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Abstract

We consider learning a distance metric in a weakly su-

pervised setting where “bags” (or sets) of instances are

labeled with “bags” of labels. A general approach is

to formulate the problem as a Multiple Instance Learning

(MIL) problem where the metric is learned so that the dis-

tances between instances inferred to be similar are smaller

than the distances between instances inferred to be dissim-

ilar. Classic approaches alternate the optimization over

the learned metric and the assignment of similar instances.

In this paper, we propose an efficient method that jointly

learns the metric and the assignment of instances. In par-

ticular, our model is learned by solving an extension of

kmeans for MIL problems where instances are assigned to

categories depending on annotations provided at bag-level.

Our learning algorithm is much faster than existing metric

learning methods for MIL problems and obtains state-of-

the-art recognition performance in automated image anno-

tation and instance classification for face identification.

1. Introduction

Distance metric learning [33] aims at learning a distance

metric that satisfies some similarity relationships among

objects in the training dataset. Depending on the con-

text and the application task, the distance metric may be

learned to get similar objects closer to each other than dis-

similar objects [20, 33], to optimize some k nearest neigh-

bor criterion [31] or to organize similar objects into the

same clusters [15, 18]. Classic metric learning approaches

[15, 16, 17, 18, 20, 31, 33] usually consider that each ob-

ject is represented by a single feature vector. In the face

identification task, for instance, an object is the vector rep-

resentation of an image containing one face; two images are

considered similar if they represent the same person, and

dissimilar otherwise.

Although these approaches are appropriate when each

example of the dataset represents only one label, many vi-

sual benchmarks such as Labeled Yahoo! News [2], UCI

Corel5K [7] and Pascal VOC [8] contain images that in-

DOCUMENT DETECTED FACES BAG

Detected labels: 

- Elijah Wood

- Karl Urban

- Andy Serkis

Caption: Cast members of 

'The Lord of the Rings: The 

Two Towers,' Elijah Wood 

(L), Liv Tyler, Karl Urban 

and Andy Serkis (R) are seen 

prior to a news conference 

in Paris, December 10, 2002.

Figure 1. Labeled Yahoo! News document with the automatically

detected faces and labels on the right. The bag contains 4 instances

and 3 labels; the name of Liv Tyler was not detected from text.

clude multiple labels. We focus in this paper on such multi-

label contexts which may differ significantly. In particular,

the way in which labels are provided differs in the applica-

tions that we consider. To facilitate the presentation, Fig. 1

illustrates an example of the Labeled Yahoo! News dataset:

the item is a document which contains one image represent-

ing four celebrities. Their presence in the image is extracted

by a text detector applied on the caption related to the im-

age in the document; the labels extracted from text indicate

the presence of several persons in the image but do not indi-

cate their exact locations, i.e., the correspondence between

the labels and the faces in the image is unknown. In the

Corel5K dataset, image labels are tags (e.g., water, sky, tree,

people) provided at the image level.

Some authors [11, 12] have proposed to learn a distance

metric in such weakly supervised contexts where the labels

(e.g., tags) are provided only at the image level. Inspired by

a multiple instance learning (MIL) formulation [6] where

the objects to be compared are sets (called bags) that con-

tain one or multiple instances, they learn a metric so that the

distances between similar bags (i.e., bags that contain in-

stances in the same category) are smaller than the distances

between dissimilar bags (i.e., none of their instances are in

the same category). In the context of Fig. 1, the instances

of a bag are the feature vectors of the faces extracted in the

image with a face detector [28]. Two bags are considered

similar if at least one person is labeled to be present in both

images; they are dissimilar otherwise. In the context of im-
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age annotation [12] (e.g., in the Corel5K dataset), a bag is

an image and its instances are image regions extracted with

an image segmentation algorithm [25]. The similarity be-

tween bags also depends on the co-occurrence of at least

one tag provided at the image level.

Multiple Instance Metric Learning (MIML) approaches

[11, 12] decompose the problem into two steps: (1) they

first determine and select similar instances in the different

training bags, (2) and then solve a classic metric learning

problem over the selected instances. The optimization of

these two steps is done alternately, which is suboptimal, and

the metric learning approaches that they use in the second

step have high complexity and may thus not be scalable.

Contributions: In this paper, we propose a MIML

method that jointly learns a metric and the assignment of

instances in a MIL context by exploiting weakly supervised

labels. In particular, our approach jointly learns the two

steps of MIML approaches [11, 12] by formulating the set

of instances as a function of the learned metric. We also

present a nonlinear kernel extension of the model. Our

method obtains state-of-the-art performance for the stan-

dard tasks of weakly supervised face recognition and auto-

mated image annotation. It also has better algorithmic com-

plexity than classic MIML approaches and is much faster.

2. Proposed Model

In this section, we present our approach that we call

Multiple Instance Metric Learning for Cluster Analysis

(MIMLCA) which learns a metric in weakly supervised

multi-label contexts. We first introduce our notation and

variables. We explain in Section 2.2 how our model infers

which instances in the dataset are similar when both the sets

of labels in the respective bags and the distance metric to

compare instances are known and fixed. Finally, we present

our distance metric learning algorithm in Section 2.3.

2.1. Preliminaries and notation

Notation: S
d
+ is the set of d × d symmetric positive

semidefinite (PSD) matrices. We note 〈A,B〉 := tr(AB⊤),
the Frobenius inner product where A and B are real-valued

matrices; and ‖A‖ :=
√

tr(AA⊤), the Frobenius norm of

A. 1 is the vector of all ones with appropriate dimensional-

ity and A† is the Moore-Penrose pseudoinverse of A.

Model: As in most distance metric learning work [14],

we consider the Mahalanobis distance metric dM that is pa-

rameterized by a d × d symmetric PSD matrix M = LL⊤

and is defined for all a,b ∈ R
d as:

dM (a,b) =
√

(a− b)⊤M(a− b) = ‖(a− b)⊤L‖ (1)

Training data: We consider the setting where the train-

ing dataset is provided as m (weakly) labeled bags. In

detail, each bag Xi ∈ R
ni×d contains ni instances, each

of which is represented as a d-dimensional feature vector.

The whole training dataset can thus be assembled into a

single matrix X = [X⊤
1 , · · · , X⊤

m]⊤ ∈ R
n×d that con-

catenates the m bags and where n =
∑m

i=1 ni is the to-

tal number of instances. We assume that (a subset of)

the instances in X belong to (a subset of) k training cat-

egories. In the weakly supervised MIL setting that we

consider, we are provided with the bag label matrix Y =
[y1, · · · ,ym]⊤ ∈ {0, 1}m×k, where Yic (i.e., the c-th ele-

ment of yi ∈ {0, 1}
k) is 1 if the c-th category is a candidate

category for the i-th bag (i.e., the c-th category is labeled as

being present in the i-th bag), and 0 otherwise. For instance,

the matrix Y is extracted from the image tags in the image

annotation task, and extracted from text in the Labeled Ya-

hoo! News dataset (see Fig. 1).

Instance assignment: As the annotations in Y are pro-

vided at the image level (i.e., we do not know exactly the

labels of the instances in the bags), our method has to per-

form inference to determine the categories of the instances

in X . We then introduce the instance assignment matrix

H ∈ {0, 1}n×k which is not observed and that we want to

infer. In the following, we write our inference problem so

that Hjc = 1 if the j-th instance is inferred to be in cate-

gory c, and 0 otherwise. We also assume that although a bag

can contain multiple categories, each instance is supposed

to belong to none or one of the k categories.

In many settings, as labels may be extracted automati-

cally, some categories may be mistakenly labeled as present

in some bags, or they may be missing (see Fig. 1). Many in-

stances also belong to none of the k training categories and

should thus be left unassigned. Following [11] and [12], if

a bag is labeled as containing a specific category, we assign

at most one instance of the bag to the category; this makes

the model robust to the possible noise in annotations. In

the ideal case, all the candidate categories and training in-

stances can be assigned and we then have ∀i,y⊤
i 1 = ni.

However, in practice, due to uncertainty or detection errors,

it could happen that y⊤
i 1 < ni (i.e., some instances in the

i-th bag are left unassigned) or y⊤
i 1 > ni (i.e., some labels

in the i-th bag do not correspond to any instance).

Reference vectors: We also consider that each category

c ∈ {1, · · · , k} has a representative vector zc ∈ R
d that we

call reference vector. Our goal is to learn both M and the

reference vectors so that all the instances inferred to be in a

category are closer to the reference vector of their respective

category than to any other reference vector (whether they

are representatives of candidate categories or not). In the

following, we concatenate all the reference vectors into a

single matrix Z = [z1, . . . , zk]
⊤ ∈ R

k×d. We show in

Section 2.2 that the optimal value of Z can be written as a

function of X , H and M .

Before introducing our metric learning approach, we ex-

plain how inference is performed when dM is fixed.
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2.2. Weakly Supervised Multi­instance kmeans

We now explain how our method based on kmeans per-

forms inference on a given set of bags X in our weakly

supervised setting. The goal is to assign the instances in X

to candidate categories by exploiting both the provided bag

label matrix Y and a (fixed) Mahalanobis distance metric

dM . We show in Eq. (7) that our kmeans problem can be

reformulated as predicting a single clustering matrix.

To assign the instances in X to the candidate categories

(whose presence in the respective bags is known thanks to

Y ), one natural method is to assign each instance in X to

its closest reference vector zc belonging to a candidate cat-

egory. Given the bags X and the provided bag label matrix

Y = [y1, · · · ,ym]⊤ ∈ {0, 1}m×k, the goal of our method

is then to infer both the instance assignment matrix H and

reference vector matrix Z that satisfy the conditions men-

tioned in Section 2.1. Therefore, we constrain H to belong

to the following consistency set:

QV := {H = [H⊤
1 , · · · , H⊤

m]⊤ : ∀i, Hi ∈ Vi} (2)

Vi:={Hi∈{0, 1}
ni×k : Hi1 ≤ 1, H⊤

i 1 ≤ yi,1
⊤Hi1 = pi}

where Hi is the assignment matrix of the ni instances in

the i-th bag, and pi := min{ni,y
⊤
i 1}. The first condition

Hi1 ≤ 1 implies that each instance is assigned to at most

one category. The second condition H⊤
i 1 ≤ yi, together

with the last condition 1⊤Hi1 = pi, ensures that at most

one instance in a bag is assigned to each candidate category

(i.e., the categories c satisfying Yic = 1).

For a fixed metric dM , our method finds the assignment

matrix H ∈ QV for the training bags X ∈ R
n×d and the

vectors Z = [z1, . . . , zk]
⊤ ∈ R

k×d that minimize:

min
H∈QV ,Z∈Rk×d

n
∑

j=1

k
∑

c=1

Hjc · d
2
M (xj , zc) (3)

= min
H∈QV ,Z∈Rk×d

‖ diag(H1)XL−HZL‖2 (4)

where xj is the j-th instance (i.e., x⊤
j is the j-th row of X)

and dM is the Mahalanobis distance defined in Eq. (1) with

M = LL⊤. The goal of Eq. (3) is to assign the instances

in X to the closest reference vectors of candidate categories

while satisfying the constraints defined in Eq. (2).

The details of the current paragraph can be found in the

supp. material, Section A.1. Our goal is to rewrite problem

(3) in a convenient way as a function of one variable. As

Z is unconstrained in Eq. (4), its minimizer can be found

in closed-form: Z = H†XLL† [34, Example 2]. From its

formulation, we observe that ZL = H†XL is the set of k

mean vectors (i.e., centroids) of the instances in X assigned

to the k respective clusters and mapped by L. By plugging

the closed-form expression of Z into Eq. (4), the kmeans

method in Eq. (4) is equivalent to the following problems:

min
H∈QV

‖ diag(H1)XL−HH†XL‖2 (5)

⇔ max
A∈PV

〈A,XMX⊤〉, (6)

where we define PV as PV := {I + HH† − diag(H1) :
H ∈ QV} and I is the identity matrix. Note that all the

matrices in PV are orthogonal projection matrices (hence

symmetric PSD). For a fixed Mahalanobis distance matrix

M , we have reduced the weakly supervised multi-instance

kmeans formulation (3) into optimizing a linear function

over the set PV in Eq. (6). We then define the following

prediction rule applied on the set of training bags X:

fM,PV (X) := argmax
A∈PV

〈A,XMX⊤〉 (7)

which is the set of solutions of Eq. (6). We remark that

our prediction rule in Eq. (7) assumes that the candidate

categories for each bag are known (via Vi).

2.3. Multi­instance Metric Learning for Clustering

We now present how to learn M so that the clustering

obtained with dM is as robust as possible to the case where

the candidate categories are unknown. We first write our

problem as learning a distance metric so that the clustering

predicted when knowing the candidate categories (i.e., Eq.

(7)) is as similar as possible to the clustering predicted when

the candidate categories are unknown. We then relax our

problem and show that it can be solved efficiently.

Our goal is to learn M so that the closest reference vector

(among the k categories) of any assigned instance is the ref-

erence vector of one of its candidate categories. In this way,

an instance can be assigned even when its candidate cate-

gories are unknown, by finding its closest reference vector

w.r.t. dM . A good metric dM should then produce a sensi-

ble clustering (i.e., solution of Eq. (7)) even when the set

of candidate categories is unknown. To achieve this goal,

we consider the set of predicted assignment matrices QG

(instead of QV ) which ignores Y and where G is defined as:

Gi := {Hi ∈ {0, 1}
ni×k : Hi1 ≤ 1,1⊤Hi1 = pi} (8)

With QG , the ñ = 1⊤H1 assigned instances can be as-

signed to any of the k training categories instead of only the

candidate categories. We want to learn M ∈ S
d
+ so that the

clustering fM,PG obtained under the non-informative sig-

nal G is as similar as possible to the clustering fM,PV under

the weak supervision signal V . Our approach then aims at

finding M ∈ S
d
+ that maximizes the following problem:

max
M∈Sd

+

min
C∈f

M,PV (X)
min

Ĉ∈f
M,PG (X)

〈C, Ĉ〉 (9)

where C and Ĉ are clusterings obtained with dM using dif-

ferent weak supervision signals V and G. We note that the
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similarity 〈C, Ĉ〉 is in [0, n] as C and Ĉ are both n× n or-

thogonal projection matrices. In the ideal case, Eq. (9) is

maximized when the optimal Ĉ equals the optimal C. In

this case, the closest reference vectors of assigned instances

are reference vectors of candidate categories. Eq. (9) can

actually be seen as a large margin problem as explained in

the supp. material, Section A.2.

Since optimizing over PG is difficult, we simplify the

problem by using spectral relaxation [22, 32, 35]. Instead of

constraining Ĉ to be in fM,PG (X), we replace PG with its

supersetN defined as the set of n×n orthogonal projection

matrices. In other words, we constrain Ĉ to be in fM,N (X).
The set fM,N (X) := argmaxA∈N 〈A,XMX⊤〉 is the set

of orthogonal projectors onto the leading eigenvectors of

XMX⊤ [9, 21]. However, just as in PCA, not all the eigen-

vectors need to be kept. We then propose to select the eigen-

vectors that lie in the linear space spanned by the columns

of the matrix XMX⊤ (i.e., in its column space), and ignore

eigenvectors in its left null space. For this purpose, we con-

strain Ĉ to be in the following relaxed set: gM (X) = {B :
B ∈ fM,N (X), rank(B) ≤ rank(XMX⊤)}. Our relaxed

version of problem (9) is then written:

max
M∈Sd

+

min
C∈f

M,PV (X)
min

Ĉ∈gM (X)
〈C, Ĉ〉 (10)

Theorem 2.1. A global optimum matrix C ∈ fM,PV (X) in

problem (10) is found by solving the following problem:

C ∈ argmax
A∈PV

〈A,XX†〉 (11)

The proof can be found in the supp. material, Section

A.3. Finding C in Eq. (11) corresponds to solving an adap-

tation of kmeans (see supp. material, Section A.4):

min
H∈QV ,Z=[z1,··· ,zk]⊤∈Rk×s

n
∑

j=1

k
∑

c=1

Hjc · ‖uj − zc‖
2, (12)

where u⊤
j is the j-th row of U ∈ R

n×s which is a ma-

trix with orthonormal columns such that s := rank(X) and

XX† = UU⊤. To solve Eq. (12), we use an adaptation

of Lloyd’s algorithm [19] illustrated in Algorithm 1 where

Ui ∈ R
ni×s is a submatrix of U and represents the eigen-

representation of the bag Xi ∈ R
ni×d. As explained in the

supp. material, Algorithm 1 minimizes Eq. (12) by alter-

nately optimizing over Z and H . Convergence guarantees

of Algorithm 1 are studied in the supp. material.

Once an optimal instance assignment matrix H ∈ QV

has been inferred, we can use any type of classifier or metric

learning approach to discriminate the different categories.

We propose to use the approach in [18] which learns a met-

ric dM in the context where each object is a bag that con-

tains one instance and there is only one candidate category

for each bag. It can be viewed as a special case of Eq. (10)

Algorithm 1 MIML for Cluster Analysis (MIMLCA)

input : Training set X ∈ Rn×d, training labels Y ∈ {0, 1}m×k

1: Create U = [U⊤
1
, · · · , U⊤

m]⊤ ∈ Rn×s s.t. s = rank(X), XX† =
UU⊤, ∀i ∈ {1, · · · ,m} Ui ∈ Rni×s

2: Initialize assignments (e.g., randomly): H ∈ QV

3: repeat

4: let hc be the c-th column of H ,
h
⊤
c

max{1,h⊤
c 1}

is the c-th row of H†

5: Z ← H†U ∈ Rk×s

6: For each bag i = 1 to m, Hi ← assign(Ui, Z, Y )% solve Eq. (13)

7: H ← [H⊤
1
, · · · , H⊤

m]⊤ ∈ QV

8: until convergence

9: % Select the rows j of X and H for which
∑

c Hjc = 1. We use

the logical indexing Matlab notation: H1 is a Boolean vector/logical

array. A(H1, :) is the submatrix of A obtained by dropping the zero

rows of H (i.e. dropping the rows of A corresponding to the indices

of the false elements of H1) while keeping all the columns of A.

10: X ← X(H1, :), n← 1⊤H1, H ← H(H1, :)
11: M ← X†HH†(X†)⊤

where {C} = fM,PV (X) is a singleton that does not de-

pend on M (i.e., the same matrix C is returned for any value

of M ) and Ĉ is now constrained to be in the set: {B : B ∈
fM,N (X), rank(B) = rank(C), C ∈ fM,PV (X)} as the

rank of C (and thus of Ĉ) is now known. An optimal Ma-

halanobis matrix in this case is M = X†C(X†)⊤ [18].

In detail, Algorithm 1 first creates in step 1 the matrix U

whose columns are the left-singular vectors of the nonzero

singular values of X . Next, Algorithm 1 alternates between

computing the centroids Z (step 5) and inferring the in-

stance assignment matrix H (steps 6-7). The latter step is

decoupled among the m bags; the function assign(Ui, Z, Y )
returns a solution of the following assignment problem:

Hi ∈ argmin
G∈Vi

‖ diag(G1)Ui −GZ‖2, (13)

which is solved exactly with the Hungarian algorithm [13]

by exploiting the cost matrix that contains the squared Eu-

clidean distances between the rows of Ui and the centroids

zc for which Yic = 1. Let us note qi := max{ni,y
⊤
i 1},

computing the cost matrix costs O(spiqi) and the Hungar-

ian algorithm costs in practice O
(

p2i qi
)

[3]. It is efficient in

our experiments as qi is small (∀i, pi ≤ qi ≤ 15).

In conclusion, we have proposed an efficient metric

learning algorithm that takes weak supervision into account.

We explain below how to extend it to the nonlinear case.

Nonlinear Kernel Extension: We now briefly explain

how to learn a nonlinear Mahalanobis metric by using ker-

nels [24]. We first consider the case where each bag con-

tains a single instance and has only one candidate category,

this case corresponds to [18] (i.e., steps 10-11 of Algo 1).

Let k be a kernel function whose feature map φ(·)
maps the instance xj to φ(xj) in some reproducing ker-

nel Hilbert space (RKHS) H. Using the generalized rep-

resenter theorem [23], we can write the Mahalanobis ma-

trix M (in the RKHS) as: M = ΦP⊤PΦ⊤, where Φ =
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[φ(x1), · · · , φ(xn)] and P ∈ R
k×n. Let K ∈ S

n
+ be the

kernel matrix on the training instances: K = Φ⊤Φ, where

Kij = 〈φ(xi), φ(xj)〉 = k(xi, xj). Eq. (7) is then written:

f(ΦP⊤PΦ⊤),PV (Φ⊤) = argmax
A∈PV

〈A,KP⊤PK〉 (14)

A solution of [18, Eq. (13)] is M = ΦK†J(ΦK†J)⊤ where

JJ⊤ = HH† is the desired clustering matrix.1 We then

replace Step 11 of Algo 1 by M ← ΦK†J(ΦK†J)⊤.

To extend Eq. (11) to the nonlinear case in the MIL

context, the matrix U ∈ R
n×s in step 1 can be formu-

lated as UU⊤ = KK† where s = rank(K). Note that

XX† = XX⊤(XX⊤)† = KK† when ∀x, φ(x) = x.

The complexity of our method is O(ndmin{d, n}) in

practice: it is linear in the number of instances n and

quadratic in the dimensionality d as d < n in our experi-

ments (see details in supp. material, Section A.5).

3. Related work

MIL was introduced in the context of drug activity pre-

diction [6] to distinguish positive bags from negative bags.

Most MIL problems [1, 4, 5, 10, 27, 36, 37] consider only 2

categories: bags are considered either positive or negative.

In this paper, we focus on multi-label contexts (i.e., k ≥ 2)

wherein MIML approaches were proven successful.

MIML: the Mahalanobis distance was already used

[11, 12] in the weakly supervised context where the objects

to be compared are bags containing multiple instances and

the category membership labels of instances are provided

at bag-level. Jin et al. [12] learn a distance metric opti-

mized to group similar instances from different bags into

common clusters. Their method decomposes their learning

algorithm into three sets of variables which are: (1) the ref-

erence vectors (called centroids) of their categories, (2) an

assignment matrix that determines instances that are closest

to the centroids of their categories, (3) their Mahalanobis

distance metric dM . They use an iterative algorithm that al-

ternates the optimization over these three sets of variables

and has high algorithmic complexity. Our approach also

decomposes the problem into three variables, but our vari-

ables can all be written as a function of each other, which

means that we only have to optimize the problem over one

variable to get the formulation of the other variables. In

this way, all the variables of our method are learned jointly,

and optimizing over them has low computational complex-

ity (i.e., the complexity of our method is O(nd2)). More-

over, the method in [12] is not appropriate for nonlinear

kernelized Mahalanobis distances as it explicitly formulates

centroids and optimizes over them; this is problematic if the

1A matrix J such that JJ⊤ = HH† and H ∈ QV can be computed

efficiently: let hc be the c-th column of H , then the c-th column of J can

be written jc = 1√
max{1,h⊤

c 1}
hc.

codomain of the (kernel) feature map is infinite-dimensional

(e.g., most RBF kernels) or even high-dimensional.

Guillaumin et al. [11] also consider weak supervision:

their metric is learned so that distances between the closest

instances of similar bags are smaller than distances between

instances of dissimilar bags. As in [12], their method suffers

from the decomposition of the similarity matching of in-

stances and the learned metric as they depend on each other.

Moreover, they only consider local matching between pairs

of bags instead of global matching of the whole dataset to

group similar instances into common clusters. Furthermore,

as mentioned in [11, Section 5] and unlike our approach,

their method does not scale linearly in n.

Wang et al. [29] learn multiple metrics (one per cate-

gory) in a MIL setting. For each category, their distance is

the average distance between all the instances in bags that

contain the category and their respective closest instance in

a given bag. As all the instances in bags that contain a given

category are taken into account, their Class-to-Bag (C2B)

method is less robust to outlier instances than our method

that assigns at most one instance per bag to a candidate cate-

gory. Their method is then not appropriate for contexts such

as face recognition where a small proportion of instances

in the different bags is relevant to the category. Moreover,

their method requires subsampling a large number of con-

straints to be scalable. Indeed, their complexity is linear in

the number of instances n thanks to subsampling and the

complexity of each iteration of their iterative algorithm is

cubic in the dimensionality d.

Closed-form training in the supervised setting: In the

fully supervised context where each object can be seen as

a bag that contains only one instance and where the label

of each instance is provided without uncertainty, an effi-

cient metric learning approach optimized to group a set of

vectors into k desired clusters was proposed in [18]. The

method assumes that the ground truth partition of the train-

ing set is known. It finds an optimal metric such that the

partition obtained by applying kmeans with the metric is

as close as possible to the ground truth partition. In con-

trast, our approach extends [18] to the weakly supervised

case where the objects are multiple instance bags and the

ground truth clustering assignment is unknown. A main dif-

ficulty is that the set of candidate assignment matrices QV

in Eq. (2) that satisfy the provided weak annotations can

be very large. Moreover, [18] did not provide a criterion to

determine which matrix in QV is optimal in our context.

Our contribution wrt [18] includes: 1) the kmeans adap-

tation to optimize over weakly supervised bags (Section

2.2), 2) the derivation of the (relaxed) metric learning prob-

lem to learn a metric that is robust to the case where the

bag labels are not provided, 3) the efficient algorithm (Al-

gorithm 1) that returns the optimal assignment matrix, 4) a

nonlinear kernel version.
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4. Experiments

We evaluate our method called MIMLCA in the face

identification and image annotation tasks where the dataset

is labeled in a weakly supervised way. We implemented

our method in Matlab and ran the experiments on a 2.6GHz

machine with 4 cores and 16GB of RAM.

4.1. Weakly labeled face identification

We use the subset of the Labeled Yahoo! News dataset2

introduced in [2] and manually annotated by [11] for the

context of face recognition with weak supervision. The

dataset is composed of 20,071 documents containing a total

of 31,147 faces detected with a Viola-Jones face detector

[28]. The number of categories (i.e., identified persons) is

k = 5, 873 (mostly politicians and athletes). An example

document is illustrated in Fig. 1. Each document contains

an image and some text, it also contains at least one de-

tected face or name in the text. Each face is represented

by a d-dimensional vector where d = 4, 992. 9,594 of the

31,147 detected faces are unknown persons (i.e., they be-

long to none of the k training categories), undetected names

or not face images. As already explained, we consider doc-

uments as bags and detected faces as instances. See supp.

material, Section A.7 for additional details on the dataset.

Setup: We randomly partition the dataset into 10 equal

sized subsets to perform 10-fold cross-validation: each sub-

set then contains 2,007 documents (except one that contains

2,008 documents). The training dataset of each split thus

contains m ≈ 18, 064 documents and n ≈ 28, 000 faces.

Classification protocol: To compare the different meth-

ods, we consider two evaluation metrics: the average classi-

fication accuracy across all training categories and the pre-

cision (defined in [11] as the ratio of correctly named faces

over the total number of faces in the test dataset). At test

time, a face whose category membership is known is as-

signed to one of the k = 5, 873 categories. To avoid a strong

bias of the evaluation metrics due to under-represented cat-

egories, we classify at test time only the instances in cat-

egories that contain at least 5 elements in the test dataset

(this arbitrary threshold seemed sensible to us as it is small

enough without being too small). This corresponds to se-

lecting about 50 test categories (depending on the split). We

note that test instances can be assigned to any of the k cate-

gories and not only to the 50 selected categories.

Scenarios/Settings: To train the different models, we

consider the same three scenarios/settings as [11]:

(a) Instance-level ground truth. We know here for each

training instance its actual category; it corresponds to a su-

pervised single-instance context. In this setting, our method

is equivalent to MLCA [18] and provides an upper bound on

2We use the features available at http://lear.inrialpes.fr/

people/guillaumin/data.php

the performance of models learned with weak supervision.

(b) Bag-level ground truth. The presence of identified

persons in an image is provided at bag-level by humans,

which corresponds to a weakly supervised context.

(c) Bag-level automatic annotation. The presence of

identified persons in an image is automatically extracted

from text. This setting is unsupervised in the sense that it

does not require human input and may be noisy. The label

matrix Y is automatically extracted as described in Fig. 1.

Classification of test instances: In the task that we con-

sider, we are given the vector representation of a face and

the model has to determine which of the k training cate-

gories it belongs to. In the linear case, the category of a test

instance xt ∈ R
d can be naturally determined by solving:

argmin
c∈{1,··· ,k}

d2M (xt, zc) (15)

where zc is the mean vector of the training instances as-

signed to category c, and dM is a learned metric.

In the case of MIMLCA, the learned metric (in step 11)

can be written M = LL⊤ where L = X†J and J is con-

structed as explained in Footnote 1. For any training in-

stance xj (inferred to be) in category c, the matrix M is

then learned so that the maximum element of the vector

(L⊤xj) ∈ R
k is its c-th element and all the other elements

are zeros. We can then also use the prediction function:

argmax
c∈{1,··· ,k}

x⊤
t X

†jc − α‖L⊤zc‖
2 (16)

where jc is the c-th column of J , the value of x⊤
t X

†jc is the

c-th element of L⊤xt, and α ∈ R is a parameter manually

chosen (see experiments below). The term−α‖L⊤zc‖
2 ac-

counts for the fact that the metric is learned with clusters

having different sizes. Note that α is not used during train-

ing. See supp. material, Section A.6 for the nonlinear case.

Experimental results: Table 1 reports the average

classification accuracy across categories and the precision

scores obtained by the different baselines and our method in

the linear case. Since we are interested in the weakly super-

vised settings (b) and (c), we cannot evaluate classic met-

ric learning approaches, such as LMNN [31], that require

instance-level annotations (i.e., scenario (a)). We reimple-

mented [12] as best as we could as the code is not available

(see supp. material, Section A.10). The codes of the other

baselines are publicly available (except [29] that we also

reimplemented, see supp. material, Section A.11).

We do not cross-validate our method as it does not have

hyperparameters. For all the other methods, to create the

best possible baselines, we report the best scores that we

obtained on the test set when tuning the hyperparameters.

We tested different MIL baselines [1, 4, 5, 10, 29, 36, 37],

most of them are optimized for MIL classification in the bi-

class case (i.e., when there are 2 categories of bags which
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Method Scenario/Setting (see text) Accuracy (closest centroid) Precision (closest centroid) Training time (in seconds)

Euclidean Distance None 57.0 ± 2.4 56.7 ± 2.0 No training

Linear MLCA [18] (a) = Instance gt 66.8 ± 4.2 77.7 ± 2.2 59

MIML (our reimplementation of [12]) (b) = Bag gt 56.1 ± 3.3 55.5 ± 2.6 17,728

MildML [11] (b) 54.9 ± 3.6 54.6 ± 3.3 7,352

Linear MIMLCA (ours) (b) 65.3 ± 3.7 76.6 ± 2.1 163

MIML (our reimplementation of [12]) (c) = Bag auto 52.6 ± 13.0 52.2 ± 13.8 19,091

MildML [11] (c) 33.9 ± 3.0 31.2 ± 2.9 7,520

Linear MIMLCA (ours) (c) 63.2 ± 4.7 74.9 ± 3.0 180

Table 1. Test classification accuracies and precision scores (mean and standard deviation in %) on Labeled Yahoo! News

Method Scenario Accuracy Precision Training time Scenario Accuracy Precision Training time

MildML [11] (b) 52.4 ± 4.7 62.2 ± 2.9 7,352 seconds (c) 55.7 ± 4.4 66.0 ± 2.1 7,520 seconds

Table 2. Test scores of MildML on Labeled Yahoo! News when assigning test instances to the category of their closest training instances

Method Scenario Eval. metric α = 0 α = 0.2 α = 0.25 α = 0.5 α = 1 α = 1.2 Training time

Accuracy 77.6 ± 3.1 88.0 ± 2.2 88.5 ± 2.1 89.5 ± 2.0 89.3 ± 1.8 88.9 ± 2.0
Linear MLCA (a)

Precision 78.0 ± 2.0 88.8 ± 1.3 89.4 ± 1.4 90.8 ± 1.1 91.5 ± 1.0 91.4 ± 1.0
59 seconds

Accuracy 74.2 ± 2.7 85.9 ± 2.1 86.5 ± 2.0 87.7 ± 1.9 87.4 ± 1.8 87.1 ± 2.0
(b)

Precision 74.8 ± 1.8 87.0 ± 1.4 87.7 ± 1.3 89.3 ± 1.0 89.9 ± 1.2 90.0 ± 1.3
163 seconds

Accuracy 69.9 ± 2.5 81.2 ± 2.6 81.9 ± 2.5 83.6 ± 2.3 83.9 ± 2.1 83.7 ± 2.0
Linear MIMLCA

(c)
Precision 71.7 ± 1.5 83.0 ± 1.4 83.8 ± 1.4 85.6 ± 1.4 86.9 ± 1.5 87.0 ± 1.5

180 seconds

Accuracy 77.2 ± 3.0 94.4 ± 1.6 94.5 ± 1.8 92.5 ± 2.0 87.1 ± 2.2 84.5 ± 2.9
kRBF

χ2 MLCA (a)
Precision 73.6 ± 1.8 95.3 ± 1.0 95.5 ± 1.2 94.9 ± 1.1 92.3 ± 1.4 91.0 ± 1.7

50 seconds

Accuracy 74.0 ± 2.9 92.6 ± 1.8 92.8 ± 1.6 91.1 ± 2.0 84.5 ± 2.5 82.0 ± 2.6
(b)

Precision 70.6 ± 1.8 93.6 ± 1.2 94.0 ± 1.0 93.7 ± 1.1 90.6 ± 1.5 89.4 ± 1.6
154 seconds

Accuracy 67.1 ± 2.9 88.2 ± 1.9 88.5 ± 2.1 87.2 ± 1.8 81.1 ± 3.3 78.6 ± 3.6
kRBF

χ2 MIMLCA

(c)
Precision 63.7 ± 1.8 89.0 ± 1.3 89.7 ± 1.5 90.0 ± 1.3 87.5 ± 2.2 86.3 ± 2.4

172 seconds

Table 3. Test classification accuracies and precision scores in % of the linear and nonlinear models for the 10-fold cross-validation

evaluation for different values of α in Eq. (16)

are “positive” and “negative”); as proposed in [4], we ap-

ply for these baselines the one-against-the-rest heuristic to

adapt them to the multi-label context. However, there are

more than 5,000 training categories. Since most categories

contain very few examples and these baselines learn clas-

sifiers independently, the scale of classification scores may

differ. They then obtain less than 10% accuracy and preci-

sion in this task (see supp. material, Section A.8 for scores).

Table 1 reports the test performance of the different dif-

ferent methods when assigning a test instance to the cate-

gory with closest centroid w.r.t. the metric (i.e., using the

prediction function in Eq. (15)). We use this evaluation be-

cause (MI)MLCA and MIML [12] are learned to optimize

this criterion. The set of centroids exploited by MIMLCA

in settings (b) and (c) is determined in Algorithm 1. MIML

also exploits the set of centroids that it learns. To evaluate

MildML and the Euclidean distance, we exploit the ground

truth instance centroids (i.e., the mean vectors of instances

in the k categories in the context where we know the cate-

gory of each instance) although these ground truth centroids

are normally not available in settings (b) and (c) as annota-

tions are provided at bag-level and not at instance-level.

In Table 2, a test instance is assigned to the category

of the closest training instance w.r.t. the metric. We use

this evaluation as MildML is optimized for this criterion al-

though the category of the closest training instance is nor-

mally available only in setting (a). MildML then improves

its precision scores compared to Table 1.

We see in Table 1 that our linear method MIMLCA

learned in weakly supervised scenarios (b) and (c) performs

almost as well as the fully supervised model MLCA [18]

in setting (a). Our method can then be learned fully auto-

matically in scenario (c) at the expense of a slight loss in

accuracy. Moreover, our method learned with scenario (c)

outperforms other MIL baselines learned with scenario (b).

Nonlinear model: Table 3 reports the recognition

performances of (MI)MLCA in the linear and nonlin-

ear cases when we exploit the prediction function in

Eq. (16) for different values of α. In the nonlinear case,

we choose the generalized radial basis function (RBF)

kRBF

χ2 (a,b) = e
−D2

χ2 (a,b) where a and b are ℓ1-normalized

and D2
χ2(a,b) =

∑d

i=1
(ai−bi)

2

ai+bi
. This kernel function is

known to work well for face recognition [20]. With the RBF

kernel, we reach 90% classification accuracy and precision.

We observe a gain in accuracy of about 5% with the nonlin-

ear version compared to the linear version when α≃0.25.

Training times: Tables 1 to 3 report the wall-clock train-

ing time of the different methods. We assume that the ma-

trices X and Y (and K in the nonlinear case) are already

loaded in memory. Both MLCA and MIMLCA are efficient

as they are trained in less than 5 minutes. MIMLCA is 3

times slower than MLCA because it requires computing 2

(economy size) SVDs to compute U and X† (steps 1 and

11 of Algo 1), each of them takes about 1 minute, whereas

MLCA requires only one SVD. Moreover, besides the two

SVDs already mentioned, MIMLCA performs an adapted

kmeans (steps 3 to 8 of Algo 1) which takes less than 1
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Method OE (↓) Cov. (↓) AP (↑) Training time (↓) Method OE (↓) Cov. (↓) AP (↑) Training time (↓)

MIMLCA (ours) 0.516 4.829 0.575 24 seconds MILES [4] 0.722 7.626 0.412 511 seconds

MIML (best scores reported in [12]) 0.565 5.507 0.535 Not available miSVM [1] 0.790 9.730 0.261 504 seconds

MIML (our reimplementation of [12]) 0.673 6.403 0.462 884 seconds MILBoost [36] 0.948 13.412 0.174 106 seconds

MildML [11] 0.619 5.646 0.499 59 seconds EM-DD [37] 0.892 10.527 0.239 38,724 seconds

Citation-kNN [30] (Euclidean dist.) 0.595 5.559 0.513 No training MInD [5] (meanmin) 0.759 8.246 0.373 103 seconds

M-C2B [29] 0.691 6.968 0.440 211 seconds MInD [5] (minmin) 0.703 7.337 0.424 138 seconds

Minimax MI-Kernel [10] 0.734 7.955 0.398 172 seconds MInD [5] (maxmin) 0.721 7.857 0.413 95 seconds

Table 4. Annotation performance on the Corel5K dataset, ↓: the lower the metric, the better, ↑: the larger the metric, the better. OE:

One-error, Cov.: Coverage. AP: Average Precision (see definitions in [12, Section 5.1])

minute: the adapted kmeans converges in less than 10 iter-

ations and each iteration takes 5 seconds. We note that our

method is one order of magnitude faster than MildML.

In conclusion, our weakly supervised method outper-

forms the current state-of-the-art MIML methods both in

recognition accuracy and training time. It is worth noting

that if we apply mean centering on X then the matrix U ,

whose columns form an orthonormal basis of X , contains

the eigenfaces [26] of the training face images (one eigen-

face per row). Our approach then assigns instances to clus-

ters depending on their distance in the eigenface space.

4.2. Automated image annotation

We next evaluate our method using the same evaluation

protocol as [12] in the context of automated image annota-

tion. We use the dataset3 of Duygulu et al. [7] which in-

cludes 4,500 training images and 500 test images selected

from the UCI Corel5K dataset. Each image was segmented

into no more than 10 regions (i.e., instances) by Normalized

Cut [25], and each region is represented by a d-dimensional

vector where d = 36. The image regions are clustered into

500 blobs using kmeans, and a total of 371 keywords was

assigned to 5,000 images. As in [12], we only consider the

k = 20 most popular keywords since most keywords are

used to annotate a small number of images. In the end, the

dataset that we consider includes m = 3, 947 training im-

ages containing n = 37, 083 instances, and 444 test images.

To annotate test images, we evaluate our method in the

same way as [12] by including our metric in the citation-

kNN [30] algorithm which adapts kNN to the multiple in-

stance problem. The citation-kNN [30] algorithm proposes

different extensions of the Hausdorff distance to compute

distances between bags that contain multiple instances. As

proposed in [30], we tested both the Maximal and Mini-

mal Hausdorff distances (see definitions in [30, Section 2]).

For example, the Minimal Hausdorff Distance between two

bags E and F is the smallest distance between the instances

of the different bags: Dmin(E,F ) = Dmin(F,E) =
mine∈E minf∈F dM (e, f) where e and f are instances of the

bags E and F , respectively. In [30], dM is the Euclidean

3We use the features available at http://kobus.ca/research/

data/eccv_2002/

distance, we replace it by the different learned metrics of

MIML approaches in the same way as [12].

Given a test bag E, we define its references as the r near-

est bags in the training set, and its citers as the training bags

for which E is one of the c nearest neighbors. The class

label of E is decided by a majority vote of the r reference

bags and c citing bags. We follow the exact same protocol as

[12] and use the same evaluation metrics (see definitions in

[12, Section 5.1]). We report in Table 4 the results obtained

with minimal Hausdorff distances since they obtained the

best performances for all the metric learning methods. As

in [12], we tested different values of c = r ∈ {5, 10, 15, 20}
and report the results for c = r = 20 as they performed the

best for all the methods.

We tuned all the baselines and report their best scores

on the test set. Our method outperforms the other MIL ap-

proaches w.r.t. all the evaluation metrics and it is faster. Our

method can then also be used for image annotation.

5. Conclusion

We have presented an efficient MIML approach op-

timized to perform clustering. Unlike classic MIL ap-

proaches, our method does not alternate the optimization

over the learned metric and the assignment of instances.

Our method only performs an adaptation of kmeans over

the rows of the matrix U whose columns form an orthonor-

mal basis of X . Our method is much faster than classic

approaches and obtains state-of-the-art performance in the

face identification (in the weakly supervised and fully un-

supervised cases) and automated image annotation tasks.
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