
Temporal Convolutional Networks

for Action Segmentation and Detection

Colin Lea Michael D. Flynn René Vidal Austin Reiter Gregory D. Hager

Johns Hopkins University

{clea1@, mflynn@, rvidal@cis., areiter@cs., hager@cs.}jhu.edu

Abstract

The ability to identify and temporally segment fine-

grained human actions throughout a video is crucial for

robotics, surveillance, education, and beyond. Typical ap-

proaches decouple this problem by first extracting local

spatiotemporal features from video frames and then feed-

ing them into a temporal classifier that captures high-

level temporal patterns. We describe a class of temporal

models, which we call Temporal Convolutional Networks

(TCNs), that use a hierarchy of temporal convolutions to

perform fine-grained action segmentation or detection. Our

Encoder-Decoder TCN uses pooling and upsampling to ef-

ficiently capture long-range temporal patterns whereas our

Dilated TCN uses dilated convolutions. We show that TCNs

are capable of capturing action compositions, segment du-

rations, and long-range dependencies, and are over a mag-

nitude faster to train than competing LSTM-based Recur-

rent Neural Networks. We apply these models to three chal-

lenging fine-grained datasets and show large improvements

over the state of the art.

1. Introduction

Action segmentation is crucial for applications ranging

from collaborative robotics to analysis of activities of daily

living. Given a video, the goal is to simultaneously segment

every action in time and classify each constituent segment.

In the literature, this task goes by either action segmenta-

tion or detection. We focus on modeling situated activities

– such as in a kitchen or surveillance setup – which are com-

posed of dozens of actions over a period of many minutes.

These actions, such as cutting a tomato versus peeling a cu-

cumber, are often only subtly different from one another.

Current approaches decouple this task into extracting

low-level spatiotemporal features and applying high-level

temporal classifiers. While there has been extensive work

on the former, recent temporal models have been limited

to sliding window action detectors [26, 28, 21], which are

Figure 1. Our Encoder-Decoder Temporal Convolutional Network

(ED-TCN) hierarchically models actions using temporal convolu-

tions, pooling, and upsampling.

typically too short to capture long-range temporal patterns;

segmental models [25, 16, 24], which typically condition

the current action class on the previous segment, thus ig-

noring long-range latent dependencies; and recurrent mod-

els [28, 10], which empirically can have a limited span of

attention [28] and are hard to correctly train [22]. For many

of these models, such as RNNs with LSTM or GRUs [5],

the latent state at each time step, t, is only a function of the

data at t and the hidden state and memory at t − 1. This is

limiting when an action is defined by the changes in features

over the course of many frames.

In this paper, we discuss a class of time-series models,

which we call Temporal Convolutional Networks (TCNs),

that overcome the previous shortcomings by capturing long-

range patterns using a hierarchy of temporal convolutional

filters. We present two types of TCNs: First, our Encoder-

Decoder TCN (ED-TCN) only uses a hierarchy of temporal

convolutions, pooling, and upsampling but can efficiently

capture long-range temporal patterns. The ED-TCN has a

1156



relatively small number of layers (e.g., 3 in the encoder)

but each layer contains a set of long convolutional filters.

Second, a Dilated TCN uses dilated convolutions instead of

pooling and upsampling and adds skip connections between

layers. This is an adaptation of the recent WaveNet [34]

model, which shares similarities to our ED-TCN but was

developed for speech synthesis. The Dilated TCN has more

layers, but each uses dilated filters that only operate on a

small number of time steps. Empirically, both TCNs are

capable of capturing features of segmental models, such as

action durations and pairwise transitions between segments,

as well as long-range temporal patterns similar to recurrent

models. These models tend to outperform our Bidirectional

LSTM (Bi-LSTM) [9] baseline and are over a magnitude

faster to train. The ED-TCN in particular produces many

fewer over-segmentation errors than other models.

In the literature, our task goes by the name action seg-

mentation [7, 8, 6, 15, 29, 16, 10] or action detection [28,

20, 21, 25]. Despite effectively being the same problem,

the temporal methods in segmentation papers tends to dif-

fer from detection papers, as do the metrics by which they

are evaluated. In this paper, we evaluate on datasets targeted

at both tasks and propose a segmental F1 score, which we

qualitatively find is a meaningful metric for applications of

both tasks. We use MERL Shopping [28] which was de-

signed for action detection, Georgia Tech Egocentric Activ-

ities [8] which was designed for action segmentation, and

50 Salads [30] which has been used for both.

Code, features, and temporal predictions are available.1

2. Related Work

Action segmentation methods predict what action is oc-

curring at every frame in a video and detection methods out-

put a sparse set action segments, where a segment is defined

by a start time, end time, and class label. It is possible to

convert between a given segmentation and set of detections

by simply adding or removing null/background segments.

Action Detection: Many fine-grained detection papers use

sliding window-based detection methods on spatial or spa-

tiotemporal features. Rohrbach et al. [26] used Dense Tra-

jectories [37] and human pose features on the MPII Cook-

ing dataset. At each frame they evaluated a sliding SVM

for many candidate segment lengths and performed non-

maximal suppression to find a small set of action predic-

tions. Ni et al. [21] used an object-centric feature repre-

sentation, which iteratively parses object locations and spa-

tial configurations, and applied it to the MPII Cooking and

ICPR 2012 Kitchen datasets. Their approach used Dense

Trajectory features as input into a sliding-window detection

method with segment intervals of 30, 60, and 90 frames.

1https://github.com/colincsl/

TemporalConvolutionalNetworks

Singh et al. [28] improved upon this by feeding per-frame

CNN features into an LSTM model and applying a method

analogous to non-maximal suppression to the LSTM output.

We use Singh’s proposed dataset, MERL Shopping, and

show our approach outperforms their LSTM-based detec-

tion model. Recently, Richard et al. [25] introduced a seg-

mental approach that incorporates a language model, which

captures pairwise transitions between segments, and a du-

ration model, which ensures that segments are of an appro-

priate length. In the experiments section we show that our

model is capable of capturing both of these components.

Some of these datasets, including MPII Cooking, have

been used for classification (e.g., [3, 39]), however, this task

assumes the boundaries of each segment are known.

Action Segmentation: Segmentation papers tend to use

temporal models that capture high-level patterns, for exam-

ple RNNs or Conditional Random Fields (CRFs). The line

of work by Fathi et al. [8, 7, 6] used a segmental model

that captured object states at the start and end of each action

(e.g., the appearance of bread before and after spreading

jam). They applied their work to the Georgia Tech Ego-

centric Activities (GTEA) dataset, which we use in our ex-

periments. Singh et al. [29] used an ensemble of CNNs

to extract egocentric-specific features on the GTEA dataset

but did not use a high-level temporal model. Lea et al. [16]

introduced a spatiotemporal CNN with a constrained seg-

mental model which they applied to 50 Salads. Their model

reduced the number of action over-segmentation errors by

constraining the maximum number of candidate segments.

We show our TCNs produce even fewer over-segmentation

errors. Kuehne et al. [14, 15] modeled actions using Hid-

den Markov Models on Dense Trajectory features, in tan-

dem with a high-level grammar defining potential action

transitions, to 50 Salads. Other work has looked at semi-

supervised methods for action segmentation, such as Huang

et al. [10], which reduces the number of required anno-

tations and improves performance when used with RNN-

based models. It is possible that their approach could be

used with TCNs for improved performance.

Large-scale Recognition: There has been substantial work

on spatiotemporal models for large scale video classifica-

tion and detection [31, 11, 12, 27, 33, 23, 19]. These fo-

cus on capturing object- and scene-level information from

short sequences of images and thus are considered orthog-

onal to our work, which focuses on capturing longer-range

temporal information. The input into our model could be

the output of a spatiotemporal CNN.

Other related models: There are parallels between TCNs

and recent work on semantic segmentation, which uses

Fully Convolutional CNNs to compute a per-pixel object la-

beling of a given image. The Encoder-Decoder TCN is most

similar to SegNet [2] whereas the Dilated TCN is most sim-

ilar to the Multi-Scale Context model [38]. TCNs are also

157

https://github.com/colincsl/TemporalConvolutionalNetworks
https://github.com/colincsl/TemporalConvolutionalNetworks


related to Time-Delay Neural Networks (TDNNs), which

were introduced by Waibel et al. [36] in the early 1990s.

TDNNs apply a hierarchy of temporal convolutions across

the input but do not use pooling, skip connections, newer

activations (e.g., ReLUs), or other features of our TCNs.

3. Temporal Convolutional Networks

In this section we define two TCNs, each of which have

the following properties: (1) computations are performed

layer-wise, meaning every time-step is updated simultane-

ously, instead of updating sequentially per-frame (2) con-

volutions are computed across time, and (3) predictions at

each frame are a function of a fixed-length period of time,

which is referred to as the receptive field. Our ED-TCN uses

an encoder-decoder architecture with temporal convolutions

and the Dilated TCN, which is adapted from the WaveNet

model, uses a deep series of dilated convolutions.

The input to a TCN will be a set of video features, such

as those output from a spatial or spatiotemporal CNN, for

each frame of a given video. Let Xt ∈ R
F0 be the input

feature vector of length F0 for time step t for 1 ≤ t ≤ T .

Note that the number of time steps T may vary for each

video sequence. The action label for each frame is given

by vector Yt ∈ {0, 1}C , where C is the number of classes,

such that the true class is 1 and all others are 0.

3.1. Encoder­Decoder TCN

Our encoder-decoder framework is depicted in Figure 1.

The encoder consists of L layers denotes by E(l) ∈ R
Fl×Tl

where Fl is the number of convolutional filters in a the l-

th layer and Tl is the number of corresponding time steps.

Each layer consists of temporal convolutions, a non-linear

activation function, and max pooling across time.

We define the collection of filters in each layer as W =
{W (i)}Fl

i=1 for W (i) ∈ R
d×Fl−1 with a corresponding bias

vector b ∈ R
Fl . Given the signal from the previous layer,

E(l−1), we compute activations E(l) with

E(l) = max pooling(f(W ∗ E(l−1) + b)), (1)

where f(·) is the activation function and ∗ is the (“same”)

convolution operator. We compare activations in Sec-

tion 4.4 and find Normalized Rectified Linear Units perform

best. After each activation function we max pool with width

2 across time so Tl = 1
2Tl−1. Pooling enables us to effi-

ciently compute activations over long temporal windows.

Our decoder is similar to the encoder, except that upsam-

pling is used instead of pooling and the order of the opera-

tions is now upsample, convolve, and apply the activation

function. Upsampling is performed by simply repeating

each entry twice. The convolutional filters in the decoder

distribute the activations from the condensed layers in the

middle to the action predictions at the top. Experimentally,

Figure 2. The Dilated TCN model uses a deep stack of dilated

convolutions to capture long-range temporal patterns.

these convolutions provide a large improvement in perfor-

mance and appear to capture pairwise transitions between

actions. Each decoder layer is denoted by D(l) ∈ R
Fl×Tl

for l ∈ {L, . . . , 1}. Note that these are indexed in reverse

order compared to the encoder, so the filter count in the first

encoder layer is the same as in the last decoder layer.

The probability that frame t corresponds each of the C

action classes is given by vector Ŷt ∈ [0, 1]C using weight

matrix U ∈ R
C×F1 and bias c ∈ R

C , such that

Ŷt = softmax(UD
(1)
t + c). (2)

We explored other mechanisms, such as skip connections

between layers, different patterns of convolutions, and other

normalization schemes, however, the proposed model out-

performed these alternatives and is arguably simpler. Im-

plementation details are described in Section 3.3.

Receptive Field: The prediction at each frame is a function

of a fixed-length period of time, which is given by r(d, L) =
d(2L − 1) + 1 for L layers and duration d.

3.2. Dilated TCN

We adapt the WaveNet [34] model, which was designed

for speech synthesis, to the task of action segmentation. In

their work, the predicted output, Yt, denoted which audio

sample should come next given the audio from frames 1
to t. In our case Yt is the current action given the video

features up to t.

As shown in Figure 2, we define a series of blocks, each

of which contains a sequence of L convolutional layers.

The activations in the l-th layer and j-th block are given

by S(j,l) ∈ R
Fw×T . The input into each block S(j,1) is the

output from the previous block S(j−1,L), except for the first

block which is defined as the input data. Each layer has

158



the same number of filters Fw, which enables us to com-

bine activations from different layers using skip connections

later. Each layer consists a set of dilated convolutions with

rate parameter s, a non-linear activation f(·), and a residual

connection than combines the layer’s input and the convo-

lution signal. Convolutions are only applied over two time

steps, t and t− s, so we write out the full equations below.

The filters are parameterized by W = {W (1),W (2)} with

W (i) ∈ R
Fw×Fw and bias vector b ∈ R

Fw . Let Ŝ
(j,l)
t be the

result of the dilated convolution at time t and S
(j,l)
t be the

result after adding the residual connection such that

Ŝ
(j,l)
t = f(W (1)S

(j,l−1)
t−s +W (2)S

(j,l−1)
t + b) (3)

S
(j,l)
t = S

(j,l−1)
t + V Ŝ

(j,l)
t + e. (4)

Let V ∈ R
Fw×Fw and e ∈ R

Fw be a set of weights and

biases for the residual. Note that parameters {W, b, V, e}
are separate for each layer.

The dilation rate increases for consecutive layers within

a block such that sl = 2l. This enables us to increase the

receptive field by a substantial amount without drastically

increasing the number of parameters.

The output of each block is summed using a set of skip

connections with Z(0) ∈ R
Fw×T such that

Z
(0)
t = ReLU(

B∑

j=1

S
(j,L)
t ). (5)

There is a set of latent states Z
(1)
t = ReLU(VrZ

(0)
t +er) for

weight matrix Vr ∈ R
Fw×Fw and bias er. The predictions

for each time t are given by

Ŷt = softmax(UZ
(1)
t + c) (6)

for weight matrix U ∈ R
C×Fw and bias c ∈ R

C .

Receptive Field: The filters in each Dilated TCN layer are

smaller than in ED-TCN, so in order to get an equal-sized

receptive field it needs more layers or blocks. The receptive

field is of length r(B,L) = B ∗ 2L for number of blocks B

and number of layers per block L.

3.3. Implementation details

Parameters of both TCNs are learned using the cate-

gorical cross entropy loss with Stochastic Gradient De-

scent and ADAM [13] step updates. Using dropout on

full convolutional filters [32], as opposed to individual

weights, improves performance and produces smoother

looking weights. For ED-TCN, each of the L layers has

Fl = 96 + 32 ∗ l filters. For the Dilated TCN we find that

performance is relatively insensitive to number of filters for

each convolutional layer – assuming it is sufficiently large

– so we set Fw = 128. Later we perform ablative analysis

with various number of layers and filter durations. Models

were implemented using Keras [4] and TensorFlow [1].

3.4. Causal versus Acausal

We perform causal and acausal experiments. Causal

means that the prediction at time t is only a function of data

from times 1 to t, which is important for applications in

robotics. Acausal means that the predictions may be a func-

tion of data at any time step in the sequence. For the causal

case in ED-TCN, for at each time step t and filter length

d, we convolve from Xt−d to Xt. In the acausal case we

convolve from Xt− d

2

to Xt+ d

2

.

For the acausal Dilated TCN, we modify Eqn 3 such that

each layer now operates over one previous step, the current

step, and one future step:

Ŝ
(j,l)
t = f(W (1)S

(j,l−1)
t−s +W (2)S

(j,l−1)
t

+W (3)S
(j,l−1)
t+s + b) (7)

where now W = {W (1),W (2),W (3)}.

4. Evaluation & Discussion

We start by performing synthetic experiments that high-

light the ability of our TCNs to capture high-level tempo-

ral patterns. We then perform quantitative experiments on

three challenging datasets and ablative analysis to measure

the impact of hyper-parameters such as filter duration.

4.1. Metrics

Papers addressing action segmentation tend to use dif-

ferent metrics than those on action detection. We evaluate

using metrics from both communities and introduce a seg-

mental F1 score, which is applicable to both tasks.

Segmentation metrics: Action segmentation papers tend

use to frame-wise metrics, such as accuracy, precision, and

recall [30, 14]. Some work on 50 Salads also uses segmental

metrics [16, 17], in the form of a segmental edit distance,

which is useful because it penalizes predictions that are out-

of-order and for over-segmentation errors. We evaluate all

methods using frame-wise accuracy.

One drawback of frame-wise metrics is that models

achieving similar accuracy may have large qualitative dif-

ferences, as visualized later. For example, a model

may achieve high accuracy but produce numerous over-

segmentation errors. It is important to avoid these errors

for human-robot interaction and video summarization.

Detection metrics: Action detection papers tend to use

segment-wise metrics such as mean Average Precision

with midpoint hit criterion (mAP@mid) [26, 28] or mAP

with a intersection over union (IoU) overlap criterion

(mAP@k) [25]. mAP@k is computed my comparing the

overlap score for each segment with respect to the ground

truth action of the same class. If an IoU score is above a

threshold of k percent it is considered a true positive other-

wise it is a false positive. Average precision is computed for

159



each class and the results are averaged. mAP@mid is sim-

ilar except the criterion for a true positive is whether or not

the midpoint (mean time) is within the start and stop time

of the corresponding correct action.

mAP is a useful metric for information retrieval tasks

like video search, however, we find that it does not corre-

late with performance in many fine-grained action detec-

tion applications, such as robotics or video surveillance.

mAP scores are computed using a ranked list of action pre-

dictions, which are ordered based on confidence scores as-

signed to each segment. These confidences are often sim-

ply the mean or maximum class score within the frames

corresponding to a predicted segment. We find that by

computing these confidences in subtly different ways you

obtain wildly different results. On MERL Shopping, the

mAP@mid scores for Singh et al. [28] jump from 50.9 us-

ing the mean prediction score over an interval to 69.8 using

the maximum score over that same interval.

F1@k: We propose a segmental F1 score which is appli-

cable to both segmentation and detection tasks and has the

following properties: (1) it penalizes over-segmentation er-

rors, (2) it does not penalize for minor temporal shifts be-

tween the predictions and ground truth, which may have

been caused by annotator variability, and (3) scores are de-

pendent on the number actions and not on the duration of

each action instance. This metric is similar to mAP with

IoU thresholds except that it does not require a confidence

for each prediction. Qualitatively, we find these numbers

are better at indicating the caliber of a given segmentation.

We compute whether or not each predicted action seg-

ment is a true or false positive by comparing its IoU with

respect to the corresponding ground truth using threshold

k.As with mAP detection scores, if there is more than one

correct detection within the span of a single true action then

only one is marked as a true positive and all others are false

positives. We compute precision and recall for true posi-

tives, false positives, and false negatives summed over all

classes and compute F1 = 2 prec∗recall
prec+recall

.

We attempted to obtain action predictions from the orig-

inal authors on all datasets to compare across multiple met-

rics. We received them for 50 Salads and MERL Shopping.

4.2. Synthetic Experiments

We claim TCNs are capable of capturing complex tem-

poral patterns, such as action compositions, action dura-

tions, and long-range temporal dependencies. We show

these abilities with two synthetic experiments. For each, we

generate toy features X and corresponding labels Y for 50

training sequences and 10 test sequences of length T = 150.

The duration of each action of a given class is fixed and ac-

tion segments are sampled randomly. An example for the

composition experiment is shown in Figure 3. Both TCNs

are acausal and have a receptive field of length 16.

Figure 3. Synthetic Experiment #1: (top) True action labels for a

given sequence (bottom) The 3 dimensional features for that se-

quence. White is −1 and gray is +1. Subctions A1, A2, and A3

(dark blue, light blue and green) all have to the same feature val-

ues, which differ from B (orange) and C (red).

Shift s=0 s=5 s=10 s=15 s=20

ED-TCN 100 97.9 89.5 74.1 57.1

Dilated TCN 100 92.7 87.0 69.6 61.5

Bi-LSTM 100 72.3 60.2 54.7 38.5
Table 1. Synthetic experiment #2: F1@10 when shifting the input

features in time with respect to the true labels. Column shows per-

formance when shifting the data s frames from the corresponding

labels. Each TCN receptive field is 16 frames.

Action Compositions: By definition, an activity is com-

posed of a sequence of actions. Typically there is a depen-

dency between consecutive actions (e.g., action B likely

comes after A). CRFs capture this using a pairwise tran-

sition model over class labels and RNNs capture it using

LSTM across latent states. We show that TCNs can capture

action compositions, despite not explicitly conditioning the

activations at time t on previous time steps within that layer.

In this experiment, we generated sequences using a

Markov model with three high-level actions A, B, and C

with subactions A1, A2, and A3, as shown in Figure 3. A al-

ways consists of subactions A1 (dark blue), A2 (light blue),

then A3 (green), after which it is transitions to B or C. For

simplicity, Xt ∈ R
3 corresponds to the high-level action Yt

such that the true class is +1 and others are −1.

The feature vectors corresponding to subactions A1−A3
are all the same, thus a simple frame-based classifier would

not be able to distinguish between them. TCNs, given their

long receptive fields, segment the actions perfectly. This

suggests that our TCNs are capable of capturing action com-

positions. Recall each action class had a different segment

duration, and we correctly labeled all frames, which sug-

gests TCNs can capture duration properties for each class.

Long-range temporal dependencies: For many actions it

is important to consider information from seconds or even

minutes in the past. For example, in the cooking scenario,

when a user cuts a tomato, they tend to occlude the tomato

with their hands, which makes it difficult to identify which

object is being cut. It would be advantageous to recognize

that the tomato is on the cutting board before the user starts

the cutting action. In this experiment, we show TCNs are

capable of learning these long-range temporal patterns by

160



adding a temporal delay to the features. Specifically, for

both training and test features we define X̂ as X̂t = Xt−s

for all t. Thus, there is a delay of s frames between the

labels and the corresponding features.

Results using F1@10 are shown in 4.2. For compari-

son we show the TCNs as well as Bi-LSTM. As expected,

with no delay (s = 0) all models achieve perfect predic-

tion. For short delays (s = 5), TCNs correctly detect all

actions except the first and last of a sequence. As the delay

increases, ED-TCN and Dilated TCN perform very well up

to about half the length of the receptive field. The results

for Bi-LSTM degrade at a much faster rate.

4.3. Datasets

University of Dundee 50 Salads [30]: contains 50 se-

quences of users making a salad and has been used for

both action segmentation and detection. While this is a

multimodal dataset we only evaluate using the video data.

Each video is 5-10 minutes in duration and contains around

30 instances of actions such as cut tomato or peel

cucumber. We performed cross validation with 5 splits

on a higher-level action granularity which includes 9 action

classes such as add dressing, add oil, cut, mix

ingredients, peel, and place, plus a background

class. In [30] this was referred to as “eval.” We also

evaluate on a mid-level action granularity with 17 action

classes. The mid-level labels differentiates actions like cut

tomato from cut cucumber whereas the higher-level

combines these into a single class, cut.

We use the spatial CNN features of Lea et al. [16] as in-

put into our models. This is a simplified VGG-style model

trained solely on 50 Salads. Data was downsampled to ap-

proximately 1 Frame Per Second (FPS).

MERL Shopping [28]: is an action detection dataset con-

sisting of 106 surveillance-style videos in which users in-

teract with items on store shelves. The camera view-

point is fixed and only one user is present in each video.

There are five actions plus a background class: reach

to shelf, retract hand from shelf, hand in

shelf, inspect product, inspect shelf. Ac-

tions are typically a few seconds long.

We use the features from Singh et al. [28] as input.

Singh’s model consists of four VGG-style spatial CNNs:

one for RGB, one for optical flow, and ones for cropped

versions of RGB and optical flow. We stack the four feature-

types for each frame and use Principal Components Analy-

sis with 50 components to reduce the dimensionality. The

train, validation, and test splits are the same as described

in [28]. Data is sampled at 2.5 FPS.

Georgia Tech Egocentric Activities (GTEA) [8]: contains

28 videos of 7 kitchen activities such as making a sandwich

and making coffee. The four subjects performed each activ-

ity once. The camera is mounted on the user’s head and is

50 Salads (higher) F1@{10, 25, 50} Edit Acc

Spatial CNN [16] 35.0, 30.5, 22.7 25.5 68.0

Dilated TCN 55.8, 52.3, 44.3 46.9 71.1

ST-CNN [16] 61.7, 57.3, 47.2 52.8 71.3

Bi-LSTM 72.2, 68.4, 57.8 67.7 70.9

ED-TCN 76.5, 73.8, 64.5 72.2 73.4

50 Salads (mid) F1@{10, 25, 50} Edit Acc

Spatial CNN [16] 32.3, 27.1, 18.9 24.8 54.9

IDT+LM [25] 44.4, 38.9, 27.8 45.8 48.7

Dilated TCN 52.2, 47.6, 37.4 43.1 59.3

ST-CNN [16] 55.9, 49.6, 37.1 45.9 59.4

Bi-LSTM 62.6, 58.3, 47.0 55.6 55.7

ED-TCN 68.0, 63.9, 52.6 59.8 64.7
Table 2. Action segmentation results 50 salads. F1@k is our seg-

mental F1 score, Edit is the Segmental edit score from [17], and

Acc is frame-wise accuracy.

pointing towards their hands. Each videos is about a minute

long and contains on average 19 (non-background) actions.

We use the 11 action classes defined in [6] and evaluate us-

ing leave one user out. Cross-validation is performed over

users 1-3 as done by [29]. We use a frame rate of 3 FPS.

We were unable to obtain state of the art features from

[29], so we trained spatial CNNs from scratch using code

from [16], which was originally applied to 50 Salads. This

is a simplified VGG-style network where the input for each

frame is a pair of RGB and motion images. Optical flow

is very noisy due to large amounts of video compression

in this dataset, so we simply use difference images, such

that for image It at frame t the motion image is the con-

catenation of [It−d − It, It+d − It, It−2d − It, It+2d − It]
for delay d = 0.5 seconds. These difference images can

be viewed as a simple attention mechanism. We com-

pare results from this spatial CNN, the spatiotemporal CNN

from [16], EgoNet [29], and our TCNs.

4.4. Experimental Results

To make the baselines more competitive, we apply Bidi-

rectional LSTM (Bi-LSTM) [9] to 50 Salads and GTEA.

We use 64 latent states per LSTM direction with the same

loss and learning methods as previously described. The in-

put to this model is the same as for the TCNs. For MERL

Shopping we use the BiLSTM from [28].

50 Salads: Results on both action granularities are included

in Table 4.4. All methods are evaluated in acausal mode.

ED-TCN outperforms all other models on both granulari-

ties and on all metrics. We also compare against Richard et

al. [25] who evaluated on the mid-level and reported using

IoU mAP detection metrics. Their approach achieved 37.9

mAP@10 and 22.9 mAP@50. The ED-TCN achieves 64.9

mAP@10 and 42.3 mAP@50 and Dilated TCN achieves

53.3 mAP@10 and 29.2 mAP@50.

Notice that ED-TCN, Dilated TCN, and ST-CNN all

161



MERL (acausal) F1@{10, 25, 50} mAP Acc

MSN Det [28] 46.4, 42.6, 25.6 81.9 64.6

MSN Seg [28] 80.0, 78.3, 65.4 69.8 76.3

Dilated TCN 79.9, 78.0, 67.5 75.6 76.4

ED-TCN 86.7, 85.1, 72.9 74.4 79.0

MERL (causal) F1@{10, 25, 50} mAP Acc

MSN Det [28] - 77.6 -

Dilated TCN 72.7, 70.6, 56.5 72.2 73.0

ED-TCN 82.1, 79.8, 64.0 64.2 74.1
Table 3. MERL Shopping results. Action segmentation results on

the MERL Shopping dataset. Causal only uses features from pre-

vious time steps and acausal uses previous and future time steps.

mAP refers to mean Average Precision with midpoint hit criterion.

GTEA F1@{10,25,50} Acc

EgoNet+TDD [29] - 64.4

Spatial CNN [16] 41.8, 36.0, 25.1 54.1

ST-CNN [16] 58.7, 54.4, 41.9 60.6

Dilated TCN 58.8, 52.2, 42.2 58.3

Bi-LSTM 66.5, 59.0, 43.6 55.5

ED-TCN 72.2, 69.3, 56.0 64.0
Table 4. Action segmentation results on the Georgia Tech Egocen-

tric Activities dataset. F1@k is our segmental F1 score and Acc is

frame-wise accuracy.

achieve similar frame-wise accuracy but very different

F1@k and edit scores. ED-TCN tends to produce many

fewer over-segmentations than competing methods. Fig-

ure 5 shows mid-level predictions for these models. Accu-

racy and F1 for each prediction is included for comparison.

Many errors on this dataset are due to the extreme sim-

ilarity between actions and subtle differences in object ap-

pearance. For example, our models confuse actions using

the vinegar and olive oil bottles, which have a similar ap-

pearance. Similarly, we confuse some cutting actions (e.g.,

cut cucumber versus cut tomato) and placing ac-

tions (e.g., place cheese versus place lettuce).

MERL Shopping: We compare against use two sets of pre-

dictions from Singh et al. [28], as shown in Table 4.4. The

first, as reported in their paper, are a sparse set of action

detections which are referred to as MSN Det. The second,

obtained from the authors, are a set of dense (per-frame) ac-

tion segmentations. The detections use activations from the

dense segmentations with a non-maximal suppression de-

tection algorithm to output a sparse set of segments. Their

causal version uses LSTM on the dense activations and their

acausal version uses Bidirectional LSTM.

While Singh’s detections achieve very high midpoint

mAP, the same predictions perform very poorly on the other

metrics. As visualized in Figure 5 (right), the actions are

very short and sparse. This is advantageous when optimiz-

ing for midpoint mAP, because performance only depends

on the midpoint of a given action, however, it it not effective

Figure 4. Receptive field experiments (left) ED-TCN: varying

layer count L and filter durations d (right) Dilated TCN: varying

layer count L and number of blocks B.

if you require the start and stop time of an activity. Interest-

ing, this method does worst in F1 even for low overlaps.

As expected the acausal TCNs perform much better than

the causal variants. This verifies that using future infor-

mation is important for achieving best performance. In

the causal and acausal results the Dilated TCN outperforms

ED-TCN in midpoint mAP, however, the F1 scores are bet-

ter for ED-TCN. This suggests the confidences for the Di-

lated TCN are more reliable than ED-TCN.

Georgia Tech Egocentric Activities: Performance of the

ED-TCN is on par with the ensemble approach of Singh

et al. [29], which combines their EgoNet features with

TDD [18]. Recall that Singh’s approach does not incorpo-

rate a temporal model, so we expect that combining their

features with our ED-TCN would improve performance.

Unlike EgoNet and TDD, our approach uses simpler spa-

tial CNN features which can be computed in real-time.

Overall, in our experiments the Encoder-Decoder TCN

outperformed all other models, including state of the art

approaches for most datasets and our adaptation of the re-

cent WaveNet model. The most important difference be-

tween these models is that ED-TCN uses fewer layers but

has longer convolutional filters whereas the Dilated TCN

has more layers but with shorter filters. The long filters in

ED-TCN have a strong positive affect on F1 performance,

in particular because they prevent over-segmentation issues.

The Dilated TCN performs well on metrics like accuracy,

but is less robust to over-segmentation. This is likely due to

the short filter lengths in each layer.

4.4.1 Ablative Experiments

Ablative experiments were performed on 50 Salads (mid-

level). Note that these were done with different hyper-

parameters and thus may not match previous results.

Activation functions: We assess performance using the

activation functions shown in Table 4.4.1. The Gated

PixelCNN (GPC) activation [35], f(x) = tanh(x) ⊙
sigmoid(x), was used for WaveNet and also achieves high

162



50 Salads MERL Shopping GTEA

Figure 5. (top) Example images from each dataset. (bottom) Action predictions for one sequence using the mid-level action set of 50 Salads

(left) and on MERL Shopping (right). These timelines are “typical.” Performance is near the average performance across each dataset.

Activation Sigm. ReLU Tanh GPC NReLU

ED-TCN 37.3 40.4 48.1 52.7 58.4

Dilated TCN 42.5 43.1 41.0 40.5 40.7

Table 5. Comparison of different activation functions used in each

TCN. Results are computed on 50 Salads (mid-level) with F1@25.

performance on our tasks. We define the Normalized ReLU

f(x) =
ReLU(x)

max(ReLU(x)) + ǫ
, (8)

for vector x and ǫ = 1E-5 where the max is computed per-

frame. Normalized ReLU outperforms all others with ED-

TCN, whereas for Dilated TCN all functions are similar.

Receptive fields: We compare performance with varying

receptive field hyperparameters. Line in Figure 4 (left)

show F1@25 for L from 1 to 5 and filter sizes d from 1
to 40 on ED-TCN. Lines in Figure 4 (right) correspond to

block count B with layer count L from 1 to 6 for a Dilated

TCN. Note, our GPU ran out of memory on ED-TCN after

(L = 4,d = 25) and Dilated TCN after (B = 4,L = 5). The

ED-TCN performs best with a receptive field of 44 frames

(L = 2,d = 15) which corresponds to 52 seconds. The Di-

lated TCN performs best at 128 frames (B = 4,L = 5) and

achieves similar performance at 96 frames (B = 3,L = 5).

Training time: It takes much less time to train a TCN than

a Bi-LSTM. While the exact timings vary with the number

of TCN layers and filter lengths, for one split of 50 Salads

– using a Nvidia Titan X for 200 epochs – it takes about a

minute to train the ED-TCN and 30 minutes to train the Bi-

LSTM. This speedup comes from the fact that activations

within each TCN layer are all independent, and thus they

can be performed in batch on a GPU. Activations in inter-

mediate RNN layers depend on previous activations within

that layer, so operations must be applied sequentially.

5. Conclusion

We introduced Temporal Convolutional Networks,

which use a hierarchy of convolutions to capture long-range

temporal patterns. We showed on synthetic data that TCNs

are capable of capturing complex patterns such as compo-

sitions, action durations, and are robust to time-delays. Our

models outperformed strong baselines, including Bidirec-

tional LSTM, and achieve state of the art performance on

challenging datasets. We believe TCNs are a formidable

alternative to RNNs and are worth further exploration.

Acknowledgments: Thanks to Bharat Singh and the group

at MERL for discussions on their dataset and for letting us

use the spatiotemporal features as input into our model. We

also thank Alexander Richard for his 50 Salads predictions.

163



References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-

Flow: Large-scale machine learning on heterogeneous sys-

tems, 2015. Software available from tensorflow.org. 4

[2] V. Badrinarayanan, A. Handa, and R. Cipolla. Seg-

net: A deep convolutional encoder-decoder architecture

for robust semantic pixel-wise labelling. arXiv preprint

arXiv:1505.07293, 2015. 2

[3] G. Cheron, I. Laptev, and C. Schmid. P-cnn: Pose-based cnn

features for action recognition. 2015. 2

[4] F. Chollet. Keras. https://github.com/fchollet/

keras, 2015. 4

[5] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Gated feed-

back recurrent neural networks. 2015. 1

[6] A. Fathi, A. Farhadi, and J. M. Rehg. Understanding ego-

centric activities. 2011. 2, 6

[7] A. Fathi and J. M. Rehg. Modeling actions through state

changes. 2013. 2

[8] A. Fathi, R. Xiaofeng, and J. M. Rehg. Learning to recognize

objects in egocentric activities. 2011. 2, 6

[9] A. Graves, S. Fernandez, and J. Schmidhuber. Bidirec-

tional lstm networks for improved phoneme classification

and recognition. In ICANN, 2005. 2, 6

[10] D.-A. Huang, L. Fei-Fei, and J. C. Niebles. Connectionist

Temporal Modeling for Weakly Supervised Action Labeling,

pages 137–153. Springer International Publishing, Cham,

2016. 1, 2

[11] M. Jain, J. C. van Gemert, and C. G. M. Snoek. What do

15,000 object categories tell us about classifying and local-

izing actions? 2015. 2

[12] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. 2014. 2

[13] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. 2014. 4

[14] H. Kuehne, A. Arslan, and T. Serre. The language of actions:

Recovering the syntax and semantics of goal-directed human

activities. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2014. 2, 4

[15] H. Kuehne, J. Gall, and T. Serre. An end-to-end generative

framework for video segmentation and recognition. Lake

Placid, Mar 2016. 2

[16] C. Lea, A. Reiter, R. Vidal, and G. D. Hager. Segmental

spatio-temporal CNNs for fine-grained action segmentation.

2016. 1, 2, 4, 6, 7

[17] C. Lea, R. Vidal, and G. D. Hager. Learning convolutional

action primitives for fine-grained action recognition. 2016.

4, 6

[18] Y. Q. Limin Wang and X. Tang. Action recognition with

trajectory-pooled deep-convolutional descriptors. 2015. 7

[19] J. Y. Ng, M. J. Hausknecht, S. Vijayanarasimhan, O. Vinyals,

R. Monga, and G. Toderici. Beyond short snippets: Deep

networks for video classification. 2015. 2

[20] B. Ni, V. R. Paramathayalan, and P. Moulin. Multiple gran-

ularity analysis for fine-grained action detection. 2014. 2

[21] B. Ni, X. Yang, and S. Gao. Progressively parsing inter-

actional objects for fine grained action detection. In The

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2016. 1, 2

[22] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of

training recurrent neural networks. 2013. 1

[23] X. Peng and C. Schmid. Encoding feature maps of cnns

for action recognition. In CVPR, THUMOS Challenge 2015

Workshop, 2015. 2

[24] H. Pirsiavash and D. Ramanan. Parsing videos of actions

with segmental grammars. 2014. 1

[25] A. Richard and J. Gall. Temporal action detection using a

statistical language model. 2016. 1, 2, 4, 6

[26] M. Rohrbach, A. Rohrbach, M. Regneri, S. Amin, M. An-

driluka, M. Pinkal, and B. Schiele. Recognizing fine-grained

and composite activities using hand-centric features and

script data. 2015. 1, 2, 4

[27] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. 2014. 2

[28] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao. A

multi-stream bi-directional recurrent neural network for fine-

grained action detection. 2016. 1, 2, 4, 5, 6, 7

[29] S. Singh, C. Arora, and C. V. Jawahar. First person action

recognition using deep learned descriptors. June 2016. 2, 6,

7

[30] S. Stein and S. J. McKenna. Combining embedded ac-

celerometers with computer vision for recognizing food

preparation activities. 2013. 2, 4, 6

[31] L. Sun, K. Jia, D.-Y. Yeung, and B. Shi. Human action

recognition using factorized spatio-temporal convolutional

networks. 2015. 2

[32] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bre-

gler. Efficient object localization using convolutional net-

works. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2015. 4

[33] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3d convolutional net-

works. 2015. 2

[34] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,

O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior, and

K. Kavukcuoglu. Wavenet: A generative model for raw au-

dio. CoRR, abs/1609.03499, 2016. 2, 3

[35] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt,

A. Graves, and K. Kavukcuoglu. Conditional image genera-

tion with pixelcnn decoders. CoRR, abs/1606.05328, 2016.

7

[36] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and

K. J. Lang. Readings in speech recognition. chapter

Phoneme Recognition Using Time-delay Neural Networks,

pages 393–404. 1990. 3

[37] H. Wang and C. Schmid. Action recognition with improved

trajectories. 2013. 2

164

https://github.com/fchollet/keras
https://github.com/fchollet/keras


[38] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. In ICLR, 2016. 2

[39] Y. Zhou, B. Ni, R. Hong, M. Wang, and Q. Tian. Interaction

part mining: A mid-level approach for fine-grained action

recognition. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2015. 2

165


