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Abstract

Surveillance cameras today often capture NIR (near in-

frared) images in low-light environments. However, most

face datasets accessible for training and verification are

only collected in the VIS (visible light) spectrum. It remains

a challenging problem to match NIR to VIS face images

due to the different light spectrum. Recently, breakthroughs

have been made for VIS face recognition by applying deep

learning on a huge amount of labeled VIS face samples. The

same deep learning approach cannot be simply applied to

NIR face recognition for two main reasons: First, much lim-

ited NIR face images are available for training compared

to the VIS spectrum. Second, face galleries to be matched

are mostly available only in the VIS spectrum. In this pa-

per, we propose an approach to extend the deep learning

breakthrough for VIS face recognition to the NIR spectrum,

without retraining the underlying deep models that see only

VIS faces. Our approach consists of two core components,

cross-spectral hallucination and low-rank embedding, to

optimize respectively input and output of a VIS deep model

for cross-spectral face recognition. Cross-spectral halluci-

nation produces VIS faces from NIR images through a deep

learning approach. Low-rank embedding restores a low-

rank structure for faces deep features across both NIR and

VIS spectrum. We observe that it is often equally effective to

perform hallucination to input NIR images or low-rank em-

bedding to output deep features for a VIS deep model for

cross-spectral recognition. When hallucination and low-

rank embedding are deployed together, we observe signif-

icant further improvement; we obtain state-of-the-art accu-

racy on the CASIA NIR-VIS v2.0 benchmark, without the

need at all to re-train the recognition system.

1. Introduction

In a typical forensic application involving night-time

surveillance cameras, a probe image of an individual is cap-

tured in the near-infrared spectrum (NIR), and the individ-

∗Denotes equal contribution.

Figure 1. Diagram of the proposed approach. A simple NIR-VIS

face recognition system consists in using a Deep Neural Network

(DNN) trained only on VIS images to extract a feature vector f

from a NIR image and use it for matching to a VIS database. We

propose two modifications to this basic system. First, we mod-

ify the input by hallucinating a VIS image from the NIR sample.

Secondly, we apply a low-rank embedding of the DNN features

at the output. Each of this modifications produces important im-

provements in the recognition performance, and an even greater

one when applied together.

ual must be recognized out of a gallery of visible spectrum

(VIS) images. Whilst VIS face recognition is an extensively

studied subject, face recognition in the NIR spectrum re-

mains a relatively unexplored field.

In standard VIS face recognition, impressive progress

has been achieved recently. This is due in part to the excel-

lent performance of deep neural networks [29, 33, 36, 40],

which benefit from the availability of very large datasets

of face photos, typically mined from the Internet [16, 40].

Such a fruitful strategy for data collection cannot be applied

to NIR images, where training data is much scarcer.

Naturally, one would like to leverage the power of state-

of-the-art VIS face recognition methods and apply them to

NIR. Recent works have made significant progress in this

direction [18, 32], but the recognition rates remain much

lower than the ones achieved in the VIS spectrum. In this
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work, we take a major step towards closing that gap.

We consider using a pre-trained deep neural network

(DNN) which has seen only VIS images as a black-box fea-

ture extractor, and propose convenient processing of the in-

put and output of the DNN that produce a significant gain in

NIR-VIS recognition performance. The proposed approach,

summarized in Figure 1, consists of two components, cross-

spectral hallucination and low-rank embedding, to optimize

respectively the input and output of a pre-trained VIS DNN

model for cross-spectral face recognition.

First, we propose to modify the NIR probe images using

deep cross-spectral hallucination based on a convolutional

neural network (CNN).1 The CNN learns a NIR-VIS map-

ping on a patch-to-patch basis. Then, instead of inputting

the NIR probe directly to the feature extraction DNN, we in-

put the cross-spectrally hallucinated. Secondly, we propose

to embed the output features of the DNN using a convenient

low-rank transform [30], making the transformed NIR and

VIS features of one subject lie in the same low-dimensional

space, while separating them from the other subjects’ repre-

sentations. While here illustrated for the important problem

of face recognition, this work provides a potential new di-

rection that combines transfer learning (at the input/output)

with joint embedding (at the output).

The two proposed strategies achieve state-of-the-art re-

sults when applied separately, and achieve an even more

significant improvement when applied in combination. We

demonstrate that both techniques work well independently

of the DNN used for feature extraction.

2. Related Work

One common strategy for NIR-VIS face recognition, em-

ployed since the early work of Yi et al. [41], is to find a map-

ping of both the NIR and VIS features to a shared subspace,

where matching and retrieval can be performed for both

spectrums at the same time. This metric learning strategy

was applied in many successive works [11, 15, 22, 28], and

more recently using DNN-extracted features [29, 32]. Most

metric learning methods learn metrics with triplet [38] or

pairwise [7] constraints. The triplet loss is often adopted in

deep face models to learn a face embedding [29, 33]. Sax-

ena and Verbeek [32] studied the performance implications

of using different feature layers of the DNN in combina-

tion with different metric learning approaches, and propose

a combination of the two. In this work, we consider the well

developed DNN as a black box and use the features pro-

duced by the DNN at the second-to-last layer. We adopt a

low-rank constraint to learn a face embedding, which proves

effective for cross-spectral tasks.

1To avoid confusion, in this paper we will refer to the deep neural net-

work used for feature extraction as DNN and to the convolutional neural

network used to hallucinate full-resolution VIS images from NIR as CNN.

Another strategy is to convert the NIR probe to a VIS

image [18, 23, 31] and apply standard VIS face recogni-

tion to the converted version of the probe. One of the first

to utilize this strategy for face VIS hallucination, Li et al.

[23], learn a patch-based linear mapping from a middle-

and long-wavelength infrared (MW-/LWIR) image to a VIS

image, and regularize the resulting patches with an MRF.

Juefei et al. [18], used a cross-spectral dictionary learning

approach to successfully map a NIR face image to the VIS

spectrum. On the obtained VIS image, they apply Local

Binary Patterns (LBP) [2] and a linear classifier to perform

face recognition. Converting from infrared to VIS is a very

challenging problem, but has the clear advantage of allow-

ing to use existing traditional face recognition algorithms on

the converted images. To the best of our knowledge, this is

the first time a deep learning approach is used to hallucinate

VIS faces from NIR.

Several works exist for the task of cross-spectral con-

version of outdoor scenes [14, 37, 44]. This scenario has

the advantage that more multispectral data exists for generic

scenes [4]. Building a dataset of cross-spectral face imaging

with correct alignment for a significant number of subjects

is a much more challenging task. We believe it is in part due

to this difficulty that few works exist in this direction.

Given the advantage of thermal images not requiring a

light source, a lot of attention has been given to the thermal

to VIS face recognition task [3, 5, 31]. Related to our work,

Sarfraz et al. [31] used a neural network to learn the reverse

mapping, from VIS to MW-/LWIR, so that a thermal face

image could be matched to its VIS counterpart. This strat-

egy has the disadvantage of having to apply the mapping to

each VIS image in the dataset. We propose to use a con-

volutional neural network to compute the mapping between

the (single) tested NIR and VIS images.

Another important family of work on cross-spectral face

recognition focuses on the features used for recognition,

and suggested strategies include engineering light source in-

variant features (LSIF) [25], performing cross-domain fea-

ture learning [17, 27, 39, 45], and adapting traditional hand-

crafted features [8, 21].

Alternative approaches fit existing deep neural networks

to a given database, e.g., [26, 13], achieving as expected

improvements in the results for that particular dataset. Con-

trary to those, the generalization power of our proposed

framework is born from the technique itself; without any

kind of re-training we achieve state-of-the-art results. This

is obtained while enjoying the hard work (and huge train-

ing) done for existing networks, simply by adding trivial

hallucination and linear steps. As underlying networks im-

prove, the proposed framework here introduced will poten-

tially continue to improve without expenses on training or

data collection.

In this paper, we build on the ideas of [32] and [18]. We
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use a DNN pre-trained on a huge dataset of VIS images as

a feature extractor. At the input of this DNN, we propose

to preprocess the NIR input using deep cross-modal hallu-

cination. At the output, we propose to embed the feature

vector using a low-rank transform. The simplicity of the

approach and the use of off-the-shelf well optimized algo-

rithms is part of the virtue of this work. As a side con-

tribution, we derive a secondary dataset from the CASIA

NIR-VIS 2.0 dataset [24] consisting of more than 1.2 mil-

lion pairs of aligned NIR-VIS patches.

3. Cross-spectral Hallucination

Most if not all DNN face models are designed and

trained to operate on VIS face images, thanks to the avail-

ability of enormous VIS face datasets. It is to expect that

such deep models do not achieve their full potential when

their input is a NIR face image. In this section we propose

to preprocess the NIR image using a convolutional neural

network (CNN) that performs a cross-spectral conversion

of the NIR image into the VIS spectrum. We will show

that using the hallucinated VIS image as input to the feature

extraction DNN, instead of the raw NIR, produces a signifi-

cant gain in the recognition performance. Note that the goal

here is not necessarily to produce a visually pleasant image,

but a VIS image that is better fit for a VIS-pretrained DNN

than the NIR.

The cross-spectral hallucination CNN is trained on pairs

of corresponding NIR-VIS patches that are mined from a

publicly available dataset, as will be described below. In

the VIS domain, we work in a luminance-chroma color

space, since it concentrates the important image details in

the luminance channel and minimizes the correlation be-

tween channels, making the learning more efficient. We find

the YCbCr space to give the best results, and we observe no

difference between training the three channels with shared

layers or independently. For simplification we train three

different networks.

The network architecture is inspired in [9]. Because the

luminance channel Y contains most of the subject’s infor-

mation, we utilize a bigger network for this channel and

smaller networks for the two chromas. Also, because the

blue component varies very little in faces, an even smaller

network is enough for the blue-difference chroma Cb. The

details of the networks architecure is shown in Table 1. The

three networks receive a 40x40 input NIR patch and consist

of successive convolutional layers with stride 1, no pool-

ing and PReLU activation functions [12] (except in the last

layer), and an Euclidean loss function at the end. We pad

each layer with zeros to have the same size at the input

and output. The three networks have an hour-glass struc-

ture where the depth of the middle layers is narrower than

the first and last layers [9]. This makes for efficient training

while allowing highly non-linear relations to be learned.

Figure 2. Sample images of two subjects from the CASIA NIR-

VIS 2.0 Face Dataset. Top: NIR. Bottom: VIS.

3.1. Mining for NIR-VIS patches

We use the CASIA NIR-VIS 2.0 dataset [24] to obtain

pairs of NIR-VIS patches. This dataset contains 17,580

NIR-VIS pairs of images with an average of 24 images of

each modality for each subject. This dataset cannot be used

for training directly because the NIR-VIS image pairs are

not aligned and the subjects pose and facial expression vary

a lot (Figure 2). In [18], this problem was partially avoided

by subsampling 128x128 crops of the original images to

32x32 images. Yet in their reported results, some smooth-

ing and visual artifacts due to the training set misalignment

can be observed ([18], Figure 8). In this work we perform

no subsampling. Instead, we mine the CASIA NIR-VIS 2.0

dataset for consistent pairs of NIR-VIS patches at the best

possible resolution, Figure 3. Through this process we are

able to derive a secondary dataset with more than one mil-

lion pairs of 40x40 NIR-VIS image patches.

We use the luminance channel and the NIR image to find

correspondences. The first step is to pre-process the images

by aligning the facial landmarks of the two modalities (cen-

ters of the two eye pupils and center of the mouth), using

[19], and cropping the images to 224x224 pixels. Secondly

Ch. layers first and last intermediate
skip-

connections

Y

148x11x11 36x11x11 input

11 str. 1, pad 5 str. 1, pad 5 to

PReLU PReLU last layer

Cb

66x3x3 32x3x3

7 str. 1, pad 1 str. 1, pad 1 none

PReLU PReLU

Cr

148x5x5 48x5x5

8 str. 1, pad 2 str. 1, pad 2 none

PReLU PReLU

Table 1. Architecture of the CNN used for cross-spectral halluci-

nation. The first and last layers have deeper filters than the layers

in-between, mimicking an encoding-decoding scheme.
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Figure 3. Mining the CASIA NIR-VIS 2.0 dataset for valid patch

correspondences. We compare every NIR image to the luminance

channel of every VIS image for each subject. Note that the NIR

and VIS images are captured under different pose and facial ex-

pression. We use 224x224 crops of the original images with facial

landmarks aligned. A sliding 60x60 patch is extracted at the same

location from both images. The VIS patch is affine-registered to

the NIR patch. We then crop a 40x40 region inside the registered

patches. We keep the pair if the correlation of the two patches and

of their gradients are above a threshold. In this example, patches

A and A’ form a qualifying pair, whilst B and B’ are discarded.

we normalize the mean and standard deviation of the NIR

and color channels of all the images in the dataset with re-

spect to a fixed reference chosen from the training set. The

facial landmark alignment is insufficient, as discrepancies

between the NIR and VIS images still occur. Training a

CNN with even slightly inconsistent pairs produces strong

artifacts at the output. In order to obtain a clean training

dataset, we run a sliding window of 60x60 pixels, with

stride 12, through both images, and extract patches at the

same locations. Note that the patches are roughly aligned

based on the facial landmarks, but this alignment is typ-

ically not fully accurate. We then fit an affine transform

between the 60x60 luminance patch and NIR patch. Next,

we crop the center 40x40 regions and compute a similarity

score to evaluate if the patches of both modalities coincide.

The similarity score consists of the correlation between the

patches plus the correlation between their gradient magni-

tudes. If the sum of both values is above 1 and neither of

them is below 0.4 we consider the pair a valid match. Note

that a cross-spectral NIR-VIS patch similarity metric using

a CNN was proposed in [1]. In this work we opt for using

plain correlation for the sake of efficiency.

This patch mining strategy allowed us to collect more

than 700,000 pairs of NIR-VIS patches. We then pruned

this dataset to ensure that the patches were approximately

uniformly distributed around the face. After this pruning

we kept a total of 600,000 patches. We horizontally flip

them to form a final dataset of 1.2 million aligned NIR-VIS

patches that we use for training and validation of the cross-

spectral hallucination CNN. Figure 4 shows example input

and output patches, including the result of the hallucination

CNN for patches not seen during training. The convolu-

tional filters learned by the three networks can be applied

to any NIR image to produce a VIS image equivalent. Note

that we retained the subject identification for each patch so

that the dataset can be split without subject overlap.

NIR Y Cb Cr RGB NIR Y Cb Cr RGB

Figure 4. Example patches extracted from CASIA-NIS-VIR 2.0

database using the proposed patch mining method. For each patch,

the top row shows the NIR input and ground truth Y, Cb, Cr

and RGB signals, and the bottom row shows the output of the

cross-spectral hallucination CNN. The Cb and Cr values have been

scaled for better visualization. In total, we were able to mine 1.2

million NIR-VIS pairs, equally distributed along the face. All the

patches in this figure belong to the validation set and have not been

seen during training. (Best viewed in electronic format.)

3.2. Post-processing

Ideally, one would not like to lose all the rich information

contained in the original NIR image. Despite our method-

ology for mining aligned patches, it is not at all impossible

that the CNN introduces small artifacts in unseen patches.

To safeguard the valuable details of the original NIR, we

propose to blend the CNN output with the original NIR im-

age. A successful blending smooths the result of the cross-

spectral hallucination and maintains valid information from

the pure NIR image. We will later analyze this fact in the

experimental section. We perform the blending only on the
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luminance channel, by computing the image

Y = Ŷ − α ·G2

σ ∗ (Nir − Ŷ ), (1)

where Y is the final luminance channel estimation, Ŷ is the

output of the cross-spectral CNN, Nir is the NIR image,

Gσ is a Gaussian filter with σ = 1, and ∗ denotes convolu-

tion. The parameter α balances the amount of information

retained from the NIR images and the information obtained

with the CNN and allows to remove some of the artifacts

introduced by the CNN (α = 0.6 in our experiments).

Figure 5 shows example results of the cross-modal hallu-

cination for subjects not seen during training. Note how the

blending helps correcting some of the remaining artifacts

in the CNN output but maintaining a more natural-looking

face than the NIR alone.

4. Low-rank Embedding

In this section, we propose a simple way to extend a

DNN model pre-trained on VIS face images to the NIR

spectrum, using low-rank embedding at the output layer.

The mathematical framework behind low-rank embedding

is introduced in [30], where a geometrically motivated

transformation is learned to restore a within-class low-rank

structure, and meanwhile introduce a maximally separated

inter-class structure. With a low-rank embedding layer ap-

pended at the end, a DNN model that sees only VIS images

produces deep features for VIS and NIR images (or the pre-

viously described hallucinated images) in a common space.

4.1. Low-rank Transform

Many high-dimensional data often reside near single or

multiple subspaces (or after some non-linear transforms).

Consider a matrix Y = {yi}
N
i=1

⊆ R
d, where each column

yi is a data point in one of the C classes. Let Yc denote the

submatrix formed by columns of Y that lie in the c-th class.

A d× d low-rank transform T is learned to minimize

CX

c=1

||TYc||∗ − ||TY||∗, (2)

where ||·||∗ denotes the matrix nuclear norm, i.e., the sum of

the singular values of a matrix. The nuclear norm is the con-

vex envelope of the rank function over the unit ball of ma-

trices [10]. An additional condition ||T||2 = 1 is originally

adopted to prevent the trivial solution T = 0. We drop this

normalization condition in this paper, as we never empiri-

cally observe such trivial solution, with T being initialized

as the identity matrix. The objective function (2) is a differ-

ence of convex functions program, and the minimization is

guaranteed to converge to a local minimum (or a stationary

point) using the concave-convex procedure [34, 42].

Figure 5. Results of the deep cross-modal hallucination for sub-

jects in the validation set. From left to right: Input NIR image;

Raw output of the hallucination CNN; output of the CNN after

post-processing; one RGB sample for each subject. The post-

processing helps removing some of the artifacts in the CNN out-

put. See for example the faces with glasses, which cause the CNN

to create notorious artifacts. Note that the CNN was trained only

on face patches so the color of the clothes cannot be hallucinated.

(Best viewed in electronic format.)

Theorem 1. Let A and B be matrices of the same row di-

mensions, and [A,B] denote their column-wise concatena-

tion. Then, ||[A,B]||∗ ≤ ||A||∗+||B||∗, and equality holds

if the column spaces of A and B are orthogonal.

Proof. This results from properties of the matrix nuclear

norm.
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Figure 6. Deep features generated using the VGG-face model [29] for VIS (filled circle) and NIR (unfilled diamond) face images from

five subjects, one color per subject. Data are visualized in two dimensions using PCA. In (a), without embedding, VIS and NIR faces

from the same subject often form two different clusters respectively. In (d), low-rank embedding successfully restores a low-rank structure

for multi-spectrum faces from the same subject. In (b) and (c), popular pair-wise and triplet embeddings still show significant intra-class

variations across spectrums (best viewed zooming on screen).

Based on Theorem 1, the objective function (2) is non-

negative, and it achieves the value zero if, after applying the

learned transformation T, the column spaces corresponding

to different classes become orthogonal (that is, the smallest

principal angle between two different subspaces is π

2
). Note

that minimizing each of the nuclear norms appearing in (2)

serves to reduce the variation within a class. Thus, the low-

rank transform simultaneously minimize intra-class varia-

tion and maximize inter-class separations.

4.2. Cross-spectral Embedding

In traditional single-spectrum VIS face recognition,

DNN models adopt the classification objective such as soft-

max at the final layer. Deep features produced at the

second-to-last layer are often l2-normalized, and then com-

pared using the cosine similarity to perform face recogni-

tion [29, 35]. Thus, successful face DNN models expect

deep features generated for VIS faces from the same sub-

ject to reside in a low-dimensional subspace.

In Figure 6a we illustrate the following, which motivates

the proposed embedding: Face images from five subjects

in VIS and NIR are input to VGG-face [29], one of the

best publicly available DNN face models. The generated

deep features are visualized in two dimensions using PCA,

with filled circle for VIS, unfilled diamond for NIR, and one

color per subject. We observe that VIS and NIR faces from

the same subject often form two different clusters respec-

tively. Such observation indicates that a successful DNN

face model pre-trained on VIS faces is able to generate dis-

criminative features for NIR faces; however, when a subject

is imaged under a different spectrum, the underlying low-

rank structure assumption is often violated.

Our finding is that the low-rank transform T in (2) can

still effectively restore for the same subject a low-rank

structure, even when Yc contains mixed NIR and VIS train-

ing data from the c-th subject. As no DNN retraining is

required, a very important advantage of our approach in

practice, the learned low-rank transform can be simply ap-

pended as a linear embedding layer after the DNN output

layer to allow a VIS model accepting both VIS and NIR

images. As shown in Figure 6d, low-rank embedding effec-

tively unifies cross-spectral deep features in Figure 6a.

In DNN-based face recognition, deep feature embed-

dings with pairwise or triplet constraints are commonly

used [29, 32, 33]. Two popular DNN embedding schemes,

pair-wise (ITML [7]) and triplet (LMNN [38]) embeddings,

are shown in Figure 6b and Figure 6c respectively, and con-

trary to our approach, significant intra-class variations, i.e.,

the distance between same color clusters, are still observed

across spectrums.

5. Experimental Evaluation

We consider pre-trained VIS DNNs as black-boxes,

thereby enjoying the advances in VIS recognition, and

perform cross-spectral hallucination to input NIR images,

and/or low-rank embedding to output features, for cross-

spectral face recognition. To demonstrate that our approach

is generally applicable for single-spectrum DNNs without

any re-training, we experiment with three pre-trained VIS

DNN models from different categories:

• The VGG-S model is our trained-from-scratch DNN

face model using the VGG-S architecture in [6].

• The VGG-face model is a publicly available DNN face

model,2 which reports the best result on the LFW face

benchmark among publicly available face models.

• The COTS model is a commercial off the shelf

(COTS) DNN face model to which we have access.

5.1. Dataset

The CASIA NIR-VIS 2.0 Face Dataset [24] is used to

evaluate NIR-VIS face recognition performance. This is

the largest available NIR-VIS face recognition dataset and

contains 17,580 NIR and VIS face images of 725 subjects.

This dataset presents variations in pose, illumination, ex-

pressions, etc. Sample images are shown in Figure 2. The

2Downloaded at http://www.robots.ox.ac.uk/˜vgg/

software/vgg_face.
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Figure 7. ROC curves for Table 2

CASIA-Webface dataset [40] is used to train our trained-

from-scratch VGG-S model. CASIA-Webface is one of the

largest public face datasets containing 494,414 VIS face im-

ages from 10,575 subjects collected from IMDB.

5.2. Hallucination Networks Protocol

We first train the three CNNs used to hallucinate VIS

faces from input NIR images described in Table 1. We use

our mined dataset of NIR-VIS image patches. Given that

not all the images in the CASIA NIR-VIS 2.0 dataset pro-

vide the same amount of aligned patches, the standard pro-

tocol for this dataset, which splits the dataset in two, does

not provide enough training data for the cross-spectral hal-

lucination CNN. For that reason, to properly evaluate the

hallucination contribution we split the dataset into 6 folds.

We use five folds (1,030,758 pairs of patches) for training

and one fold (206,151 pairs) for testing.3 The folds are

not arbitrary, but follow the natural order of the numbering

scheme of the original dataset. We make sure that there is

no subject overlap between the training and testing dataset.

We implement the luminance and chroma hallucination

networks in the Caffe learning framework. We train the

three networks using ADAM optimization [20], with initial

learning rate 10−5, and the standard parameters β1 = 0.9,

β2 = 0.999, ε = 10−8. We observe it is enough to train the

networks for 10 epochs.

5.3. Cross-spectral Face Recognition Protocol

Our goal is to match a NIR probe face image with VIS

face images in the gallery. We consider three pre-trained

single-spectrum DNNs, VGG-S, VGG-face and COTS, as

black-boxes, and only modify their inputs (cross-spectral

hallucination) and/or outputs (low-rank embedding) for

cross-spectral face recognition. All three models expect

RGB inputs. When no VIS hallucination is used, we repli-

cate the single-channel NIR images from the CASIA NIR-

VIS 2.0 dataset into three channels to ensure compatibility.

When hallucination is used, we first apply the hallucination

CNN to the NIR images and then feed the hallucinated VIS

images to the single-spectrum DNN.

We generate deep features from the respective DNN

models, which are reduced to 1024 dimensions using PCA.

3Our data partition protocol is included in supplementary material, and

will be available to the public for reproducing our experimental results.

Accuracy (%)

VGG-S 75.04

VGG-S + Colorization [43] 76.14

VGG-S + Hallucination 80.65

VGG-S + Low-rank 89.88

VGG-S + Hallucination + Low-rank 95.72

VGG-face 72.54

VGG-face + Colorization [43] 82.45

VGG-face + Hallucination 83.10

VGG-face + Low-rank 82.26

VGG-face + Hallucination + Low-rank 91.01

COTS 83.84

COTS + Colorization [43] 90.18

COTS + Hallucination 93.02

COTS + Low-rank 91.83

COTS + Hallucination + Low-rank 96.41

Table 2. Cross-spectral rank-1 identification rate on CASIA NIR-

VIS 2.0 (see text for protocol). We evaluate three pre-trained

single-spectrum (VIS) DNN models: VGG-S, VGG-face, and

COTS. This experiment shows the effectiveness of cross-spectrally

hallucinating an NIR image input, or low-rank embedding the out-

put (universally for all the tested DNNs). When both schemes are

used together, we observe significant further improvements, e.g.,

75.04% to 95.72% for the VGG-S model. The proposed frame-

work gives state-of-the-art (96.41%) without touching at all the

VIS recognition system.

We then learn a 1024-by-1024 low-rank transform matrix to

align the two spectrums. Note that, for efficiency, the PCA

and low-rank transform matrices can be merged. We use

cosine similarity to perform the matching.

5.4. Results

We evaluate the performance gain introduced by cross-

spectral hallucination and the low-rank transform, and by

both techniques combined. As explained, our cross-spectral

hallucination CNN requires more training data than the one

available in the standard CASIA NIR-VIS 2.0 benchmark

training set, so we define a new splitting of that dataset into

6 folds. We use the same protocol for VIS hallucination

as for face recognition, i.e. five folds for training and one

fold for testing. There is no subject overlap between our

training and testing partitions. The evaluation is performed

on the testing partition, using VIS images as the gallery and

NIR images as the probe.

In Table 2 we report the rank-1 performance score of the

single-spectrum DNN, with and without hallucination and

with and without the low-rank embedding for the three face

models. The corresponding ROC curves are shown in Fig-

ure 7. The results show that it is often equally effective

to hallucinate a VIS image from the NIR input, or to low-

rank embed the output. Both schemes independently intro-

duce a significant gain in performance with respect to using

single-spectrum DNNs. When hallucination and low-rank
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Accuracy (%)

Jin et al. [17] 75.70 ± 2.50

Juefei-Xu et al. [18] 78.46 ± 1.67

Lu et al. [27] 81.80 ± 2.30

Saxena et al. [32] 85.90 ± 0.90

Yi et al. [39] 86.16 ± 0.98

Liu et al. [26] 95.74 ± 0.52

VGG-S 57.53 ± 2.31

VGG-face 66.97 ± 1.62

COTS 79.29 ± 1.54

VGG-S + Triplet 67.13 ± 3.01

VGG-face + Triplet 75.96 ± 2.90

COTS + Triplet 84.91 ± 3.32

VGG-S + Low-rank 82.07 ± 1.27

VGG-face + Low-rank 80.69 ± 1.02

COTS + Low-rank 89.59 ± 0.89

Table 3. Cross-spectral rank-1 identification rate on the 10-fold

CASIA NIR-VIS 2.0 benchmark. The evaluation protocol defined

in [24] is adopted. We evaluate three single-spectrum DNN mod-

els: VGG-S, VGG-face, and COTS. Single-spectrum DNNs per-

form significantly better for cross-spectral recognition by applying

the proposed low-rank embedding at the output (universally for all

the tested DNNs), which is a simple linear transform on the fea-

tures. The popular triplet embedding [38] shows inferior to low-

rank embedding for such a cross-spectrum task. Excluding [26],

we report the best result on this largest VIS-NIR face benchmark.

As discussed before, [26] tunes/adapts the network to the particu-

lar dataset, achieving results slightly below to those we report in

Table 2 for our full system; results we obtain without any need for

re-training and thereby showing the generalization power of the

approach, enjoying the advantages of both existing and potentially

new-coming VIS face recognition systems.

embedding are used together, we observe significant fur-

ther improvements, e.g., from 75.04% to 95.72% for VGG-

S. Using the COTS and the combination of hallucination

and low-rank embedding, the proposed framework yields a

state-of-the-art 96.41% rank-1 accuracy, without touching

at all the VIS pre-trained DNN and with virtually no addi-

tional computational cost. We include the result of apply-

ing a state-of-the-art colorization method [43] instead of the

proposed hallucination CNN. Note that [43] was trained on

perfectly aligned images (whereas ours is not, Section 3.2);

and it was trained for the grayscale to RGB visualization

task and not the NIR to RGB for recognition task.

For completeness, we also present our results using the

low-rank transform for the standard CASIA NIR-VIS 2.0

evaluation protocol in Table 3 (recall that the standard

protocol is not possible for the added hallucination step).

These results demonstrate that the low-rank embedding dra-

matically improves single-spectrum DNNs VIS-NIR rank-1

identification rate, 57.53% to 82.07% for VGG-S, 66.97%

to 80.69% for VGG-face, and 79.29% to 89.59% for

COTS. One of the most effective triplet embedding meth-

ods, LMNN [38], shows inferior performance to the pro-

posed low-rank embedding for this cross-spectrum task.

The results obtained by our full system (Table 2) and

our partial system (Table 3), indicate that the combination

of hallucination and low-rank embedding produce state-of-

the-art results on cross-spectral face recognition, without

having to adapt or fine-tune an existing deep VIS model.
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Figure 8. The impact of the blending parameter α in (1) on face

recognition. We evaluate three single-spectrum DNN models:

VGG-S, VGG-face, and COTS.

As discussed in Section 3.2, to preserve the details of the

original NIR, we blend the hallucinated luminance of the

CNN output with the original NIR image to remove possible

artifacts introduced by the CNN. Figure 8 shows the impact

of the blending parameter α in (1) on face recognition. The

parameter α ∈ [0, 1] balances the amount of information

retained from the NIR images and the information obtained

with the hallucination CNN. We usually observe the peak

recognition performance when α is around 0.6-0.7. With

α = 0.6 we also obtain a more natural-looking face; this is

the value used in Table 2 and Figure 5.

6. Conclusion

We proposed an approach to adapt a pre-trained state-

of-the-art DNN, which has seen only VIS face images, to

generate discriminative features for both VIS and NIR face

images, without retraining the DNN. Our approach con-

sists of two core components, cross-spectral hallucination

and low-rank embedding, to adapt DNN inputs and outputs

respectively for cross-spectral recognition. Cross-spectral

hallucination preprocesses the NIR image using a CNN that

performs a cross-spectral conversion of the NIR image into

the VIS spectrum. Low-rank embedding restores a low-rank

structure for cross-spectral features from the same subject,

while enforcing a maximally separated structure for differ-

ent subjects. We observe significant improvement in cross-

spectral face recognition with the proposed approach. This

new approach can be considered a new direction in the in-

tersection of transfer learning and joint embedding.
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