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Abstract

In this paper we study the problem of automatically gen-

erating polynomial solvers for minimal problems. The main

contribution is a new method for finding small elimination

templates by making use of the syzygies (i.e. the polynomial

relations) that exist between the original equations. Us-

ing these syzygies we can essentially parameterize the set

of possible elimination templates.

We evaluate our method on a wide variety of problems

from geometric computer vision and show improvement

compared to both handcrafted and automatically generated

solvers. Furthermore we apply our method on two previ-

ously unsolved relative orientation problems.

1. Introduction

One of the success stories of computer vision is using

robust estimation schemes such as RANSAC [13] in multi-

ple view geometry estimation. With a hypothesis and test

framework, one can efficiently handle large amounts of out-

liers in the measured data. A key element in such a frame-

work is the ability to model the problem using a small or

minimal subset of data points – a so-called minimal prob-

lem. A classic example is the 5-point algorithm for esti-

mating the relative pose between two cameras, given only

image point measurements, [25, 12, 41, 47]. The underly-

ing problems in multiple view geometry naturally lead to

systems of polynomial equations in several variables. In or-

der to devise tractable algorithms, robust and fast solvers of

polynomial equations are needed. The predominant way to

solve minimal problems in computer vision is using meth-

ods based on Gröbner bases. The reason is that this of-

ten leads to fast and numerically stable algorithms. These

methods were popularized in computer vision by Stewénius

[46]. The earliest examples were methods that were very

much handcrafted [24, 48], but since then much effort has

been put into making the process of constructing the solvers

more automatic. One of the main challenges is ways of au-
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tomatically constructing the so-called elimination template,

which is the main focus of this work.

Our contributions in this paper are:

(i) A non-iterative method for automatically finding the

monomial expansion of the initial system of equations.

(ii) A non-iterative reduction step, that often gives a much

more compact representation of the expanding set.

(iii) An efficient implementation of these ideas which pro-

duces stand-alone code for solving arbitrary instances of the

problem.

(iv) Solvers for two previously unsolved minimal cases,

based on our developed system.

1.1. Related work

The most closely related work is by Kukelova et al. [33],

where the authors presented an automatic method for gen-

erating polynomial solvers. The automatic generator allows

the user to specify a set of polynomial equations and then

automatically generates stand-alone code for solving arbi-

trary problem instances. This automatic generator has been

widely adopted in the computer vision community and it

has been used to solve several problems in geometric com-

puter vision (see e.g. Table 1 and the references therein.)

The solvers generated using [33] are built on the action ma-

trix method that reduces the polynomial equation system to

an eigenvalue problem. Their automatic generator works

by first computing a Gröbner basis in Macaulay2 [15] for

a random problem instance. The Gröbner basis gives in-

formation on the number of solutions and provides a basis

for the quotient space. The elimination template needed for

computing the action matrix is then found by an iterative

search process that alternates between expanding the equa-

tion system and performing Gaussian elimination. Once

sufficiently many equations have been generated a prun-

ing step is used to remove any unnecessary equations. The

Gröbner basis computations and the Gaussian eliminations

are performed in some prime field Zp to avoid numerical

problems. The main drawback of the approach in [33] is

that as the number of variables and equations grows the

iterative search and pruning step can quickly become in-

tractable. In this work we propose a new method for finding

the elimination template in place of the iterative search used
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in [33]. We show on a large number of examples that our

approach almost always produces smaller elimination tem-

plates and faster polynomial solvers.

While our focus has been on constructing smaller tem-

plates there has been a number of works that have ad-

dressed the problem of making solvers more numerically

stable [9, 26] and faster [6, 32]. It is possible that these

methods could be applied in conjunction with our method,

but this is left as further work.

2. Background

In this section we remind the reader of some of the basic

facts and definitions from algebraic geometry that we will

use throughout the paper. For a more thorough introduction

see [10].

Let X = (x1, . . . , xn) be a number of variables, and K

be some field. Then the set of all multivariate polynomials

(with n variables) over K is denoted K[X], and this set with

their natural operations forms a ring. In this paper we will

only consider the case when K = C or K = Zp for some

prime number p. For a set of polynomials F = {fi}
m
i=0

the

set of shared zeros, i.e.

V(F ) = {x ∈ K
n | fi(x) = 0, i = 1, 2, . . . ,m} (1)

is called an affine variety and the set of all polynomial com-

binations of the elements in F , i.e.

I(F ) = {p ∈ K[X] | p =
∑

ihifi, hi ∈ K[X]}, (2)

forms an ideal in the polynomial ring K[X]. When it is clear

from the context which polynomials are meant we will omit

F and simply write V and I .

Similar to the univariate case there exists a division al-

gorithm for multivariate polynomials. Unfortunately the re-

mainder depends on the order in which the polynomials are

listed. Fortunately for any ideal I there exist special sets

of generators G = {gi}
ℓ
i=0

called Gröbner bases, such that

the remainder after division with G is uniquely defined, re-

gardless of how the individual gi are listed. This allows us

to define the normal form of a polynomial p ∈ K[X] with

respect to G as the unique remainder after division with G.

This is denoted pG. Note that p ∈ I if and only if pG = 0.

For a Gröbner basis G the normal set is the set of all mono-

mials not divisible by any element in G. It is easy to see that

the normal form for any polynomial lies in the linear span

of the normal set.

Another object of interest is the quotient space K[X]/I ,

which is the set of equivalence classes over I (i.e. two ele-

ments are equivalent if their difference lies in I). If an affine

variety V is zero dimensional (i.e. there are finitely many so-

lutions) then the corresponding quotient space K[X]/I will

be a finite dimensional vector space. For any Gröbner ba-

sis G of I we have that the normal set forms a vector space

basis of the quotient space K[X]/I .

2.1. The action matrix method

Next we give a brief overview of the action matrix

method for solving polynomial systems. The main idea is

to reduce the problem to an eigenvalue problem for which

there exist good numerical methods. For a more thorough

review of the action matrix method and how it has been ap-

plied in computer vision we recommend [37], [33] and [9].

Consider the operator Tα : K[X]/I → K[X]/I which

multiplies a polynomial with the fix monomial1 α ∈ K[X],
i.e.

Tα [p(x)] = [α(x)p(x)] , p ∈ K[X]. (3)

The operator Tα is a linear map and thus if we choose a

(linear) basis b for the quotient space we can express the

operator with a matrix M , i.e.

[αbi] =
[

∑

jmijbj

]

⇔ [αb] = [Mb] . (4)

For each x ∈ V we must have Mb(x) = α(x)b(x). Thus

if we evaluate α and b at the solutions we get eigenvalues

and eigenvectors for the matrix M . So if we can find the

action matrix M we can recover the solutions by solving an

eigenvalue problem, and hence we have reduced the solving

of the system of polynomial equations to a linear algebra

problem.

The monomials ri = αbi are called the reducible mono-

mials. If a Gröbner basis G is known and b is chosen as

the normal set we can recover the action matrix by reduc-

ing the reducible monomials with the Gröbner basis, i.e.

ri
G =

∑

j mijbj . Due to roundoff error it is usually not

possible to directly compute a Gröbner basis for a polyno-

mial system corresponding to a real problem instance. In-

stead an alternative approach is taken to recover the action

matrix. The idea is based on the observation that each

ri −
∑

jmijbj ∈ I (5)

and thus there exist some polynomials hij ∈ K[X] such that

ri −
∑

jmijbj =
∑

jhijfj . (6)

To find the action matrix M the original set of equations

{fj(x) = 0}mj=0
is expanded by adding new equations

formed by multiplying each fj by some monomials. If

we have multiplied by sufficiently many monomials (i.e. all

monomials in the unknown hij) we can express each poly-

nomial (5) linearly in the expanded set of equations.

To do this in practice (see e.g. [26] for details) we write

the expanded set of equations as CX = 0, where the matrix

C is called the elimination template and X is a vector of all

the monomials occurring in the equations. By reordering

1For simplicity we take α as a monomial here but the theory holds for

a general polynomial as well.
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the monomials we can rewrite this as

CX =
[

CE CR CB

]





xE

xR

xB



 = 0, (7)

where we have grouped the monomials into excessive

monomials xE , reducible monomials xR and basis mono-

mials xB . The excessive monomials are simply the mono-

mials which are neither reducible nor basis monomials.

Now since we know xR = MxB we simply perform Gaus-

sian elimination on (7) and get the following form on the

lower part of (7)

[

0 I −M
]





xE

xR

xB



 = 0 (8)

from which we can extract the action matrix M .2

3. Finding elimination templates in Zp[X]

Now we will present our proposed approach for finding

elimination templates for a given problem. Similarly to [33]

we start by generating instances of the problem where the

equations have coefficients in some prime field Zp. Due

to the exact arithmetic available in these fields we can eas-

ily compute a Gröbner basis G = {gk}
ℓ
k=0

for the ideal.

From the Gröbner basis we find a linear basis b for the quo-

tient space by forming the normal set. As described in Sec-

tion 2.1 we can then find the action matrix by reducing each

of the reducible monomials,

ri
G =

∑

jmijbj . (9)

Note that this only gives the action matrix for this particular

integer instance, which we are not particularly interested in.

However, by keeping track of how the Gröbner basis el-

ements are formed we can express each gk in the generators

fj , i.e.3

gk =
∑

kckjfj , (10)

where the coefficients ckj ∈ Zp[X] are polynomials. Since

each ri−
∑

mijbj ∈ I we can then find polynomials hij ∈
Zp[X] such that

ri−
∑

jmijbj =
∑

kaikgk =
∑

kaik(
∑

jckjfj) =
∑

jhijfj
(11)

by dividing by {gk} and substituting each gk with (10).

While the polynomials hij are specific to this instance, they

will typically have the same structure and only the coeffi-

cients (i.e. numbers) will be different for different problem

instances. Thus to form our elimination template we expand

2Note that in practice some reducible monomials might be available

from the basis monomials
3In Macaulay2 this can be accomplished using ChangeMatrix.

our equation set by multiplying each equation fj(x) = 0 by

the monomials in hij for each i = 1, 2, . . . , nR.

Typically the elimination templates found using this

method will be quite large. In the next section we will show

how we can find simpler polynomials hij that give more

compact elimination templates.

3.1. Reducing the expansion

In the previous section we showed how to obtain poly-

nomials hi = (hi1, . . . , hin) ∈ Zp[X]n such that we could

represent the polynomials needed for forming the action

matrix, i.e.

pi = ri −
∑

jmijbj =
∑

jhijfj . (12)

These representations of pi in {fj} are however not unique,

since for any s = (s1, . . . , sn) ∈ Zp[X]n which satisfies

∑

jsjfj = 0, (13)

we also have

pi =
∑

j(hij + sj)fj . (14)

Consider the set of all s ∈ Zp[X]n which satisfy this, i.e.

M = {s ∈ Zp[X]n |
∑

jsjfj = 0}. (15)

This set forms a sub-module in Zp[X]n and is called the

first syzygy module of (f1, . . . , fn) [11]. It captures all poly-

nomial relations between the original equations {fj(x) =
0}mi=0

and it is clear that any representation of pi in {fj}
can be written as hi + s for some element s ∈ M.

Finding the s ∈ M which yields that smallest template

or the best numerics is a difficult problem. Instead we now

present a simple heuristic that usually works well in prac-

tice. We start by computing a Gröbner basis GM for the

module M. This is done on the prime field problem in-

stance using Macaulay2. The Gröbner basis depends on the

monomial order chosen for M and in this work we have

used the Term-Over-Position-GRevLex which is the default

order for modules in Macaulay2. Next to find a simpler rep-

resentation of each pi we compute the normal form w.r.t.

GM for each hi, i.e.

h̃i = hi

GM

. (16)

This can be thought of as removing as much as possible

of M from the representation. The following proposition

shows that the new representations h̃i are minimal in the

sense that the maximum degree of the monomials is mini-

mized. Note that there can be multiple representations with

minimal degree and this approach only finds one of them.

Proposition 1. If M is defined as above, p =
∑

jhjfj
and GM is a Gröbner basis for M with respect to TOP-

GRevLex (or any other degree first monomial order), then
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h̃ = h
GM

satisfies

max
i

deg h̃i ≤ max
i

deg
(

h̃i + si

)

∀s ∈ M (17)

i.e. the representation h̃ of p is of minimal degree.

Proof. Assume that there exist some s ∈ M such that

max
i

deg
(

h̃i + si

)

< max
i

deg h̃i. (18)

Then since the monomial order is degree first we must have

LM(h̃ + s) < LM(h̃) which implies LM(h̃) = LM(s).
But then h̃ is divisible by an element in M which is a con-

tradiction.

3.2. Implementation details

We have written an automatic generator in MATLAB,

which uses the technique described above to find and reduce

the elimination templates. The generator is similar to that of

Kukelova et al. [33] in that it only requires the user to spec-

ify the problem equations and then generates stand-alone

MATLAB code that can be used to solve arbitrary problem

instances. The elimination template generation and reduc-

tion are performed in just a few lines of Macaulay2 [15].

The automatic generator allows the user to easily experi-

ment with different parameters such as which action mono-

mial to use and the monomial ordering for the ideal, which

can greatly affect the size of the polynomial solver. The

generator can also automatically identify and exploit any

variable aligned symmetries as described in [35]. In the im-

plementation we do not perform any refinement on the elim-

ination templates (except for the reduction step described

in Section 3.1). It is possible that by using template opti-

mization techniques such as those described in [26, 39] the

results could be further improved. We have made the code

for generating solvers publicly available. For most of the

problems that we have tried, the solver generation time is

quite small. The median running time for all the problems

described in Table 1 of our automatic generator (executed

on a standard desktop computer) is 5.7s.

4. Evaluation of the reduction step

In this section we evaluate the reduction step proposed in

Section 3.1. Note that while the reduction does not guaran-

tee that the template will be smaller we will show that this

is often the case in practice.

To perform the evaluation we applied the automatic gen-

erator to a wide variety of minimal problems from the com-

puter vision literature. Table 1 shows both the original tem-

plate sizes as reported by the authors and the resulting tem-

plates from our proposed automatic generator. We have

marked the templates with the smallest number of elements

in bold. It can be seen that in general the reduction step

produces a smaller template. More interestingly is perhaps

that the reduced template is often smaller than the template

in the original paper. Note that many of the papers used

the automatic generator from Kukelova et al. [33] (indicated

with (*) in the table). For many of the tested problems we

get a significant decrease in template size, and for some a

very large decrease. For instance for the problem of esti-

mating relative pose with a known rotation direction we go

from a template of size 411 × 489, [45] to a template of

size 40 × 57. If we assume that the time complexity of the

solver is quadratic in the number of rows and linear in the

number of columns this corresponds to a speed-up factor of

900. The problem contains a symmetry that was not used

by the original authors and we have used the method in [35]

to remove it. (Here the smaller template doesn’t contain all

the variables in the basis for the quotient space, but the re-

maining variables can be extracted linearly from the initial

equations.)

5. Numerical accuracy of the solvers

The focus of the work in this paper has been on gener-

ating fast solvers in an automatic manner, and not on nu-

merical accuracy. However, for the proposed solvers to be

usable we need them to behave in an acceptable way in

terms of accuracy as well. While a smaller template typi-

cally yields faster runtime, there is not always a clear cor-

relation between accuracy and template size. In [39] it was

reported that on a number of examples, smaller templates

yielded better numerical accuracy as well. All of the gener-

ated solvers in Table 1 produce log
10

-residuals with a mode

below −4.8 and most solvers have significantly better accu-

racy. The median of all of the log
10

-error modes is −10.9.

We will in this section give comparisons between our

solvers and the original ones, for some specific problems.

In terms of the underlying computer vision problem, there

is often some meaningful statistical error that one can eval-

uate, e.g. the reprojection errors, but since our main con-

tribution in this paper is an automatic way of constructing

solvers to systems of polynomials equations, we have opted

to evaluate the actual equation residuals instead.

We compare on three different problems, where the orig-

inal solvers were publicly available, namely image stitching

with unknown focal length and radial distortion [8, 39] ,

the optimal PnP-method of Hesch et al. [21] and the opti-

mal PnP-method of Zheng et al. [54]. In Figure 1 the re-

sulting error residual histograms are shown, for 5,000 runs

of the solvers, with random input. The figure shows that

for these problems we get similar accuracy as the original

solvers while having smaller elimination templates. For the

image stitching we have used the original solver presented

in [8]. The smaller original template presented in Table 1 is

from the paper of Naroditsky et al., but they reported almost

identical numerics as the original solver [39].
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Problem Original Proposed generator

Author template size no reduction step with reduction step

Rel. pose 5pt Stewénius et al. [47] 10× 20 10× 20 10× 20

Rel. pose 8pt one-sided rad. dist. Kuang et al. [30] 12× 24 11× 20 11× 20

TDOA offset rank 2, 7,4 pts Kuang et al. [28] 20× 15 20× 15 20× 15

Rel. pose + one focal 6pt Bujnak et al. [4] (*) 21× 30 21× 30 21× 30

P3.5P + focal Wu [52] 20× 43 24× 45 20× 44
Rel. pose + const. focal 6pt Kukelova et al. [33] (*) 31× 46 31× 50 31× 50
Rel. pose + rad. dist. 8pt Kukelova et al. [33] (*) 32× 48 31× 49 32× 50
Rel. pose 6pt ones-sided rad. dist. Kuang et al. [30] 48× 70 34× 60 34× 60

TDOA offset rank 2, 5,6 pts Kuang et al. [28] 105× 83 105× 83 40× 42

Rolling shutter pose Saurer et al. [44] (*) 48× 56 50× 55 47× 55

Generalized P4P + scale Ventura et al. [51] (*) 48× 56 50× 55 47× 55

Stitching + const. focal + rad. dist. 3pt Naroditsky et al. [39] 54× 77 96× 108 48× 66

TDOA offset rank 3, 9,5 pts Kuang et al. [28] 70× 31 70× 31 70× 31

TDOA offset rank 3, 7,6 pts Kuang et al. [28] 255× 157 255× 157 75× 57

Generalized rel. pose 6pt Stewénius et al. [48] 60× 120
‡ 135× 164 99× 163

Optimal PnP Hesch et al. [21] 120× 120 93× 116 88× 115

Triangulation from satellite im. Zheng et al. [53] (*) 93× 120 93× 116 88× 115

Optimal PnP (Cayley) Nakano [38] (*) 124× 164 186× 161 118× 158

P4P + focal + rad. dist. Bujnak et al. [5] (*) 136× 152 140× 144 140× 156
Rel. pose + rad. dist. 6pt Kukelova et al. [33] (*) 238× 290 223× 290 154× 210

Rel. pose + 2 rad. dist. 9pt Kukelova et al. [33] (*) 179× 203 355× 298 165× 200

Rel. pose 7pt one-sided focal + rad. dist. Kuang et al. [30] 200× 231 249× 214 185× 204

Weak PnP Larsson et al. [35] 234× 276 568× 498† 189× 232
†

Weak PnP (2x2 sym) Larsson et al. [35] 104× 90 83× 90† 49× 59
†

Rolling shutter R6P Albl et al. [2] (*) 196× 216 222× 230 204× 224
Optimal pose w dir 4pt Svärm et al. [49] 280× 252 371× 351 203× 239

Rel. pose w dir. 3pt Saurer et al. [45] (*) 411× 489 287× 324 210× 255

Rel. pose w dir. 3pt (using sym.) - - 94× 111† 40× 57
†

Abs. pose quivers Kuang et al. [27] 372× 386 420× 406 217× 253

L2 3 view triangulation (Relaxed) Kukelova et al. [34] (*) 274× 305 399× 384 239× 290

Rel. pose w angle 4pt Li et al. [36] (*) 270× 290 280× 304 266× 329
Refractive P5P Haner et al. [16] 280× 399 410× 480 240× 324

TDOA offset rank 3, 6,8 pts Kuang et al. [28] 1359× 754 1359× 754 356× 345

Optimal PnP Zheng et al. [54] (*) 575× 656 812× 704 521× 601

Optimal PnP (using sym.) Zheng et al. [54] (*) 348× 376 484× 408† 302× 342
†

Optimal pose w dir 3pt Svärm et al. [49] 1, 260× 1, 278 918× 726 544× 592

Optimal PnP (quaternion) Nakano [38] (*) 630× 710 958× 693 604× 684

Refractive P6P + focal Haner et al. [16] 648× 917 2, 196× 1, 913† 636× 851
†

Rel. pose + const. focal + rad. dist. 7pt Jiang et al. [23] 886× 1, 011 1, 393× 1, 237 581× 862

Dual-Receiver TDOA 5pt Burgess et al. [7] 2, 625× 2, 352 850× 1, 167 455× 768

Optimal PnP (rot. matrix) Nakano [38] (*) 1, 936× 1, 976 1, 698× 1, 153 1,102× 1,135
L2 3 view triangulation Kukelova et al. [34] (*) 1, 866× 1, 975 2, 647× 2, 584 1,759× 2,013

(*) Original template constructed using [33]. If several elimination templates are used, the largest of these templates is reported.

†: The problem contains variable-aligned symmetries [3, 31, 35] that was automatically found and removed by our generator.

‡: The original template doesn’t generate the full Gröbner basis, and some additional operations on the template are performed.

Table 1. Comparison of elimination template sizes for some common minimal problems in computer vision. The template with the fewest

elements, for each problem, is shown in bold.
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Figure 1. Kernel smoothed histograms of residual errors for 5,000 runs – of from left to right – image stitching with unknown focal length

and radial distortion [8, 39] , the optimal PnP-method of Hesch et al. [21] and the optimal PnP-method of Zheng et al. [54].

6. Three views with known rotation axis

In order to test our framework on a novel case, we turn

our attention to the problem of pose estimation in three

views when the rotation axis is known. Known rotation axis

can occur in practice when there is additional information

from sensors such as accelerometers which are common in

modern cell phones. The problem is minimal when we ob-

serve one point and two lines. The problem has previously

been studied for two views, where the minimal case is three

points [14, 40, 50], and for two generalized cameras, where

the minimal case is four points [20, 50]. Let the cameras be

chosen as

P1 =
[

I 0
]

, P2 =
[

R(θ2,v) t2
]

, P3 =
[

R(θ3,v) t3
]

(19)

where R(θ,v) denotes rotation of θ radians around the rota-

tion axis v. Since the rotation axis is assumed to be known

we can w.l.o.g. assume that v =
(

0, 1, 0
)T

by rotating the

image coordinate systems. The two line constraints can be

formulated as

rank
([

PT
1
ℓk1 PT

2
ℓk2 PT

3
ℓk3

])

= 2, k = 1, 2 (20)

where ℓij denotes line i observed in image j. The rank con-

straint can be encoded as a polynomial constraint by requir-

ing each of the 3× 3 submatrices to have zero determinant.

Finally the single point correspondence gives us three sets

of equations

λkxk = PkX, k = 1, 2, 3 (21)

or equivalently by eliminating λk

xk × PkX = 0, k = 1, 2, 3 (22)

where xk denotes the image point in image k.

6.1. Building an efficient twostep solver

To build an efficient solver for this problem we start by

noting that the top 3× 3 submatrix in (20) only contains the

rotation matrices. The determinant constraints are

det
([

ℓ1k RT
2
ℓ2k RT

3
ℓ3k

])

= 0, k = 1, 2 (23)

which gives us two quadratic equations in the elements of

R2 and R3. Since there are only two parameters in the ro-

tations we can use these two equations to solve for the rota-

tions independently from the rest of the variables.

Next we note that the constraint in (23) is invariant to the

scale of the rotation matrices. We exploit this by parame-

terizing the rotations by non-unit quaternions (i.e. the Cay-

ley transform), q
2
=

(

1, s2v
T
)T

, q
3
=

(

1, s3v
T
)T

.

This parameterization gives us two quartic equations in the

unknowns s2 and s3. Fixing the first element of the quater-

nion introduces a degeneracy for any 180-degree rotation.

Using the proposed automatic generator we construct a

solver for this system. The resulting template size is 12×20
and the system has 8 solutions. The solutions include two

false solutions s2 = s3 = ±i that were introduced by the

non-unit quaternion parameterization. These can easily be

discarded, and from the true solutions we can recover the

correct rotations by rescaling each quaternion to unit length.

When the rotations are known we can use them to re-

cover the translations t2 and t3. Using the point correspon-

dence we can parameterize the two translations using the

depths as

tk = λkxk −RkX, k = 2, 3. (24)

Since P1 = [I 0] we can select the scale such that X = x1.

Inserting (24) into the line constraints gives linear equations

in the unknown λ2 and λ3, which allows us to solve for

the translations. We evaluated the performance of the two-

step solver on 10,000 random synthetic instances. Figure 2

shows the residuals for the rotation estimation and the dis-

tance from the recovered pose to the ground truth. In av-

erage solving for the rotations and finding all translations

took less than one millisecond per instance. Figure 3 shows

an example where we have used the minimal solver in a

RANSAC framework to estimate the relative pose of three
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Figure 2. Results for 10,000 random synthetic instances for the ro-

tation estimation in Section 6.1. The figure shows kernel smoothed

distributions of both the residuals and the distance to the ground

truth pose. The distance is defined as the maximum of ‖R2 −
RGT

2 ‖F , ‖R3 −RGT
3 ‖F , ‖t2 − tGT

2 ‖2 and ‖t3 − tGT
3 ‖2.

cameras. The 3D structure is found using DLT [19]. Note

that this is the result without any bundle adjustment.

6.2. Importance of good parameterization

In the previous section we developed an efficient solver

by choosing a clever parameterization of the problem. Find-

ing a good parameterization is often one of the main diffi-

culties when building polynomial solvers for minimal prob-

lems. Knowing which parameterization will yield good

solvers is non-trivial and usually a trial and error approach

is taken. Automatic tools such as the generator proposed

in this paper greatly speeds up this process and allows for

much faster prototyping.

To illustrate the importance of good parameterization we

show three alternative parameterizations for this problem.

1. First we fix the scale by setting X = x1 and directly

parameterize the two translations t2 =
(

t21, t22, t23
)T

and t3 =
(

t31, t32, t33
)T

. The rotations are repre-

sented using unit quaternions, q
2
= (s21, s22v

T )T and

q
3

= (s31, s32v
T )T with the additional constraints

‖q
2
‖2 = ‖q

3
‖2 = 1. This system has 24 solu-

tions, however there exist two independent two-fold

sign symmetries and by removing these we get the de-

sired 6 solutions.

2. Next we remove the translations by parameterizing the

depths λk in the 2nd and 3rd image, i.e. tk = λkxk −
Rkx1. This reduces the number of unknowns to 6.

3. Finally we tried using unit-quaternions when solving

for the rotations using only the line constraints. The

parameterization avoids the two false solutions intro-

duced by the non-unit quaternion parameterization.

However there still remains a two-fold symmetry.

The different parameterizations are summarized in Table 2

which also shows the template sizes and average runtimes

for the solvers. Note that there is about a three orders of

magnitude difference in runtime between the fastest and

slowest solvers, which shows the need of finding a good

parameterization.

7. Nine lines in three views

In order to test the boundaries of our method, we have

looked at a challenging unsolved minimal case. The classi-

cal problem of minimally estimating the geometry of three

projective views of lines is an inherently difficult problem,

[19, p. 413] and probably also not well numerically condi-

tioned. Whereas algorithms for projective reconstruction

from points in three views have existed for a long time,

[22, 43], there exists no practical method for the corre-

sponding minimal problem using lines. The problem is min-

imal with either six points or nine lines. There are also al-

gorithms for different minimal combinations of lines and

points, cf. [42]. Linear algorithms have been developed for

over-constrained solutions of at least 13 lines [17], and for

combinations of lines and points [18], and there exist non-

linear methods for the over-constrained cases of 10-12 lines

[29]. We assume that we have three unknown uncalibrated

cameras, viewing nine unknown lines in space. Each cam-

era has eleven parameters, and each line has four degrees of

freedom. In addition to this, we can only determine a so-

lution up to a global projective coordinate system, with 15

parameters. Each viewed line in each camera gives two con-

straints on our parameters. Since 3 ·11+4 ·9−15 = 2 ·3 ·9,

this gives a minimal system. A major reason that the line

case is much more difficult than the point case, is that the

projective coordinate system can be efficiently parameter-

ized with five points. With lines we use fewer lines, and we

need to be very careful in order to avoid specialized situa-

tions, e.g. lines intersecting. We have experimented with a

large number of parameterizations of our problem, and in

the end we found that the following gave the most tractable

solution. First of all we make coordinate changes in the im-

ages so that the first two lines in each image are represented

by ℓ1 = (1, 0, 0)T and ℓ2 = (0, 1, 0)T . This corresponds

to the lines x = 0 and y = 0 respectively. We then make

a projective coordinate change so that the first camera is

given by P1 = [I 0]. This fixates 11 of the 15 degrees of

freedom, and also gives that the first 3D-line must lie on the

plane Π1 = PT
1
ℓ1 = (1, 0, 0, 0)T and the second line on

the plane Π2 = PT
1
ℓ1 = (0, 1, 0, 0)T . This in turn fixates

the first two lines up to two parameters each. We can now

fixate the final four degrees of freedom of our coordinate

system by specifying two additional planes (Π′
1

and Π
′
2
)

that the first two lines should lie on. (Assuming that a 3D-

line is represented by two points X and X ′ this places two

linear constraints on the coordinate change homography H ,

(HX)TΠ′ = 0 and (HX ′)TΠ′ = 0 for each line). Choos-

ing Π
′
1
= (0, 1, 0, −1)T and Π

′
2
= (0, 0, 1, −1)T gives
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Figure 3. Example of three-view relative pose estimation with known rotation axis from one point and two lines. The image points and

lines are shown in blue. The 3D-point reprojections are shown in red. The rightmost two images show the recovered 3D structure and

poses.

Note Unknowns Additional equations Template size Runtime

Fixed scale by depth. s21, s22, s31, s32, t2, t3 X = x1, ‖q2
‖2 = ‖q

3
‖2 = 1 1, 306× 1, 261 0.57s

Eliminated translations in the

second and third image.

s21, s22, s31, s32, λ2, λ3

{

tk = λkxk −RkX, k = 2, 3

X = x1, ‖q2
‖2 = ‖q

3
‖2 = 1

652× 462 40ms

Unit quaternions. s21, s22, s31, s32 ‖q
2
‖2 = ‖q

3
‖2 = 1 96× 88 1.25ms

Non-unit quaternions. s2, s3 q
k
=

(

1, skv
T
)T

k = 2, 3 12× 20 0.3ms

Table 2. Comparison of different parameterizations for the one point two line problem from Section 6.

that the two additional cameras can be written

P2=





x1 1 0 −1

0 x2 x3 −x3

x4 x5 x6 x7



 , P3=





x8 x9 0 −x9

0 x10 1 −1

x11 x12 x13 x14



 ,

(25)

where (x1, . . . , x14) are unknown parameters. We can now

for each image-line triplet, (ℓi1, ℓi2, ℓi3), i = 3, . . . , 9, con-

struct the matrix Mi = [PT
1
ℓi1, P

T
2
ℓi2, P

T
3
ℓi3]. If the three

image lines are views of the same line, the corresponding

planes should intersect, and hence rankMi = 2, and all

3 × 3 sub-determinants of Mi should vanish. This gives

three linearly independent second-degree polynomial con-

straints on (x1, . . . , x14) for each i and in total 21 equations

in the 14 parameters.

7.1. Building a solver

We have used our automatic generator on the formulation

in (25). This leads to 36 solution4, using nine lines, result-

ing in a template with size 20, 273× 14, 281 without the re-

duction step. This problem has a large number of variables,

and the resulting equations contain a large syzygy-set, and

we have not been able to calculate this in Macaulay2 en-

tirely. We have run a partial reduction step, based on taking

all possible combinations of four equations, and this leads

to a template of size 16, 278 × 13, 735. To evaluate our

generated solver we ran the following test. We generated a

large number of ground truth synthetic problems. We then

ran our solver on the corresponding data, and compared the

4In [1] the ideal of the trifocal tensor was investigated. Here they show

that the corresponding variety has degree 297. However it turns out that

most of these solutions do not correspond to a valid three view camera

geometry, and these degeneracies are not present in our parameterization.

−16 −12 −8 −4 0 4
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40
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Refined solution

Figure 4. The distribution of the distance to the ground truth so-

lution, for our initial nine-lines solver, and after non-linear refine-

ment on the equation residuals.

closest of our 36 solutions to the ground truth solution. The

resulting histogram is shown in Figure 4. It also shows the

difference to the ground truth solution after non-linear re-

finement of our solution. Our final elimination template is

large, but very sparse. The complete solver has an average

runtime of 17.8 s in Matlab on a standard desktop computer

(Intel I7-3930K 64 GB ram).

8. Conclusions

In this paper we have presented a new method for finding

elimination templates, using syzygy modules. The module

encapsulates the ambiguity in representing the polynomials

that are needed for constructing the action matrix. We have

achieved state-of-the-art results by finding the normal form

w.r.t. the module, but it is possible that a more advanced

search over the syzygies would yield even better results, and

this is an interesting venue for further work.
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