certain object, our method

seeks to estimate camera position and reconstruct a 3D

dense model by utilizing the 2D landmark and silhouette

information. We assume that the landmark positions have

been labeled/detected and the image has been segmented

beforehand. To achieve the goal, we first leverage the

3D CAD models in the object category by building up a

graph, which we refer to as the Local Dense Correspon-

dence (LDC) graph, to describe the dense correspondence

between each pair of CAD models. We then propose a two-

step approach: (1) estimate a coarse camera position and

select the CAD model from the LDC graph to best register

the 2D landmarks; (2) refine the camera position and de-
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Figure 2. Overview of our method. Given a single image with annotated/detected landmarks and silhouette, we build up a local dense

correspondence graph (right), followed by a coarse estimate of camera position and CAD model by landmark registration, and final

refinement creating a deformable dense model to fit both landmarks and silhouette. Best viewed in color.

form the best CAD model by linear combination with its

neighbors in the LDC graph to fit both the landmarks and

the silhouette. Figure 2 shows the proposed LDC graph and

our two-step coarse-to-fine method.

4. Local Dense Correspondence Graph

Local Dense Correspondence (LDC) graph is a directed

graph with CAD models as nodes and the dense correspon-

dence as edges. As each model here is manually and inde-

pendently designed and does not necessarily share the same

number of vertices or the same structure of meshes, dense

correspondence based on vertex matching is not feasible.

Instead, to build up the dense correspondence from model

S1 to S2, we find a matching point on the surface of S2 for

each vertices of S1. Therefore, such correspondence from

S1 to S2 is not identical to that of S2 to S1, implying that

the LDC graph is directed.

4.1. Creating graph

To create the LDC graph, we exploit the non-rigid ICP

algorithm [2] to find a matching point for each vertex.

We propose a distance metric to establish match quality.

More specially, to build up dense correspondence from

S1(V1,E1) to S2(V2,E2) where V,E indicates the ver-

tices and triangulation respectively, we warp the source, S1

in this case, to the target, S2 by non-rigid ICP, such that the

warped S1 can represent the same shape as S2. For conve-

nience, we denote the positions of warped vertices as V
2
1,

and the warped surface as S2
1 (V

2
1,E1), since the triangula-

tion should not change during the warp. We define that if

the warped surface S2
1 represents the target S2 successfully,

the warped vertices V2
1 are the dense correspondence from

S1 to S2. To estimate the success of the warping, in other

words, the similarity between the warped surface and the

target, we propose the following metric1:

1As measuring the similarity between two surfaces is not a main con-

tribution of our paper, we utilize this simple metric. More accurate metrics

including 3D descriptors could be used to boost performance.

E12 =
1

|V2
1
|

∑

vi∈V2

1

e(vi,S2; θ) +
1

|V2|

∑

vi∈V2

e(vi,S
2

1 ; θ),

(1)

where function

e(v,S; θ) =

{

1 if dist(v,S) > θ

0 otherwise.
(2)

The value θ was chosen through a cross-validation such that

consistent LDC graphs are formed across object categories.

Once we have measured warping quality, we establish

dense correspondence according to a predefined threshold.

Warps which score below the threshold are ignored. Note

that, due to failure of nonrigid ICP in some cases, we found

that indirect warping typically does not improve the perfor-

mance. More specifically, given Si, i = 1, 2, 3, the indirect

warping sequence S1 → S2 → S3 typically does not out-

perform the direct deformation S1 → S3. Therefore, when

creating our LDC graph, we only consider direct warping.

Figure 2 (right) shows an example of the proposed LDC

graph, which has 30 nodes and 87 edges. The numbers be-

sides the nodes are the indices of the corresponding CAD

models. The size of nodes showed in the figure is propor-

tional to the number of edges starting from that node. Note

that due to the difficulty of non-rigid matching, not every

edges are bidirectional. This can be caused by many fac-

tors: unbalanced numbers of vertices/meshes between two

nodes, unbalanced sizes between two models and etc.

4.2. LDC subgraphs

Due to the nonexistence of global dense correspondence,

the LDC graph is never fully connected. Therefore, we ex-

plore the local properties and sparsity structure of the LDC

graph in this section. We divide the LDC graph into multi-

ple subgraphs such that each subgraph has a node as center

and contains all nodes that have dense correspondence from

the center. Specifically, denote Ω as an index set pointing to

the nodes in a certain subgraph with Sc as the center. The
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definition of subgraph implies that dense correspondence

V
i
c always exist for any i ∈ Ω. Therefore, a deformable

model S(V,E) can be created by linear combination:

V = ωcVc +
∑

i∈Ω

ωiV
i
c, E = Ec, (3)

where V’s, E’s are matrices containing the vertex posi-

tion and triangulation respectively and ω’s are combination

weights. As a result, each LDC subgraph actually defines

one deformable dense model controlled by the combination

weights ω’s. This insight is at the heart of our paper. Ben-

efiting from this insight, the dense 3D reconstruction task

could be addressed by first searching all subgraphs to find

the best one, and then estimating the weights ω’s.

Before visiting all possible subgraphs, we are curious

how many subgraphs exist there, and how big these sub-

graphs are. From its definition, one can learn that the num-

ber of subgraphs equals to the number of nodes in the LDC

graph2, while the size of it varies from the smallest 1 (the

center itself) to the number of nodes (the whole graph.)

5. Landmark Registration

Given the LDC graph and a single image, we now want

to decide which subgraph or which deformable dense model

is the best option for a dense 3D reconstruction task. Even

though exhaustively searching all possible subgraphs is a

strategy to achieve the best performance, it is, however,

computationally infeasible, especially when using large-

scale 3D model dataset, like ShapeNet [4]. Therefore, in-

stead of visiting all possible subgraphs, we propose a land-

mark registration algorithm to rapidly select the “closest”

single node to the given image, and use the subgraph ex-

tended from this node as the optimal LDC subgraph.

Give the single image I, we assume a certain landmark

detection algorithm has been exploited, such that the 2D

positions of landmarks on the image plane are known as

wp, for p = 1, ..., P . Since some landmarks may not be

visible, due to occlusion or self-occlusion, we denote an

index set, P , to indicate landmark visibility. By using the

weak-perspective projection, we denote R ∈ R
2×3 as the

first two rows of rotation matrix, t as the translation, s as

the scale of camera. We define the i-th column in matrix

Yp ∈ R
3×N , where N is the number of models, as the 3D

position of p-th landmark in i-th model. Instead of trying all

possible candidates exhaustively, we propose to use sparsity

constraint for simultaneously selecting the best CAD model

and estimating the camera paramters:

argmin
R,s,t,c

1

2

∑

p∈P

∥

∥

∥
sRYpc+ t−wp

∥

∥

∥

2

2

s.t. RR
T = I2, ‖c‖0 = 1,

(4)

2As the subgraph is the largest subset of nodes connected from its cen-

ter, one node has and only has one subgraph expanded from it.

where ‖ · ‖0 is the ℓ0 norm and c contains either zero or

one, indicating which model is active. This objective can

be minimized efficiently by Alternating Direction Method

of Multipliers (ADMMs) [3].

From ADMMs, an auxiliary variable Z is introduced and

the Equation 4 can be identically expressed as:

argmin
M,Z,t,c

1

2

∑

p∈P

∥

∥

∥
ZYpc+ t−wp

∥

∥

∥

2

2

s.t. MM
T = s2I2, ‖c‖0 = 1, Z = M,

(5)

where M = sR for convenience. The augmented La-

grangian of Equation 5 is formulated as:

L =
1

2

∑

p∈P

∥

∥

∥
ZYpc+ t−wp

∥

∥

∥

2

2

+

〈Λ,M− Z〉+
ρ

2

∥

∥M− Z
∥

∥

2

F
,

(6)

where Λ is the lagrangian multiplier, ρ is a penalty factor to
control the convergence behavior, and < ·, · > is Frobenius
product of two matrices. ADMMs decomposes an objec-
tive into several sub-problems and iteratively solves them
till convergence occurs [3]. We update Z by:

Z
+ = argmin

Z

L

=
(

∑

p∈P

(wp − t)cTYT
p +Λ+ ρM

)(

∑

p∈P

Ypcc
T
Y

T
p + ρI

)†

,

(7)

and update M by:

M
+ = argmin

M

L = U

[

(σ1 + σ2)/2
(σ1 + σ2)

]

V
T , (8)

where

Z−
1

ρ
Λ = U

[

σ1

σ2

]

V
T , (9)

and update c by:

c = argmin
c

L = argmin
c

1

2

∑

p∈P

∥

∥

∥
ZYpc+ t−wp

∥

∥

∥

2

2
,

s.t. ‖c‖0 = 1,

(10)

which can be solved by Orthogonal Matching Pur-
suit (OMP) [15] efficiently, and update t by:

t = argmin
t

L =

∑

p∈P wp − ZYpc

|P|
, (11)

where |P| indicate the number of visible points, and update
Lagrangian multipliers and penalty factor by:

Λ = Λ+ (M− Z), ρ = min(ρ ∗ τ, ρmax), (12)

where τ is the updating rate, and ρmax is the upper bound

of ρ. The whole algorithm is shown in Algorithm 1.
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Algorithm 1: Landmark registration by ADMMs

Initialize variables: M =

[

1, 0, 0

0, 1, 0

]

, t =

[

0

0

]

,Z = M,Λ = 0;

while not converge do

Update Z by Equation 7;

Update M by Equation 8;

Update c by Equation 10;

Update t by Equation 11;

Update lagrangian multiplier Λ and penalty ρ;

end

6. Silhouette Fitting

After landmark registration, we now have a rough esti-

mate of camera position and a selected node which is con-

sidered to be “closest” to the given image. By treating this

node as center, we extend an LDC subgraph to undertake

our silhouette fitting step. We assume that a certain segmen-

tation method has been executed so that the given image I

has been segmented into foreground and background which

means the silhouette is known. The main idea of this step is

to simultaneously refine camera position and estimate com-

bination weights such that as many vertices of the created

model as possible are projected inside the silhouette.

In particular, by denoting the center as Sc, Ω as the in-

dex set pointing to the nodes in the LDC subgraph, the de-

formable model S(V,E) can be represented by Equation 3

with landmark positions X = ωcXc +
∑

i∈Ω
ωiX

i
c, where

Xc,X
i
c are the 3D position of landmarks on model Sc and

Si
c respectively. The silhouette fitting problem can then be

written as minimizing the energy function, with respect to

the camera estimate R, t3 and combination weights ω’s:

E(R, t,ω)

=
1

2

∑

p∈P

∥

∥

∥
sR

(

ωc[Xc]p +
∑

i∈Ω

ωi[X
i
c]p

)

+ t−wp

∥

∥

∥

2

2

+

µ

N
∑

p=1

C

(

sR
(

ωc[Vc]p +
∑

i∈Ω

ωi[V
i
c]p

)

+ t

)

+
γ

2

∑

i∈Ω

ω2

i ,

(13)

where [·]p is the p-th column of the matrix, N is the num-

ber of vertices, and µ, γ are penalty weights. The first term

is the reprojection error as in Equation 4, the second term

penalizes the vertices whose projection is outside of silhou-

ette, where C is the Chamfer distance map from the seg-

mentation of I, and the third term is an ℓ2 regularization.

By using exponential map to depict the change of rota-

3The scale in camera position is absorbed by ω’s

tion, we can identically express the energy function as

E(ξ, t,ω)

=
1

2

∑

p∈P

∥

∥

∥
sRe[ξ]×

(

ωc[Xc]p +
∑

i∈Ω

ωi[X
i
c]p

)

+ t−wp

∥

∥

∥

2

2
+

µ
N
∑

p=1

C

(

sRe[ξ]×
(

ωc[Vc]p +
∑

i∈Ω

ωi[V
i
c]p

)

+ t

)

+
γ

2

∑

i∈Ω

ω2
i ,

(14)

where [·]× is the skew-symmetric matrix. To minimize the

proposed energy, we use gradient descent.
The gradient of the energy with respect to ωi’s is

∑

p∈P

(

sR
(

ωc[Xc]p +
∑

i∈Ω

ωi[X
i
c]p

)

+ t−wp

)T

sR[Xi
c]p+

µ
N
∑

p=1

∇C
T sR[Vi

c]p + γωi,

(15)

where ∇C is the derivative of Chamfer distance.
The gradient of the energy with respect to ξ is

∑

p∈P

(

sR
(

ωc[X
∗
c ]p +

∑

i∈Ω

ωi[X
i
c]p

)

+ t−wp

)T

(

sR
∂[ξ]×
ξj

(

ωc[Xc]p +
∑

i∈Ω

ωi[X
i
c]p

)

)

+

µ
N
∑

p=1

∇C
T
(

sR
∂[ξ]×
ξj

(

ωc[Vc]p +
∑

i∈Ω

ωi[V
i
c]p

)

)

.

(16)

The gradient of the energy with respect to translation t is

∑

p∈P

(

sR
(

ωc[Xc]p+
∑

i∈Ω

ωi[X
i
c]p

)

+t−wp

)

+µ
N
∑

p=1

∇C. (17)

We use backtracking to decide step sizes in each iteration4.

7. Experiments

We evaluate our method by three metrics: (i) 2D

landmark reprojection error, (ii) pose error, and (iii)

structure error. More specifically, the 2D landmark re-

projection error measures the accuracy of reprojected

landmarks, which is computed as mean Euclidean dis-

tance between the projected landmarks of estimated dense

model and the labeled landmarks on the image plane:

err2d = 1
|P|

∑

p∈P

∥

∥

∥
sR

(

ωc[Xc]p +
∑

i∈Ω ωi[X
i
c]p

)

+ t −

wp

∥

∥

∥

2
,following the same notations in Section 6. The pose

error measures the accuracy of estimated pose (rotation):

errrot = ‖R∗ − R‖F , where R
∗,R are the estimated and

ground truth rotation matrices respectively. The structure

error measures the quality of reconstructed dense model

against the ground truth, following the same metrics shown

in Equation 1.

4To be general, we initialized ωc = 1 and ωi = 0 for i ∈ Ω
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Figure 3. Visualization of learned LDC graphs from ShapeNet

dataset for eight object categories.

As described in previous sections, our method consists

of two steps where the silhouetting fitting involves three key

components: (i) ℓ2 regularization, (ii) refining camera posi-

tion, and (iii) estimating the weights of linear combination.

To show the performance boost introduced by the silhou-

etting fitting against the landmark registration with/without

each components, extensive experiments are conducted us-

ing both synthetic and real images5. To our best knowl-

edge, the most related work [8, 16] reconstruct 3D dense

models purely from 2D images without any access to 3D

CAD models. Therefore, a direct comparison of our method

against theirs is not fair. However, from visual evaluation6

(Figure 6), one can clearly observe the deformation of CAD

models and their detailed geometry, which outperforms the

state-of-the-art dense reconstruction algorithms.

7.1. Learned LDC Graphs

To show the generalization of the proposed method in

various object categories, we learn LDC graphs for eight

categories: diningtable, bicycle, car, chair, motorbike, sofa,

aeroplane, and bus. To learn the graph, we randomly

sample approximately 30 CAD models from the ShapeNet

dataset [4] in each object category and manually annotate

landmarks on each CAD models 7.

The learned LDC graphs are shown in Figure 3. One can

observe that the density of connection varies significantly

among different object categories, e.g. bicycle is the spars-

est and diningtable is the densest. This connection density

actually reflects the intracategory variations. Moreover, by

visualizing the size of nodes in the graph proportional to

the number of edges starting from that node, one can see

that in some categories, like aeroplane, some nodes have an

obviously larger size against others. This implies that these

categories are more likely to share the same basic structures

5The full noise performance analysis is in the supplementary material.
6The videos showing 360 degree views and how dense models deform

to fit silhouette are released on the GitHub page.
7The annotated CAD models and annotation tools will be released to

public on our GitHub page.

which is consistent to the common sense that aeroplanes

have similar structure (wings in the middle of body, etc.)

due to the same functionality.

7.2. Synthetic Experiments

We first evaluate the performance of our method using

synthetic images projected by weak-perspective cameras.

To generate these synthetic images, we visit all CAD mod-

els used as ground truth in PASCAL3D+ dataset [19]. By

randomly generating weak-perspective camera positions,

we project these CAD models into the image plane and es-

timate the corresponding segmentation and landmark posi-

tions. The results of this experiment is shown in Figure 4,

demonstrating the performance increased by silhouette fit-

ting and dense model combination. This evaluation shows

that the silhouette fitting step with all components not only

creates a deformable dense model closer to actual object ge-

ometry by LDC graph but also balances well between cam-

era refinement and model combination.

7.3. Pascal3D+

To evaluate the performance of our framework over per-

spective projection and missing landmarks, we apply our

proposed method to reconstruct 3D dense models of the

PASCAL3D+ [19] natural images. For evaluation, we uti-

lize the ground truth camera position, CAD models, and

their annotated landmarks associated with the dataset to

compute the pose, structure, and reprojection errors. The

results are summarized in Figure 5 and Table 1. For all these

Figure 4. Evaluating our method using synthetic images in terms

of pose error (top), and structure error (bottom). The x-axis shows

the results of (1) landmark registration, (2) silhouette fitting with

all components, (3) silhouette fitting without ℓ2 regularization, (4)

silhouette fitting without camera refinement, and (5) silhouette fit-

ting without dense model combination.
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Component
din-

ingtable
bicycle car chair

motor-

bike
sofa

aero-

plane
bus

LR 0.2227 0.3216 0.2484 0.1964 0.8674 0.3430 0.4527 0.1699

Full SF 0.1948 0.3944 0.2777 0.1858 0.8037 0.2682 0.3507 0.2148

SF-l2 0.1966 0.4036 0.2842 0.1901 0.8138 0.2918 0.3401 0.2116

SF-Cam 0.2227 0.3216 0.2484 0.1964 0.8674 0.3430 0.4527 0.1699

P
o

se
E

rr
o

r

SF-Ome 0.2434 0.4081 0.3009 0.1917 0.9070 0.3495 0.5355 0.2198

LR 1.2936 0.3424 0.2541 0.3316 0.1954 0.4838 0.3709 0.0998

Full SF 0.6441 0.3314 0.2004 0.3046 0.1830 0.3872 0.3098 0.1197

SF-l2 0.7912 0.3409 0.2012 0.3130 0.1934 0.4831 0.3058 0.1164

SF-Cam 0.9265 0.3479 0.2217 0.3137 0.1862 0.4486 0.2997 0.1267

S
tr

u
ct

E
rr

o
r

SF-Ome 1.2936 0.3424 0.2541 0.3236 0.1954 0.4839 0.3709 0.0998

LR 30 32 45 21 33 29 39 25

Full SF 23 41 40 19 33 22 44 38

SF-l2 22 42 39 17 33 20 43 38

SF-Cam 25 39 43 19 35 24 45 38

R
ep

ro
j

E
rr

o
r

SF-Ome 29 40 52 22 36 29 46 37

Table 1. Pose, structure and reprojection error obtained by landmark registration (LR), silhouette fitting with all components (Full SF),

silhouette fitting without ℓ2 regularization (SF-l2), silhouette fitting without refining camera position (SF-Cam), and silhouette fitting

without model deformation (SF-Ome) for eight object categories.

eight categories except “bus”, our method with full compo-

nents achieves the best performance in terms of dense 3D

models, camera positions and balancing between them.

Some qualitative results are shown in Figure 6. The mod-

els estimated by landmark registration (the second and forth

columns) shows that landmark registration itself is not suf-

ficient to select a correct model or estimate precise pose due

Figure 5. Evaluating our method using PASCAL3D+ natural im-

ages in terms of pose error (top), and structure error (bottom). The

x-axis shows the results of (1) landmark registration, (2) silhouette

fitting with all components, (3) silhouette fitting without ℓ2 regu-

larization, (4) silhouette fitting without camera refinement, and (5)

silhouette fitting without dense model combination.

to the limited information offered by sparse points. Further,

the comparison between models reconstructed by landmark

registration and silhouette fitting in both 2D and 3D shows

that our proposed method not only refines the object pose

but also deforms the dense model to be consistent with 2D

images, e.g. changing the length-width ratio of table, di-

minishing arms of a chair, and even warping a van into a

sedan. We also compare our results again volumetric repre-

sentation which is directly voxelized from ground truth 3D

models. It is clear to see that the volumetric representation

suffers from low resolution and is too coarse to represent

any finer geometry. As shown in Figure 5 and Figure 6, our

method fails in “bus” category. This is caused by either the

strong perspective effect or the high occlusion of buses in

PASCAL3D+ image set. Note that our method would fail if

the large amount of object silhouette is broken or invisible.

8. Conclusion

In this paper, we demonstrated that a deformable, dense

3D model can be inferred only from local dense correspon-

dence. Our method eschews the need for global correspon-

dence prior. In this regard, we proposed a two-step strategy

using landmarks and silhouette to reconstruct a deformable

dense model from a single image. Impressive results were

shown on both synthetic and real-world natural images.
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Input image LR SF LR SF Ground truth Volume

Figure 6. Visual evaluation of estimated 3D models by our proposed methods for eight object categories including diningtable, bicycle,

car, chair, motorbike, sofa, aeroplane, and bus. We denote green nodes as labelled landmarks, red nodes as projected landmarks, and red

number as landmarks index. The columns here shows respectively (1) the input images with landmarks and silhouette, (2) projection of

dense model estimated by landmark registration, (3) projection of dense model estimated by silhouette fitting with all components, (4) the

dense model estimated by landmark registration, (5) the dense model estimated by silhouette fitting with all components, (6) ground truth,

and (7) volumetric representation of ground truth. The failure case is shown in red in the last row. Best viewed in color.
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