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Abstract

Understanding shading effects in images is critical for a

variety of vision and graphics problems, including intrin-

sic image decomposition, shadow removal, image relight-

ing, and inverse rendering. As is the case with other vision

tasks, machine learning is a promising approach to under-

standing shading—but there is little ground truth shading

data available for real-world images. We introduce Shad-

ing Annotations in the Wild (SAW), a new large-scale, pub-

lic dataset of shading annotations in indoor scenes, com-

prised of multiple forms of shading judgments obtained via

crowdsourcing, along with shading annotations automat-

ically generated from RGB-D imagery. We use this data

to train a convolutional neural network to predict per-pixel

shading information in an image. We demonstrate the value

of our data and network in an application to intrinsic im-

ages, where we can reduce decomposition artifacts pro-

duced by existing algorithms. Our database is available

at http://opensurfaces.cs.cornell.edu/saw.

1. Introduction

Understanding images requires reasoning about the

shapes and materials in scenes, where the appearance of ob-

jects is modulated by illumination. A large body of research

in scene understanding has focused on shape and materials,

with lighting often overlooked or discounted as a nuisance

factor. However, understanding shading and illumination

in images is critical for a variety of problems in vision and

graphics, including intrinsic image decomposition, shadow

detection and removal, image relighting, and inverse render-

ing. How can we make progress on understanding illumi-

nation in natural images? As with other problem domains,

we believe that data is key. Large-scale datasets such as Im-

ageNet [10], COCO [26], Places [36], and MINC [6] have

had significant impact in advancing research in object de-

tection, scene classification and understanding, and material

recognition. This success motivates the creation of a similar

dataset for shading information.

In this paper, we present a new, large-scale crowdsourced

dataset of Shading Annotations in the Wild (SAW). An im-

Figure 1: Examples of annotations in the SAW dataset.

Green indicates regions of near-constant shading (but with

possibly varying reflectance). Red indicates edges due to

discontinuities in shape (surface normal or depth). Cyan

indicates edges due to discontinuities in illumination (cast

shadows). Using these annotations, we can learn to classify

regions of an image into different shading categories.

portant challenge in constructing a dataset of shading infor-

mation is deciding what manner of shading information to

collect, and how to collect it. We consider several possi-

ble approaches to collecting such data, and note that a key

subproblem across many tasks is to determine whether an

image edge is due to variation in reflectance, illumination,

or some other cause (as with the Retinex algorithm for in-

trinsic images [24]). This observation leads us to collect two

types of shading annotations in a large set of images: (1) im-

age regions of approximately constant shading, and (2) ex-

amples of discontinuities in illumination (i.e., cast shadow

boundaries), or shape (e.g., depth or surface normal discon-

tinuities). These kinds of annotations are illustrated in Fig-

ure 1. We show how to collect these annotations at scale

using a combination of crowdsourcing and automatic pro-

cessing. Our dataset includes 15K shadow boundary points

and 24K constant shading regions from nearly 7K photos.

Using our new dataset, we train a convolutional neural

network (CNN) to identify various types of shading in new
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images, and demonstrate competitive performance in this

shading classification task compared to a number of base-

lines. Finally, we demonstrate the value of our data and

learned network in an application to intrinsic image decom-

position, where we can reduce mistakes commonly made by

existing algorithms, namely, when texture due to reflectance

is incorrectly attributed to shading.

In summary, our contributions are:

• a new large-scale dataset of shading annotations col-

lected via crowdsourcing,

• a CNN trained to recognize shading effects using this

data, and a comparison to baseline methods, and

• an example use of this model as a smooth shading prior

to improve intrinsic image decomposition.

2. Related Work

Our goal is to build a dataset specifically addressing

shading in images, and large enough to be well suited for

machine learning. There exist a number of related datasets,

but to our knowledge, none achieve both of these goals.

Intrinsic images. Intrinsic image decomposition is a clas-

sic, ill-posed problem involving separating an image into

the product of a reflectance and a shading layer. Grosse et

al. [16] introduced the MIT Intrinsic Images dataset, con-

taining 16 objects with ground truth reflectance and shad-

ing. This dataset has led to important progress in intrinsic

image decomposition, but the small size of the dataset, and

its focus on single objects rather than entire scenes, means

that it is not well suited to machine learning approaches on

natural images. Beigpour et al. capture a dataset of sim-

ilar size, but with multiple illuminants [3]. Bell et al. re-

leased the Intrinsic Images in the Wild (IIW) dataset [5],

a large-scale dataset with over 5K real-world indoor pho-

tos, with relative reflectance judgments between millions of

pairs of points. However, IIW only contains information

about reflectance, and thus only captures indirect informa-

tion about shading. As a result, intrinsic image algorithms

evaluated on IIW data can sometimes shuffle error into the

shading channel without penalty. Finally, synthetic datasets

(from rendered CG scenes) also provide a way to obtain

ground truth shading for intrinsic images and other prob-

lems [8, 4, 7]. However, we find that synthetic scenes still

cannot fully represent the complexity of natural images.

Depth datasets. Several datasets contain RGB-D (depth)

data, including NYUv2 [30], SUN RGB-D [31], and many

others [12]. These datasets can be used to train algo-

rithms to predict depth or surface normals from a single im-

age [34, 11, 25, 2, 9]. These shape cues (particularly surface

normals) are related to shading, but do not capture critical

illumination effects such as cast shadows. Hence, we draw

on RGB-D data to augment our dataset, but use crowdsourc-

ing to annotate additional shading information.

Other illumination datasets. Other datasets capture par-

ticular types of illumination information, such as sun di-

rection [21], environment maps [23], or shadows in out-

door scenes [38, 22]. These datasets tend to focus exclu-

sively on outdoor illumination (e.g., from the sun), or only

support a particular task (e.g., hard shadow detection and

removal [22, 17]). Others have presented algorithms for

estimating illumination from images, e.g., for object inser-

tion tasks [20], relighting [18, 28], or more general inverse

rendering problems [33]. However, these generally require

user input or multiple images. One of our goals is to help

advance such methods for illumination modeling and edit-

ing by providing data for use in machine learning methods.

3. Shading Annotations in the Wild

Our goal is to create an extensive dataset of shading phe-

nomena in indoor scenes. Ideally we would collect per-

pixel, dense absolute shading measurements for each im-

age, as with the MIT dataset [16]. Unfortunately, the gray

spray painting method they used is not feasible for whole in-

door scenes. Synthetic scenes are a potential alternative to

provide dense ground truth, but we found that it is difficult

to build a large enough dataset of synthetic images that can

fully represent the complex illumination in the real world.

Bell et al. targeted a broad set of real-world scenes by an-

notating Flickr images in their Intrinsic Images in the Wild

dataset [5]. They argued that while humans cannot provide

absolute reflectance or shading values, they can disentan-

gle reflectance from shading by making pairwise reflectance

judgments. Reflectance values tend to be sparse in indoor

scenes, due to the overwhelming presence of human-made

objects, which is often used as a prior in the intrinsic image

literature [14, 5, 37]. Conversely, this sparsity observation

does not hold for shading, which is often smooth and varies

over a wide intensity range in natural scenes. Bell et al.

pointed out that this makes it harder for humans to make rel-

ative shading judgments between arbitrary point pairs in im-

ages, so they did not collect pairwise shading annotations.

Our contribution is to identify and collect useful shad-

ing annotations that human beings can provide in a crowd-

sourced setting, at scale and with high accuracy.

3.1. Images

To create a comprehensive dataset of shading phenom-

ena, we chose to build on the Intrinsic Images in the Wild

(IIW) dataset [5] which has complementary data on rela-

tive reflectance annotations for 5,230 images.1 We further

1SAW images are a superset of IIW images except for two images (IDs:

24541, 24851), which are atypical photos that we exclude. One is a paint-

ing, and the other is a closeup of a book cover.
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Figure 2: Our shading annotations. First row: Constant

shading regions S (green polygons). Second row: Shadow

boundary annotations NS-SB (cyan circles). The constant

shading regions span the range from textured to textureless

(the average color gradient magnitude for the regions shown

from left to right is 3.972, 0.295, and 0.1).

added 1,449 images with RGB-D data from the NYU Depth

Dataset v2 [30] to have images from which we can get

ground truth depth and surfaces normals. In total, the SAW

dataset has 6,677 images.

3.2. Shading annotation taxonomy

Our goal is to collect shading annotations at scale. We

taxonomize shading into two types: smooth (S) and non-

smooth (NS), where the non-smooth shading is further

split into two categories, shadow boundaries (NS-SB), and

normal/depth discontinuities (NS-ND). Using a judicious

combination of crowdsoucing when needed, and automatic

image/scene processing when possible, our dataset includes

these three types of shading annotations.

3.3. Our annotation pipeline

Pilot study. Inspired by IIW [5], our first attempt to collect

shading annotations was to use the same kind of pairwise

comparisons as in IIW, where workers were asked to make

a series of pairwise reflectance judgments. For IIW, workers

were shown a pair of points 1 and 2 in an image, and asked

to specify whether: (1) 1 had a darker surface color com-

pared to 2, (2) 1 had a brighter surface color compared to 2,

or (E) 1 and 2 had approximately equal surface brightness

(i.e., less-than, greater-than, or equal-to judgments). In our

case, rather than collect pairwise reflectance comparisons,

our aim was to collect pairwise shading annotations.

Reasoning about how lightfields differ between arbitrary

points is not easy for humans [27]. Indeed, in this case

humans often have to make judgments over very differ-

ent regions of an image, and over different materials and

shapes. Hence, we decided to allow workers to pick the

Figure 3: Two types of shading annotations. (a) Constant

shading regions (green polygons). (b) Shading point com-

parisons (red edges). Darker red indicates more confident

judgments.

points themselves instead of using the original point pairs

from IIW. We created two tasks which ask workers to “pick

two points with equal shading” and “pick two points with

non-equal shading”. Unfortunately, workers struggled with

giving us good quality data for the former task. Learning

from this pilot study we instead developed a new crowd-

sourcing pipeline to collect shading annotations that work-

ers can confidently respond to.

Collecting S annotations. Knowing that human beings

have difficulty reasoning about distant shading, we ask

workers to instead annotate local regions which they se-

lect to have approximately constant shading. Since shad-

ing tends to be smooth in small regions, they can do this

task reliably. Further, we get much more data from a region

annotation than a pairwise comparison between two points.

Thus, we were able to collect S annotations at scale with a

small number of selected workers. These S annotations are

collected over both IIW and the NYU dataset. See Figure 2

for examples, and Section 3.4 for details.

Collecting NS annotations. Non-smooth shading arises

from a variety of causes, such as shadow boundaries or

changes in the shape of a surface (e.g., through depth dis-

continuities or normal discontinuities). We employ a com-

bination of automated scene/image processing and crowd-

sourcing to collect these annotations.

First, we note that shape discontinuities (i.e., depth or

normal changes) can be obtained from existing datasets like

the NYU RGB-D dataset. Therefore, instead of crowd-

sourcing these annotations (NS-ND), we automatically

generate normal/depth discontinuities from the ground truth

RGB-D data. More details are provided in Section 3.5.

Another type of non-smooth shading arises at shadow

boundaries. For each image in IIW and the NYU dataset,
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Figure 4: Statistics of constant shading regions. Left: Joint

plot of the log average color gradient magnitude over each

constant shading region and the log normalized area (1

means that the region covers the entire image). The gra-

dient magnitude is correlated with how textured the region

is. Textured regions are valuable because constant shading

cannot be easily predicted based on simple pixel intensity

measurements. Right: Histogram of the percentage of total

image area covered by constant shading regions. As ex-

pected, most of the regions are relatively small, since it is

unlikely that shading is constant over large regions. See the

supplemental material for more analysis.

we allow workers to select point pairs with different shad-

ing. Since workers control the pair selection, they are able

to choose cases where they can make a confident decision.

We find that the pairs of selected points are often on oppo-

site sides of sharp shadow boundaries. We use this knowl-

edge to automatically generate candidate shadow bound-

ary points from the pairwise data from workers, which we

filter through another crowd-sourcing task to separate out

true shadow boundaries (NS-SB) from shape discontinu-

ities. See Figure 2 for examples, and Section 3.5 for details.

3.4. Collecting S annotations

For this task, each worker was asked to draw a polygon

around an area which has approximately constant shading.

The notion of constant shading is hard to understand for

most workers, so to guide workers to submit higher qual-

ity regions we added extra criteria: the region has to be

flat/smooth, opaque (i.e., non-transparent), non-glossy, and

non-bumpy (i.e., have no surface normal variation). Based

on our pilot study, we further restricted the region to be

composed of a single type of material (e.g. wood, plastic),

and not fabric, which tends to have small bumps in most

situations. However, we explicitly request that workers an-

notate textured regions when possible, so that we do not

simply collect regions with a single dominant color (e.g.,

painted walls). Such textured regions are very valuable, be-

cause constant shading cannot be easily predicted from sim-

ple pixel intensity measurements in these regions. We al-

lowed eight MTurk workers who previously provided high-

quality submissions to work on this task.

For quality control, we additionally sent each marked

region through three filtering tasks to address common

mistakes. These tasks asked workers to (1) “click on

flat/smooth regions with one material type”, (2) “click on

glossy regions”, and (3) “click on regions which have vary-

ing shading”. Since these tasks are much simpler than the

first task, we did not need to hand-select workers here. For

each smooth shading region, we collected five responses for

each of the three tasks and used CUBAM [32] to aggregate

the votes into a single decision. We kept regions that passed

all tests (i.e., regions that were flat/smooth with one mate-

rial type, non-glossy, and did not exhibit varying shading).

In total, we collected 23,947 smooth regions (S), which

on average covered 0.6% of the image area. The cost of this

task was $0.011 on average for the shading regions, plus

$0.056 for the three quality control tasks. Figure 2 (top)

shows examples of annotated smooth shading regions and

green polygons in Figure 3 show these regions in the con-

text of an entire scene. Figure 4 provides insights into the

quality of the constant shading region data.

3.5. Collecting NS annotations

Next, we turned our attention to non-smooth shading an-

notations (NS). Here we found from our pilot study that if

workers are given a choice of where to position a pair of

points, they can successfully decide which point has darker

vs. brighter shading. However, these shading changes could

be attributed to both shape changes (normal/depth discon-

tinuities) or due to shadow boundaries. While we could

crowdsource both these kinds of annotations, the shape dis-

continuties can be obtained directly from existing datasets.

So we automatically generate NS-ND annotations, and

only use crowdsourcing for the NS-SB annotations.

Auto-generated NS-ND annotations. At normal/depth

discontinuities, shading tends to be non-smooth. We gen-

erate NS-ND annotations using depth maps of scenes from

existing datasets such as NYU Depth Dataset v2 [30], and

normal maps computed from these depth maps from [34].

Given a depth D and normal map N and thresholds τdepth
and τnormal, we annotate a pixel p as having non-smooth

shading if (‖∇D‖2)p > τdepth or (‖∇N‖2)p > τnormal.

We ignore pixels where the Kinect camera used to cap-

ture the RGB-D imagery provides unreliable depths, using

masks provided by [11]. We noticed that in some cases,

these masks do not sufficiently remove all incorrect nor-

mal/depth regions, and so we use binary erosion with 3 it-

erations on each mask and also ignore pixels close to the

image boundaries (within 5% of the image width).

Crowdsourcing NS-SB annotations. Finally, we crowd-

source non-smooth shading annotations, with a pipeline fo-

cusing on shadow boundaries (Figure 5). The first task in

the pipeline asks workers to select two points such that the

7001



(c) (automatic) 
generate shadow 

boundary candidates

(d) Which points 
are on shadow 
boundaries?

(a) Click on two 
points with 

different shading

(b) Which point 
has darker 
shading?

2

1

Figure 5: Point annotation pipeline. (a) Workers are asked

to click on two points such that the first has darker shading

than the second. (b) Then, 5 workers are asked to pick the

point with darker shading for each point pair. (c) Next, we

automatically generate a candidate shadow boundary point

for each point pair based on image gradient. (d) Finally,

workers are asked to select shadow boundary points.

first has darker shading than the second point. After filtering

out comparisons which have non-opaque or glossy points,

we collected five votes for each comparison asking which

point has darker shading (Figure 5(b), similar to [5] for rel-

ative reflectance judgments). The original pair of two points

counts as an additional vote for a total of 6 votes. See the

supplementary for more details. We collected 97,294 shad-

ing comparisons with an average cost of $0.026. Red edges

in Figure 3 show example relative shading judgments.

The last step is to generate and validate shadow bound-

ary points (Figures 5(c) and (d)). Given the shading com-

parisons, we generate candidate shadow boundary points

for each non-equal shading comparison by finding the point

with the highest log intensity gradient magnitude on the line

segment connecting the two points of the comparison (Fig-

ure 5(c)). We discard candidate points where the line seg-

ment is longer than 0.2 in normalized image coordinates,

because these point pairs are too far apart and the candidate

point usually lies on a shape discontinuity; or where the

maximum gradient magnitude is smaller than 0.3, because

such intensity differences are hard to notice. Then we asked

five workers if the candidate point is on a shadow bound-

ary (Figure 5(d)). We define the term “shadow boundary”

here to exclude normal or depth discontinuities. This en-

sures that we can make a distinction between the automati-

cally generated normal/depth discontinuity labels (NS-ND)

from Section 3.5 and shadow boundary labels (NS-SB). We

chose the final shadow boundaries with majority voting.

Using this pipeline, we obtain 15,407 shadow bound-

ary points at an average cost of $0.039. Figure 2 (bottom)

shows examples of shadow boundary annotations. We pro-

vide statistics of the collected shadow boundary points in

the supplemental material.

Quality control for crowdsourcing S and NS-SB. It is im-

portant to control quality when collecting crowdsourcing

data [1, 15]. Many workers misunderstand instructions or

do not read them in detail. Therefore we implemented tu-

torials for most of our crowdsourcing tasks and did not let

workers submit data until they passed the tutorial. We also

ask multiple workers the same question and decide the final

label by majority voting or CUBAM [32]. Finally, we em-

ploy sentinels (questions with known ground truth) to filter

out workers with low accuracy.

4. Learning to Predict Shading Features

We demonstrate the utility of our shading annotation data

by training a CNN to make per-pixel predictions of differ-

ent types of shading features. We formulate this problem as

classifying each pixel of an image into one of three classes

based on the taxonomy defined in Section 3.2: smooth shad-

ing (S), normal/depth discontinuity (NS-ND), and shadow

boundary (NS-SB).

4.1. Dataset processing

Before we train a classifier, we first convert our dataset

into a pixel labeling for each image (note that only some

pixels will be labeled, since our annotations only partially

cover each image). First, we resize all images such that

the maximum image dimension is 512. Next, we gener-

ate smooth shading (S) labels from our constant shading

regions by taking the regions in the resized images and per-

forming binary erosion with 3 iterations, to reduce the effect

of any errors where constant-shading-region boundaries

may touch shadow boundaries. This gives us 25,690,392

smooth shading pixel labels across the entire dataset.

We then generate the normal/depth discontinuity non-

smooth shading (NS-ND) labels based on the resized nor-

mal/depth maps of the 1,449 NYUv2 images as described

in Section 3.5 with τnormal = 1.5 and τdepth = 2.0. We

manually chose the smallest thresholds where we deemed

the annotations to be of high quality. Finally, we use our

shadow boundary point annotations to generate the rest of

the non-smooth shading (NS-SB) labels.

Note that we perform “label dilation” on the non-smooth

shading labels when generating the training set: that is, we

also label pixels that are very close to these non-smooth pix-

els within a 5× 5 neighborhood. We do this to train a more

conservative classifier which does not predict smooth shad-

ing very close to non-smooth shading effects. For the val-

idation and test set, we do not perform this dilation. This

way for the training, validation, and test set respectively, we

get 4,758,500/1,512,257/2,418,490 NS-ND and 224,886/

2,107/ 4,267 NS-SB labels.

4.2. Network architecture

We extend Bansal et al. [2]’s convolutional neural net-

work (CNN) architecture for surface normal prediction to

learn to predict shading effects in images using the Caffe

deep learning framework [19]. We use the same architec-

ture, but change the last fully-connected layer to predict the

three classes described above.
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4.3. Training

We assign each photo to the training/validation/test sets

as follows: For photos in the original IIW set, we keep the

training/test split used by [37] and add an additional train-

ing/validation split over their training set. For NYU images,

we use the splits from [2]. This gives us 4,142 training, 836

validation and 1,699 test photos.

Since our training data is limited, we initialize the

weights using the normal prediction net of [2], fix the

weights of the convolutional part and only fine-tune the last

three fully-connected layers. We experimented with fine-

tuning all layers or only the last fully-connected layer, but

observed worse validation performance. To avoid training

bias, it is important to balance the training data across the

three classes. We use a 2:1:1 balancing ratio (S : NS-ND

: NS-SB) in our experiments, equivalent to a 1:1 balance

between smooth and non-smooth categories.

Similar to [2], we resize each input image to 224 × 224
before passing it to the network, and upsample the output

of the network back to the resolution of the original input

image. Since not all pixels in an image are labeled and

we want to enforce class balance, after passing all images

in a batch through the convolutional layers, we randomly

sample pixels for each class over the whole batch according

to our balance ratio, and propagate features only for these

sampled pixels to the rest of the network. Please see the

supplemental material for detailed training parameters.

4.4. Inference

At inference time, we are interested in predicting the

probability of the shading being smooth for each pixel in

the image. In Figure 6 we show some example predictions

shown as heatmaps of the probability of the smooth shading

class (S). In the left image, the network correctly predicts

smooth shading on the wall and polished stone surfaces. Of

particular use are high probability predictions on textured

surfaces that have smooth shading, because these are non-

trivial to predict based on image intensity alone.

However, our method also makes some mistakes. In a

few cases, the high probability areas “bleed over” shape

discontinuities, as in the corner of the bathroom in the left

image, or the sharp shape discontinuities of the trolley in

the right image. In general, the network predicts smooth

shading somewhat conservatively, and misses some smooth

shading regions, but it does well in predicting non-smooth

regions in most cases. Please see the supplemental material

for further discussion and hundreds of heatmap predictions.

5. Evaluation

Since to our knowledge there are no existing algorithms

for explicitly predicting the three types of shading classes

we consider, we focus our evaluation on predictions of

Figure 6: Heatmaps for the predicted probability of the

smooth shading class (S) overlaid on the original input im-

ages. All images are selected from the test set. See Sec-

tion 4.4 for discussion of these results.

smooth shading vs. non-smooth shading, where we can use

simple baselines for comparison.

5.1. Baselines

A natural set of baselines for predicting shading cate-

gories are intrinsic image algorithms, which take an input

image I and decompose it into reflectance R and shad-

ing S layers. We use several state-of-the-art intrinsic im-

age decomposition algorithms as baselines. In particular,

given a decomposition R and S , we classify a pixel p as

smooth/non-smooth shading based on the gradient magni-

tude of the shading channel S . If the gradient magnitude

at p is less than a threshold τ , i.e., ‖∇S(p)‖2 < τ , then

we say the predicted shading is smooth at p (otherwise,

non-smooth). In practice, we found that applying a max-

imum filter of size 10× 10 on the gradient image improved

the results of these baselines, so we apply this filtering in

our tests. We compare our CNN predictions to seven base-

line algorithms: (1) “Constant Reflectance” (i.e., the shad-

ing channel is the luminance channel of the input image it-

self), (2) [Shen et al. 2011] [29], (3) Color Retinex [16], (4)

[Garces et al. 2012] [13], (5) [Zhao et al. 2012] [35], (6)

[Bell et al. 2014] [5], and (7) [Zhou et al. 2015] [37].

5.2. Precision­Recall

By running these baseline algorithms on our test image

set, and sweeping the threshold τ , we can plot precision-

recall (PR) curves for the smooth shading class predicted

by the baselines (see the colored lines in Fig. 7).2 Similarly,

we can sweep a threshold σ for the smooth shading prob-

2Note that our test set has the same 2:1:1 label balance as the training

set, and we only include non-smooth shading points exactly on boundaries

in our test set, i.e., we do not perform label dilation. We do not evaluate on

points that have no label in the dataset.
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Figure 7: Precision-recall for shading predictions. We plot

PR curves for the baselines and our algorithm. Our algo-

rithm has competitive performance; see text for discussion.

Precision @

Method 30% 50% 70%

Constant R 0.827 0.822 0.787

[Shen et al. 2011] [29] 0.958 0.899 0.784

Color Retinex [16] 0.867 0.850 0.755

[Garces et al. 2012] [13] 0.977 0.949 0.834

[Zhao et al. 2012] [35] 0.956 0.945 0.868

[Bell et al. 2014] [5] 0.936 0.902 0.802

[Zhou et al. 2015] [37] 0.873 0.858 0.802

Our method 0.946 0.938 0.845

Table 1: Precision of shading predictions at varying levels

of recall. Precision @ recall levels of 30%, 50%, and 70%

are shown for the seven baselines and our proposed method.

abilities predicted by our CNN, i.e. we say the shading is

smooth at pixel p if the predicted smooth shading probabil-

ity Pp is greater than σ. One way to interpret this evalua-

tion is as a “smooth shading detector”—the algorithm must

classify each pixel as smooth/not-smooth, and we evalu-

ate precision and recall on this classification. The result-

ing PR curves are shown in Figure 7, and the performance

at several recall values on these curves are shown in Ta-

ble 1. The best methods are [Garces et al. 2012] and [Zhao

et al. 2012], which use global optimization including clus-

tering and long-range terms. In comparison, our method

uses a single feed-forward pass and still achieves competi-

tive performance.

Note that the PR curves are not all monotonic (see, for

example, the left part of the PR curves), in part because

the ground truth NS-ND labels contain a number of pixels

that have very low contrast (i.e., have small image gradients

and are thus very difficult to classify correctly). Some of

these low-contrast pixels are due to effects like saturated

pixels in the input imagery (e.g., a corner of a wall near a

strong light source). On the other hand, these ground truth

labels are based on the Kinect depth images whose quality

is not limited by image contrast. These pixels are in the

majority among the pixels classified as smooth shading at

low recall regions of the curves where the threshold τ for

the baselines is small. As τ , and consequently the recall

increases, the proportion of low contrast pixels decreases

and the precision increases for a short segment of the curve.

Finally, note that the curve for our method is truncated on

both ends. This is due to the behavior of the CNN, where the

prediction values it produces (after the final softmax layer)

are often saturated at exactly 0 or 1. That is, there are a num-

ber of pixels where it reports maximal confidence in smooth

or non-smooth shading, and this behavior manifests as trun-

cation of the PR curve. As a result, our maximum recall is

lower than that of other methods. This behavior suggests

that the final softmax layer may be eliminating some useful

dynamic range in the prediction scores.

It is interesting to note that [Bell et al. 2014] outperforms

[Zhou et al. 2015] [37] on this shading prediction task, even

though the latter is considered to have higher quality intrin-

sic image decompositions according to the IIW benchmark

score [5]. We conjecture that since the IIW benchmark is

based only on reflectance annotations, errors in the decom-

posed shading layer are not sufficiently penalized. Hence,

our dataset offers another, complementary lens for evaluat-

ing the results of intrinsic image method. An area of future

work is to use our annotations in conjunction with the IIW

benchmark to devise a new, unified method for evaluating

intrinsic image algorithms that considers both reflectance

and shading annotations. We show example decompositions

from both algorithms as supplemental material.

6. Application to Intrinsic Images

We now demonstrate a use of our smooth shading pre-

dictions as a prior for intrinsic image decomposition algo-

rithms. To demonstrate the use of this prior, we modified

the Retinex formulation of [35]. The original cost function

they minimize to obtain a decomposition is the following:

fl(S) =
∑

(p,q)∈N

[(Sp − Sq)
2 + ω(p,q)(Rp −Rq)

2],

where N denotes the set of all neighboring pairs of pixels

in the image, Sp and Rp are the shading and reflectance at

pixel p, respectively. ω(p,q) balances between shading and

reflectance smoothness and is determined by the Retinex

rule:

ω(p,q) =

{

0 if
∥

∥

∥
R̂p − R̂q

∥

∥

∥

2
> t

100 otherwise.

where t is the Retinex threshold, R̂p and R̂q are the chro-

maticities of pixels p and q (see [35] for details). For sim-

plicity, we do not use the non-local constraints of [35], only

the Retinex constraint with t = 0.02. We incorporate our
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(a) Input (b) Smooth S (S) (c) R w/o prior (d) S w/o prior (e) R with prior (f) S with prior

Figure 8: We show intrinsic image decompositions using our smooth shading prior. All images are selected from the test set.

(b) shows a heatmap for our smooth shading (S) prediction. R and S denote reflectance and shading respectively. By using

our smooth shading prior we can reduce artifacts in the decomposed shading layer, in particular removing surface texture

effects which belong to the reflectance layer. For instance, our method removes more of the floor tile texture (top), or the

texture of the blanket (bottom) from the shading layers.

smooth shading prior by modifying ω(p,q):

ω(p,q) =

{

0 if
∥

∥

∥
R̂p − R̂q

∥

∥

∥

2
> t

100 · [1− (Hp +Hq)/2] otherwise.

Hp and Hq are the smooth shading probabilities predicted

by our model (Section 4) at pixels p and q. This formulation

allows the decomposition algorithm to smoothly ignore the

strong reflectance constancy constraint at regions where the

predicted smooth shading heatmap has high probabilities.

In Figure 8, we show decompositions with and with-

out our smooth shading prior. In some cases, we can see

significant improvement in the decomposed shading layer.

Specifically, our network is successful in detecting textured

regions with smooth shading where most intrinsic image al-

gorithms fail to remove the texture from the shading layer.

The supplementary has more examples.

7. Conclusion and Future Work

We present Shading Annotations in the Wild, a new

large-scale dataset of shading in real-world indoor scenes,

created using a combination of crowdsourcing and automa-

tion. Using this dataset, we trained a CNN to achieve

competitive performance against a number of baselines in

per-pixel classification of shading effects in images. We

also demonstrate a potential application of this network

as a smooth shading prior for intrinsic image decompo-

sition. We have made this dataset publicly available at

http://opensurfaces.cs.cornell.edu/saw. Illumination is a

key property of image formation; we hope that our dataset

can enable other researchers to explore this property in a

richer way that harnesses modern machine learning tools.

Our work suggests a few possibilities for future work.

Evaluation of intrinsic image algorithms on our data sug-

gests that our annotations may provide another way to rank

these algorithms based on shading performance, comple-

mentary to the widely used WHDR metric [5] that only di-

rectly measures performance on reflectance. Using SAW

with the reflectance annotations of IIW, we believe that new

intrinsic image metrics can be established to advance the

state of the art.

Our CNN for classifying pixels into different shading

categories could be extended in a number of ways. For in-

stance, we could jointly predict shading categories, shape,

and materials (i.e., learn in a multi-task setting inside an

approach like PixelNet [2]). Pushing this idea further, one

could create a network that directly predicts an intrinsic im-

age decomposition along with scene geometry, or further

still, one that predicts a full 3D description of geometry and

illumination trained using our data.
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