
A Hierarchical Approach for Generating Descriptive Image Paragraphs

Jonathan Krause Justin Johnson Ranjay Krishna Li Fei-Fei

Stanford University

{jkrause,jcjohns,ranjaykrishna,feifeili}@cs.stanford.edu

Abstract

Recent progress on image captioning has made it possible

to generate novel sentences describing images in natural

language, but compressing an image into a single sentence

can describe visual content in only coarse detail. While one

new captioning approach, dense captioning, can potentially

describe images in finer levels of detail by captioning many

regions within an image, it in turn is unable to produce a

coherent story for an image. In this paper we overcome these

limitations by generating entire paragraphs for describing

images, which can tell detailed, unified stories. We develop

a model that decomposes both images and paragraphs into

their constituent parts, detecting semantic regions in images

and using a hierarchical recurrent neural network to reason

about language. Linguistic analysis confirms the complexity

of the paragraph generation task, and thorough experiments

on a new dataset of image and paragraph pairs demonstrate

the effectiveness of our approach.

1. Introduction

Vision is the primary sensory modality for human percep-

tion, and language is our most powerful tool for communi-

cating with the world. Building systems that can simultane-

ously understand visual stimuli and describe them in natural

language is therefore a core problem in both computer vi-

sion and artificial intelligence as a whole. With the advent

of large datasets pairing images with natural language de-

scriptions [20, 34, 10, 16] it has recently become possible to

generate novel sentences describing images [4, 6, 12, 22, 30].

While the success of these methods is encouraging, they all

share one key limitation: detail. By only describing images

with a single high-level sentence, there is a fundamental

upper-bound on the quantity and quality of information ap-

proaches can produce.

One recent alternative to sentence-level captioning is the

task of dense captioning [11], which overcomes this limita-

tion by detecting many regions of interest in an image and

describing each with a short phrase. By extending the task

of object detection to include natural language description,

1) A girl is eating donuts with a boy in a restaurant

2) A boy and girl sitting at a table with doughnuts.

3) Two kids sitting a coffee shop eating some frosted donuts 

4) Two children sitting at a table eating donuts.

5) Two children eat doughnuts at a restaurant table.

Sentences

Paragraph
Two children are sitting at a table in a restaurant. The 

children are one little girl and one little boy. The little girl is 

eating a pink frosted donut with white icing lines on top of it. 

The girl has blonde hair and is wearing a green jacket with a 

black long sleeve shirt underneath. The little boy is wearing a 

black zip up jacket and is holding his finger to his lip but is 

not eating. A metal napkin dispenser is in between them at 

the table. The wall next to them is white brick. Two adults are 

on the other side of the short white brick wall. The room has 

white circular lights on the ceiling and a large window in the 

front of the restaurant. It is daylight outside.

Figure 1. Paragraphs are longer, more informative, and more

linguistically complex than sentence-level captions. Here we show

an image with its sentence-level captions from MS COCO [20]

(top) and the paragraph used in this work (bottom).

dense captioning describes images in considerably more de-

tail than standard image captioning. However, this comes at

a cost: descriptions generated for dense captioning are not

coherent, i.e. they do not form a cohesive whole describing

the entire image.

In this paper we address the shortcomings of both tra-

ditional image captioning and the recently-proposed dense
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image captioning by introducing the task of generating para-

graphs that richly describe images (Fig. 1). Paragraph gen-

eration combines the strengths of these tasks but does not

suffer from their weaknesses – like traditional captioning,

paragraphs give a coherent natural language description for

images, but like dense captioning, they can do so in fine-

grained detail.

Generating paragraphs for images is challenging, requir-

ing both fine-grained image understanding and long-term

language reasoning. To overcome these challenges, we pro-

pose a model that decomposes images and paragraphs into

their constituent parts: We break images into semantically

meaningful pieces by detecting objects and other regions of

interest, and we reason about language with a hierarchical

recurrent neural network, decomposing paragraphs into their

corresponding sentences. In addition, we also demonstrate

for the first time the ability to transfer visual and linguistic

knowledge from large-scale region captioning [16], which

we show has the ability to improve paragraph generation.

To validate our method, we collected a dataset of image

and paragraph pairs, which complements the whole-image

and region-level annotations of MS COCO [20] and Visual

Genome [16]. To validate the complexity of the paragraph

generation task, we performed a linguistic analysis of our

collected paragraphs, comparing them to sentence-level im-

age captioning. We compare our approach with numerous

baselines, showcasing the benefits of hierarchical modeling

for generating descriptive paragraphs.

The rest of this paper is organized as follows: Sec. 2

overviews related work in image captioning and hierarchical

RNNs, Sec. 3 introduces the paragraph generation task, de-

scribes our newly-collected dataset, and performs a simple

linguistic analysis on it, Sec. 4 details our model for para-

graph generation, Sec. 5 contains experiments, and Sec. 6

concludes with discussion.

2. Related Work

Image Captioning Building connections between visual

and textual data has been a longstanding goal in computer

vision. One line of work treats the problem as a ranking task,

using images to retrieve relevant captions from a database

and vice-versa [8, 10, 13]. Due to the compositional nature

of language, it is unlikely that any database will contain

all possible image captions; therefore another line of work

focuses on generating captions directly. Early work uses

handwritten templates to generate language [17] while more

recent methods train recurrent neural network language mod-

els conditioned on image features [4, 6, 12, 22, 30, 33] and

sample from them to generate text. Similar methods have

also been applied to generate captions for videos [6, 32, 35].

A handful of approaches to image captioning reason not

only about whole images but also image regions. Xu et

al. [31] generate captions using a recurrent network with

attention, so that the model produces a distribution over im-

age regions for each word. In contrast to their work, which

uses a coarse grid as image regions, we use semantically

meaningful regions of interest. Karpathy and Fei-Fei [12]

use a ranking loss to align image regions with sentence frag-

ments but do not do generation with the model. Johnson et

al. [11] introdue the task of dense captioning, which detects

and describes regions of interest, but these descriptions are

independent and do not form a coherent whole.

There has also been some pioneering work on video cap-

tioning with multiple sentences [27]. While videos are a

natural candidate for multi-sentence description generation,

image captioning cannot leverage strong temporal dependen-

cies, adding extra challenge.

Hierarchical Recurrent Networks In order to generate

a paragraph description, a model must reason about long-

term linguistic structures spanning multiple sentences. Due

to vanishing gradients, recurrent neural networks trained

with stochastic gradient descent often struggle to learn long-

term dependencies. Alternative recurrent architectures such

as long-short term memory (LSTM) [9] help alleviate this

problem through a gating mechanism that improves gradient

flow. Another solution is a hierarchical recurrent network,

where the architecture is designed such that different parts

of the model operate on different time scales.

Early work applied hierarchical recurrent networks to

simple algorithmic problems [7]. The Clockwork RNN [15]

uses a related technique for audio signal generation, spoken

word classification, and handwriting recognition; a similar

hierarchical architecture was also used in [2] for speech

recognition. In these approaches, each recurrent unit is up-

dated on a fixed schedule: some units are updated on every

timestep, while other units might be updated every other

or every fourth timestep. This type of hierarchy helps re-

duce the vanishing gradient problem, but the hierarchy of the

model does not directly reflect the hierarchy of the output

sequence.

More related to our work are hierarchical architectures

that directly mirror the hierarchy of language. Li et al. [18]

introduce a hierarchical autoencoder, and Lin et al. [19]

use different recurrent units to model sentences and words.

Most similar to our work is Yu et al. [35], who generate

multi-sentence descriptions for cooking videos using a dif-

ferent hierarchical model. Due to the less constrained non-

temporal setting in our work, our method has to learn in

a much more generic fashion and has been made simpler

as a result, relying more on learning the interplay between

sentences. Additionally, our method reasons about semantic

regions in images, which both enables the transfer of infor-

mation from these regions and leads to more interpretability

in generation.
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Sentences

COCO [20]

Paragraphs

Ours

Description Length 11.30 67.50

Sentence Length 11.30 11.91

Diversity 19.01 70.49

Nouns 33.45% 25.81%

Adjectives 27.23% 27.64%

Verbs 10.72% 15.21%

Pronouns 1.23% 2.45%

Table 1. Statistics of paragraph descriptions, compared with

sentence-level captions used in prior work. Description and

sentence lengths are represented by the number of tokens

present, diversity is the inverse of the average CIDEr score

between sentences of the same image, and part of speech

distributions are aggregated from Penn Treebank [23] part of

speech tags.

3. Paragraphs are Different

To what extent does describing images with paragraphs

differ from sentence-level captioning? To answer this ques-

tion, we collected a novel dataset of paragraph annota-

tions, comparised of 19,551 MS COCO [20] and Visual

Genome [16] images, where each image has been annotated

with a paragraph description. Annotations were collected

on Amazon Mechanical Turk, using U.S. workers with at

least 5,000 accepted HITs and an acceptance rate of 98% or

greater1, and were additionally subject to automatic and man-

ual spot checks on quality. Fig. 1 demonstrates an example,

comparing our collected paragraph with the five correspond-

ing sentence-level captions from MS COCO. Though it is

clear that the paragraph is longer and more descriptive than

any one sentence, we note further that a single paragraph can

be more detailed than all five sentence captions, even when

combined. This occurs because of redundancy in sentence-

level captions – while each caption might use slightly differ-

ent words to describe the image, since all sentence captions

have the goal of describing the image as a whole, they are

fundamentally limited in terms of both diversity and their

total information.

We quantify these observations along with various other

statistics of language in Tab. 1. For example, we find that

each paragraph is roughly six times as long as the average

sentence caption, and the individual sentences in each para-

graph are of comparable length as sentence-level captions.

To examine the issue of sentence diversity, we compute the

average CIDEr [29] similarity between COCO sentences for

each image and between the individual sentences in each

collected paragraph, defining the final diversity score as 100

minus the average CIDEr similarity. Viewed through this

metric, the difference in diversity is striking – sentences

1Available at http://cs.stanford.edu/people/

ranjaykrishna/im2p/index.html

within paragraphs are substantially more diverse than sen-

tence captions, with a diversity score of 70.49 compared to

only 19.01. This quantifiable evidence demonstrates that sen-

tences in paragraphs provide significantly more information

about images.

Diving deeper, we performed a simple linguistic analysis

on COCO sentences and our collected paragraphs, com-

prised of annotating each word with a part of speech tag

from Penn Treebank via Stanford CoreNLP [21] and aggre-

gating parts of speech into higher-level linguistic categories.

A few common parts of speech are given in Tab. 1. As a

proportion, paragraphs have somewhat more verbs and pro-

nouns, a comparable frequency of adjectives, and somewhat

fewer nouns. Given the nature of paragraphs, this makes

sense – longer descriptions go beyond the presence of a few

salient objects and include information about their properties

and relationships. We also note but do not quantify that para-

graphs exhibit higher frequencies of more complex linguistic

phenomena, e.g. coreference occurring in Fig. 1, wherein

sentences refer to either “two children”, “one little girl and

one little boy”, “the girl”, or “the boy.” We belive that these

types of long-range phenomena are a fundamental property

of descriptive paragraphs with human-like language and can-

not be adequately explored with sentence-level captions.

4. Method

Overview Our model takes an image as input, generating

a natural-language paragraph describing it, and is designed

to take advantage of the compositional structure of both

images and paragraphs. Fig. 2 provides an overview. We

first decompose the input image by detecting objects and

other regions of interest, then aggregate features across these

regions to produce a pooled representation richly expressing

the image semantics. This feature vector is taken as input

by a hierarchical recurrent neural network composed of two

levels: a sentence RNN and a word RNN. The sentence RNN

receives the image features, decides how many sentences to

generate in the resulting paragraph, and produces an input

topic vector for each sentence. Given this topic vector, the

word RNN generates the words of a single sentence. We

also show how to transfer knowledge from a dense image

captioning [11] task to our model for paragraph generation.

4.1. Region Detector

The region detector receives an input image of size

3×H×W , detects regions of interest, and produces a feature

vector of dimension D = 4096 for each region. Our region

detector follows [26, 11]; we provide a summary here for

completeness: The image is resized so that its longest edge

is 720 pixels, and is then passed through a convolutional

network initialized from the 16-layer VGG network [28].

The resulting feature map is processed by a region proposal

network [26], which regresses from a set of anchors to pro-
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Image: 

3 x H x W

Regions with 

features: M x D

Pooled 

vector:

1 x P

Sentence 

RNN

Sentence topic 

vectors: S x P
A baseball player 

is swinging a bat.

Word 

RNN

He is wearing a 

red helmet and 

a white shirt.

The catcher’s 

mitt is behind 

the batter.

Word 

RNN

Generated 

sentences

Word 

RNN

Region 

Detector

projection,

pooling

CNN RPN

Hierarchical Recurrent Network

pi

Figure 2. Overview of our model. Given an image (left), a region detector (comprising a convolutional network and a region proposal

network) detects regions of interest and produces features for each. Region features are projected to R
P , pooled to give a compact image

representation, and passed to a hierarchical recurrent neural network language model comprising a sentence RNN and a word RNN. The

sentence RNN determines the number of sentences to generate based on the halting distribution pi and also generates sentence topic vectors,

which are consumed by each word RNN to generate sentences.

pose regions of interest. These regions are projected onto

the convolutional feature map, and the corresponding region

of the feature map is reshaped to a fixed size using bilinear

interpolation and processed by two fully-connected layers to

give a vector of dimension D for each region.

Given a dataset of images and ground-truth regions of

interest, the region detector can be trained in an end-to-end

fashion as in [26] for object detection and [11] for dense cap-

tioning. Since paragraph descriptions do not have annotated

groundings to regions of interest, we use a region detector

trained for dense image captioning on the Visual Genome

dataset [16], using the publicly available implementation of

[11]. This produces M = 50 detected regions.

One alternative worth noting is to use a region detector

trained strictly for object detection, rather than dense caption-

ing. Although such an approach would capture many salient

objects in an image, its paragraphs would suffer: an ideal

paragraph describes not only objects, but also scenery and

relationships, which are better captured by dense captioning

task that captures all noteworthy elements of a scene.

4.2. Region Pooling

The region detector produces a set of vectors

v1, . . . , vM ∈ R
D, each describing a different region in

the input image. We wish to aggregate these vectors into

a single pooled vector vp ∈ R
P that compactly describes

the content of the image. To this end, we learn a projec-

tion matrix Wpool ∈ R
P×D and bias bpool ∈ R

P ; the

pooled vector vp is computed by projecting each region

vector using Wpool and taking an elementwise maximum,

so that vp = maxMi=1
(Wpoolvi + bpool). While alternative

approaches for representing collections of regions, such as

spatial attention [31], may also be possible, we view these as

complementary to the model proposed in this paper; further-

more we note recent work [25] which has proven max pool-

ing sufficient for representing any continuous set function,

giving motivation that max pooling does not, in principle,

sacrifice expressive power.

4.3. Hierarchical Recurrent Network

The pooled region vector vp ∈ R
P is given as input

to a hierarchical neural language model composed of two

modules: a sentence RNN and a word RNN. The sentence

RNN is responsible for deciding the number of sentences S

that should be in the generated paragraph and for producing

a P -dimensional topic vector for each of these sentences.

Given a topic vector for a sentence, the word RNN generates

the words of that sentence. We adopt the standard LSTM

architecture [9] for both the word RNN and sentence RNN.

As an alternative to this hierarchical approach, one could

instead use a non-hierarchical language model to directly

generate the words of a paragraph, treating the end-of-

sentence token as another word in the vocabulary. Our hier-

archical model is advantageous because it reduces the length

of time over which the recurrent networks must reason. Our

paragraphs contain an average of 67.5 words (Tab. 1), so

a non-hierarchical approach must reason over dozens of

time steps, which is extremely difficult for language mod-

els. However, since our paragraphs contain an average of

5.7 sentences, each with an average of 11.9 words, both

the paragraph and sentence RNNs need only reason over

much shorter time-scales, making learning an appropriate

representation much more tractable.

Sentence RNN The sentence RNN is a single-layer LSTM

with hidden size H = 512 and initial hidden and cell states

set to zero. At each time step, the sentence RNN receives

the pooled region vector vp as input, and in turn produces

a sequence of hidden states h1, . . . , hS ∈ R
H , one for each

sentence in the paragraph. Each hidden state hi is used in

two ways: First, a linear projection from hi and a logis-

tic classifier produce a distribution pi over the two states

{CONTINUE = 0,STOP = 1} which determine whether

the ith sentence is the last sentence in the paragraph. Second,

the hidden state hi is fed through a two-layer fully-connected

network to produce the topic vector ti ∈ R
P for the ith sen-

tence of the paragraph, which is the input to the word RNN.
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Word RNN The word RNN is a two-layer LSTM with

hidden size H = 512, which, given a topic vector ti ∈
R

P from the sentence RNN, is responsible for generating

the words of a sentence. We follow the input formulation

of [30]: the first and second inputs to the RNN are the topic

vector and a special START token, and subsequent inputs are

learned embedding vectors for the words of the sentence. At

each timestep the hidden state of the last LSTM layer is used

to predict a distribution over the words in the vocabulary,

and a special END token signals the end of a sentence. After

each Word RNN has generated the words of their respective

sentences, these sentences are finally concatenated to form

the generated paragraph.

4.4. Training and Sampling

Training data consists of pairs (x, y), with x an image

and y a ground-truth paragraph description for that image,

where y has S sentences, the ith sentence has Ni words, and

yij is the jth word of the ith sentence. After computing

the pooled region vector vp for the image, we unroll the

sentence RNN for S timesteps, giving a distribution pi over

the {CONTINUE,STOP} states for each sentence. We feed

the sentence topic vectors to S copies of the word RNN,

unrolling the ith copy for Ni timesteps, producing distri-

butions pij over each word of each sentence. Our training

loss ℓ(x, y) for the example (x, y) is a weighted sum of two

cross-entropy terms: a sentence loss ℓsent on the stopping

distribution pi, and a word loss ℓword on the word distribu-

tion pij :

ℓ(x, y) =λsent

S∑

i=1

ℓsent(pi, I [i = S]) (1)

+λword

S∑

i=1

Ni∑

j=1

ℓword(pij , yij) (2)

To generate a paragraph for an image, we run the sentence

RNN forward until the stopping probability pi(STOP) ex-

ceeds a threshold TSTOP or after SMAX sentences, whichever

comes first. We then sample sentences from the word

RNN, choosing the most likely word at each timestep and

stopping after choosing the STOP token or after NMAX

words. We set the parameters TSTOP = 0.5, SMAX = 6, and

NMAX = 50 based on validation set performance.

4.5. Transfer Learning

Transfer learning has become pervasive in computer vi-

sion. For tasks such as object detection [26] and image cap-

tioning [6, 12, 30, 31], it has become standard practice not

only to process images with convolutional neural networks,

but also to initialize the weights of these networks from

weights that had been tuned for image classification, such

as the 16-layer VGG network [28]. Initializing from a pre-

trained convolutional network allows a form of knowledge

transfer from large classification datasets, and is particularly

effective on datasets of limited size. Might transfer learning

also be useful for paragraph generation?

We propose to utilize transfer learning in two ways. First,

we initialize our region detection network from a model

trained for dense image captioning [11]; although our model

is end-to-end differentiable, we keep this sub-network fixed

during training both for efficiency and also to prevent over-

fitting. Second, we initialize the word embedding vectors,

recurrent network weights, and output linear projection of

the word RNN from a language model that had been trained

on region-level captions [11], fine-tuning these parameters

during training to be better suited for the task of paragraph

generation. Parameters for tokens not present in the region

model are initialized from the parameters for the UNK to-

ken. This initialization strategy allows our model to utilize

linguistic knowledge learned on large-scale region caption

datasets [16] to produce better paragraph descriptions, and

we validate the efficacy of this strategy in our experiments.

5. Experiments

In this section we describe our paragraph generation ex-

periments on the collected data described in Sec. 3, which

we divide into 14,575 training, 2,487 validation, and 2,489

testing images.

5.1. Baselines

Sentence-Concat: To demonstrate the difference between

sentence-level and paragraph captions, this baseline samples

and concatenates five sentence captions from a model [12]

trained on MS COCO captions [20]. The first sentence uses

beam search (beam size = 2) and the rest are sampled. The

motivation for this is as follows: the image captioning model

first produces the sentence that best describes the image as

a whole, and subsequent sentences use sampling in order to

generate a diverse range of sentences, since the alternative

is to repeat the same sentence from beam search. We have

validated that this approach works better than using either

only beam search or only sampling, as the intent is to make

the strongest possible comparison at a task-level to standard

image captioning. We also note that, while Sentence-Concat

is trained on MS COCO, all images in our dataset are also in

MS COCO, and our descriptions were also written by users

on Amazon Mechanical Turk.

Image-Flat: This model uses a flat representation for both

images and language, and is equivalent to the standard image

captioning model NeuralTalk [12]. It takes the whole image

as input, and decodes into a paragraph token by token. We

use the publically available implementation of [12], which

uses the 16-layer VGG network [28] to extract CNN features

and projects them as input into an LSTM [9], training the

whole model jointly end-to-end.
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METEOR CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4

Sentence-Concat 12.05 6.82 31.11 15.10 7.56 3.98

Template 14.31 12.15 37.47 21.02 12.30 7.38

DenseCap-Concat 12.66 12.51 33.18 16.92 8.54 4.54

Image-Flat ([12]) 12.82 11.06 34.04 19.95 12.20 7.71

Regions-Flat-Scratch 13.54 11.14 37.30 21.70 13.07 8.07

Regions-Flat-Pretrained 14.23 12.13 38.32 22.90 14.17 8.97

Regions-Hierarchical (ours) 15.95 13.52 41.90 24.11 14.23 8.69

Human 19.22 28.55 42.88 25.68 15.55 9.66

Table 2. Main results for generating paragraphs. Our Region-Hierarchical method is compared with six baseline models and human

performance along six language metrics.

Template: This method represents a very different ap-

proach to generating paragraphs, similar in style to an open-

world version of more classical methods like BabyTalk [17],

which converts a structured representation of an image into

text via a handful of manually specified templates. The first

step of our template-based baseline is to detect and describe

many regions in a given target image using a pre-trained

dense captioning model [11], which produces a set of re-

gion descriptions tied with bounding boxes and detection

scores. The region descriptions are parsed into a set of sub-

jects, verbs, objects, and various modifiers according to part

of speech tagging and a handful of TokensRegex [3] rules,

which we find suffice to parse the vast majority (≥ 99%) of

the fairly simplistic and short region-level descriptions.

Each parsed word is scored by the sum of its detection

score and the log probability of the generated tokens in the

original region description. Words are then merged into a

coherent graph representing the scene, where each node com-

bines all words with the same text and overlapping bounding

boxes. Finally, text is generated using the top N = 25 scored

nodes, prioritizing subject-verb-object triples first

in generation, and representing all other nodes with existen-

tial “there is/are” statements.

DenseCap-Concat: This baseline is similar to Sentence-

Concat, but instead concatenates DenseCap [11] predictions

as separate sentences in order to form a paragraph. The intent

of analyzing this method is to disentangle two key parts of

the Template method: captioning and detection (i.e. Dense-

Cap), and heuristic recombination into paragraphs. We com-

bine the top n = 14 outputs of DenseCap to form DenseCap-

Concat’s output based on validation CIDEr+METEOR.

Other Baselines: “Regions-Flat-Scratch” uses a flat lan-

guage model for decoding and initializes it from scratch.

The language model input is the projected and pooled region-

level image features. “Regions-Flat-Pretrained” uses a pre-

trained language model. These baselines are included to

show the benefits of decomposing the image into regions

and pre-training the language model.

5.2. Implementation Details

All baseline neural language models use two layers of

LSTM [9] units with 512 dimensions. The feature pooling

dimension P is 1024, and we set λsent = 5.0 and λword =
1.0 based on validation set performance. Training is done via

stochastic gradient descent with Adam [14], implemented

in Torch. Of critical note is that model checkpoint selection

is based on the best combined METEOR and CIDEr score

on the validation set – although models tend to minimize

validation loss fairly quickly, it takes much longer training

for METEOR and CIDEr scores to stop improving.

5.3. Main Results

We present our main results at generating paragraphs

in Tab. 2, which are evaluated across six language metrics:

CIDEr [29], METEOR [5], and BLEU-{1,2,3,4} [24]. The

Sentence-Concat method performs poorly, achieving the low-

est scores across all metrics. Its lackluster performance pro-

vides further evidence of the stark differences between single-

sentence captioning and paragraph generation. Surprisingly,

the hard-coded template-based approach performs reason-

ably well, particularly on CIDEr, METEOR, and BLEU-1,

where it is competitive with some of the neural approaches.

This makes sense: the template approach is provided with

a strong prior about image content since it receives region-

level captions [11] as input, and the many expletive “there

is/are” statements it makes, though uninteresting, are safe,

resulting in decent scores. However, its relatively poor per-

formance on BLEU-3 and BLEU-4 highlights the limitation

of reasoning about regions in isolation – it is unable to pro-

duce much text relating regions to one another, and further

suffers from a lack of “connective tissue” that transforms

paragraphs from a series of disconnected thoughts into a

coherent whole. DenseCap-Concat scores worse than Tem-

plate on all metrics except CIDEr, illustrating the necessity

of Template’s caption parsing and recombination.

Image-Flat, trained on the task of paragraph generation,

outperforms Sentence-Concat, and the region-based reason-

ing of Regions-Flat-Scratch improves results further on all

metrics. Pre-training results in improvements on all met-
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A red double decker bus parked in a field. A 
double decker bus that is parked at the side 
of two and a road. A blue bus in the middle 
of a grand house. A new camera including a 
pinstripe boys and red white and blue 
outside. A large blue double decker bus with 
a front of a picture with its passengers in the.

A man riding a horse drawn carriage down a 
street. Post with two men ride on the back of 
a wagon with large elephants. A man is on 
top of a horse in a wooden track. A person 
sitting on a bench with two horses in a 
street. The horse sits on a garage while he 
looks like he is traveling in.

Two giraffes standing in a fenced in area. A 
big giraffe is is reading a tree. A giraffe 
sniffing the ground with its head. A couple of 
giraffe standing next to each other. Two 
giraffes are shown behind a fence and a 
fence.

A young girl is playing with a frisbee. Man on 
a field with an orange frisbee. A woman 
holds a frisbee on a bench on a sunny day. 
A young girl is holding a green green frisbee. 
A girl throwing a frisbee in a park.

There are two buses driving in the road. There is 
a yellow bus on the road with white lines painted 
on it. It is stopped at the bus stop and a person 
is passing by it. In front of the bus there is a 
black and white bus.

A man is riding a carriage on a street. Two 
people are sitting on top of the horses. The 
carriage is made of wood. The carriage is black. 
The carriage has a white stripe down the side. 
The building in the background is a tan color.

A giraffe is standing next to a tree. There is a 
pole with some green leaves on it to the right. 
There is a white and black brick building behind 
the fence. there are a bunch of trees and 
bushes as well.

A woman in a red shirt and a black short short 
sleeve red shorts is holding a yellow frisbee. 
She is wearing a green shirt and white pants. 
She is wearing a pink shirt and short sleeve 
skirt. In her hand she is holding a white frisbee 
and a hand can be seen through it. Behind her 
are two white chairs. In the background is a 
large green and white building.

Sentence-Concat Template Regions-Hierarchical
There is a yellow and white bus, and a 
front wheel of a bus. There is a clear and 
blue sky, and a front wheel of a bus. There 
is a bus, and windows. There is a number 
on a train, and a white and red sign. There 
is a tire of a truck.

People are riding a horse, and a man in a 
white shirt is sitting on a bench. People are 
sitting on a bench, and there is a wheel of 
a bicycle. There is a building with windows, 
and an blue umbrella. There are parked 
wheels, and a wheel. There is a brick.

Giraffes are standing in a field, and there is 
a standing giraffe. Tall green trees behind 
a fence are behind a fence, and there is a 
neck of a giraffe. There is a green grass, 
and a giraffe. There is a trunk of a tree, 
and a brown fence. there is a tree trunk, 
and white letters.

A girl is holding a tennis racket, and there 
is a green and brown grass. There is a 
pink shirt on a woman, and the 
background. The woman with a hair is 
wearing blue shorts, and there are red 
flowers. There are trees, and a blue frisbee 
in an air.

Figure 3. Example paragraph generation results for our model (Regions-Hierarchical) and the Sentence-Concat and Template baselines. The

first three rows are positive results and the last row is a failure case.

rics, and our full model, Regions-Hierarchical, achieves

the highest scores among all methods on every metric ex-

cept BLEU-4. One hypothesis for the mild superiority of

Regions-Flat-Pretrained on BLEU-4 is that it is better able

to reproduce words immediately at the end and beginning of

sentences more exactly due to their non-hierarchical struc-

ture, providing a slight boost in BLEU scores.

To make these metrics more interpretable, we performed

a human evaluation by collecting an additional paragraph

for 500 randomly chosen images, with results in the last

row of Tab. 2. As expected, humans produce superior de-

scriptions to any automatic method, performing better on

all language metrics considered. Of particular note is the

large gap between humans our the best model on CIDEr and

METEOR, which are both designed to correlate well with

human judgment [29, 5].

Finally, we note that we have also tried the SPICE eval-

uation metric [1], which has shown to correlate well with

human judgements for sentence-level image captioning. Un-

fortunately, SPICE does not seem well-suited for evaluating

long paragraph descriptions – it does not handle coreference

or distinguish between different instances of the same object

category. These are reasonable design decisions for sentence-

level captioning, but is less applicable to paragraphs. In fact,

human paragraphs achieved a considerably lower SPICE

score than automated methods.

5.4. Qualitative Results

We present qualitative results from our model and the

Sentence-Concat and Template baselines in Fig. 3. Some

interesting properties of our model’s predictions include

its use of coreference in the first example (“a bus”, “it”,

“the bus”) and its ability to capture relationships between

objects in the second example. Also of note is the order in

which our model chooses to describe the image: the first

sentence tends to be fairly high level, middle sentences give

some details about scene elements mentioned earlier in the

description, and the last sentence often describes something

in the background, which other methods are not able to

capture. Anecdotally, we observed that this follows the same

order with which most humans tended to describe images.

The failure case in the last row highlights another interest-

ing phenomenon: even though our model was wrong about

the semantics of the image, calling the girl “a woman”, it has

learned that “woman” is consistently associated with female

pronouns (“she”, “she”, “her hand”, “behind her”).

It is also worth noting the general behavior of the two

baselines. Paragraphs from Sentence-Concat tend to be repet-

itive in sentence structure and are often simply inaccurate

due to the sampling required to generate multiple sentences.

On the other hand, the Template baseline is largely accu-

rate, but has uninteresting language and lacks the ability

to determine which things are most important to describe.

In contrast, Regions-Hierarchical stays relevant and further-

more exhibits more interesting patterns of language.

5.5. Paragraph Language Analysis

To shed a quantitative light on the linguistic phenom-

ena generated, in Tab. 3 we show statistics of the language

produced by a representative spread of methods.

Our hierarchical approach generates text of similar av-

erage length and variance as human descriptions, with

Sentence-Concat and the Template approach somewhat

shorter and less varied in length. Sentence-Concat is also

323



Average

Length

Std. Dev.

Length
Diversity Nouns Verbs Pronouns

Vocab

Size

Sentence-Concat 56.18 4.74 34.23 32.53 9.74 0.95 2993

Template 60.81 7.01 45.42 23.23 11.83 0.00 422

Regions-Hierarchical 70.47 17.67 40.95 24.77 13.53 2.13 1989

Human 67.51 25.95 69.92 25.91 14.57 2.42 4137

Table 3. Language statistics of test set predictions. Part of speech statistics are given as percentages, and diversity is calculated as in Section 3.

“Vocab Size” indicates the number of unique tokens output across the entire test set, and human numbers are calculated from ground truth.

Note that the diversity score for humans differs slightly from the score in Tab. 1, which is calculated on the entire dataset.

Two men are standing on a skateboard 
on a ramp outside on a sunny day. One 
man is wearing black pants, a white 
shirt and black pants. The man on the 
skateboard is wearing jeans. The man's 
arms are stretched out in front of him. 
The man is wearing a white shirt and 
black pants. The other man is wearing a 
white shirt and black pants.

A young girl is sitting at a 
table in a restaurant. She is 
holding a hot dog on a bun 
in her hands. The girl is 
wearing a pink shirt and has 
short hair. A little girl is 
sitting on a table.

This is an image of a baseball game. The 
batter is wearing a white uniform with black 
lettering and a red helmet. The batter is 
wearing a white uniform with black lettering 
and a red helmet. The catcher is wearing a 
red helmet and red shirt and black pants. The 
catcher is wearing a red shirt and gray pants. 
The field is brown dirt and the grass is green.

This is a sepia toned image on a 
cloudy day. There are a few white 
clouds in the sky. The tower has a 
clock on it with black numbers 
and numbers. The tower is white 
with black trim and black trim. the 
sky is blue with white clouds.

Figure 4. Examples of paragraph generation from only a few regions. Since only a small number of regions are used, this data is extremely

out of sample for the model, but it is still able to focus on the regions of interest while ignoring the rest of the image.

the least diverse method, though all automatic methods re-

main far less diverse than human sentences, indicating ample

opportunity for improvement. According to this diversity

metric, the Template approach is actually the most diverse au-

tomatic method, which may be attributed to how the method

is hard-coded to sequentially describe each region in the

scene in turn, regardless of importance or how interesting

such an output may be (see Fig. 3). While both our hier-

archical approach and the Template method produce text

with similar portions of nouns and verbs as human para-

graphs, only our approach was able to generate a reasonable

quantity of pronouns. Our hierarchical method also had a

much wider vocabulary compared to the Template approach,

though Sentence-Concat, trained on hundreds of thousands

of MS COCO [20] captions, is a bit larger.

5.6. Generating Paragraphs from Fewer Regions

As an exploratory experiment in order to highlight the

interpretability of our model, we investigate generating para-

graphs from a smaller number of regions than the M = 50
used in the rest of this work. Instead, we only give our

method access to the top few detected regions as input, with

the hope that the generated paragraph focuses only on those

particularly regions, preferring not to describe other parts of

the image. The results for a handful of images are shown in

Fig. 4. Although the input is extremely out of sample com-

pared to the training data, the results are still quite reasonable

– the model generates paragraphs describing the detected re-

gions without much mention of objects or scenery outside

of the detections. Taking the top-right image as an example,

despite a few linguistic mistakes, the paragraph generated

by our model mentions the batter, catcher, dirt, and grass,

which all appear in the top detected regions, but does not pay

heed to the pitcher or the umpire in the background.

6. Conclusion
In this paper we have introduced the task of describing

images with long, descriptive paragraphs, and presented a

hierarchical approach for generation that leverages the com-

positional structure of both images and language. We have

shown that paragraph generation is different from traditional

image captioning and have tailored our model to suit these

differences. Experimentally, we have demonstrated the ad-

vantages of our approach over traditional image captioning

methods and shown how region-level knowledge can be

effectively transferred to paragraph captioning. We have

also demonstrated the benefits of our model in interpretabil-

ity, generating descriptive paragraphs using only a subset of

image regions. We anticipate further opportunities for knowl-

edge transfer at the intersection of vision and language, and

project that visual and lingual compositionality will continue

to lie at the heart of effective paragraph generation.
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