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Abstract

Action Unit (AU) detection becomes essential for fa-
cial analysis. Many proposed approaches face challenging
problems in dealing with the alignments of different face re-
gions, in the effective fusion of temporal information, and in
training a model for multiple AU labels. To better address
these problems, we propose a deep learning framework for
AU detection with region of interest (ROI) adaptation, inte-
grated multi-label learning, and optimal LSTM-based tem-
poral fusing. First, ROI cropping nets (ROI Nets) are de-
signed to make sure specifically interested regions of faces
are learned independently; each sub-region has a local con-
volutional neural network (CNN) - an ROI Net, whose con-
volutional filters will only be trained for the correspond-
ing region. Second, multi-label learning is employed to in-
tegrate the outputs of those individual ROI cropping nets,
which learns the inter-relationships of various AUs and ac-
quires global features across sub-regions for AU detection.
Finally, the optimal selection of multiple LSTM layers to
form the best LSTM Net is carried out to best fuse temporal
features, in order to make the AU prediction the most accu-
rate. The proposed approach is evaluated on two popular
AU detection datasets, BP4D and DISFA, outperforming the
state of the art significantly, with an average improvement
of around 13% on BP4D and 25% on DISFA, respectively.

1. Introduction

Action Units (AUs) are the basic facial movements that
work as the building blocks in formularizing multiple facial
expressions. The successful detection of AUs will greatly
facilitate the analysis of the complicated facial actions or
expressions. AU detection has been studied for decades
as one of the basic facial computing problems and many
interesting approaches have been proposed. Classical ap-
proaches in AU detection either focus on facial landmark-
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based local features or appearance-based global features. A
number of deep learning approaches have also been pro-
posed to learn deeper facial representations that result in
better AU detection.

However, some essential problems are still not solved
completely. Due to different features for different facial
components, individual AUs may need to be considered
separately. One image may include multiple AUs, therefore
whether training single AU or multi-label AUs has to be an-
alyzed. Since all actions appear in a temporal instead of
just static mode, fusing temporal information becomes nec-
essary. So, to achieve the best AU detection performance,
all the three aspects need to be considered.

Since CNNs have proved to be a powerful tool in solv-
ing many image-based tasks and several novel deep struc-
tures and frameworks have been proposed, we choose these
deep learning models to tackle the AU detection problems.
Recently, region-based processing is used in the fast/faster
RCNN for prediction of object’s bounding box or objec-
tiveness probability in [9, 19]. This inspired us to design
separate networks to learn features for different regions of
interest. The success in applying LSTM (long and short
term memory) in image caption generation [26] and human
action recognition [5, 18] led us to believe that it is a good
temporal information fusing kernel which may be also use-
ful for facial AU detection.

After identifying the three problems and being inspired
by these RCNN and LSTM approaches, we designed an
adaptive region cropping based multi-label learning deep
recurrent net. The structure of the proposed neural network
is shown in Figure 1. There are some unique features of
the proposed network. Unlike conventional CNNs where
the same convolutional filters are shared within the same
convolutional layers, we crop individual regions of inter-
est(ROIs) based on facial landmarks from all the feature
maps. The red circle, for instance, represents an area of in-
terest. So, these ROIs are learned individually and therefore
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Figure 1. Framework of the proposed neural network with VGG Net, ROI Nets and LSTM Net

important areas will be able to receive special attention. To
fuse the temporal information of expressions, the features
from the final fully connected layer are fed to several stacks
(two in the figure for illustration purpose only) of LSTM
layers. Then, the temporal features are used to predict all
AUs simultaneously. Through this structure, our network
can handle both the adaptive region learning and the tempo-
ral fusing problems.

Comparing to existing approaches, our approach has the
following unique contributions:

1) A set of adaptive ROI cropping nets (ROI Nets) is
designed to learn regional features separately. In the pro-
posed network, each ROI has a local convolutional neural
network. The convolutional filters will only be trained for
corresponding regions.

2)Multi-label learning is employed to integrate the out-
puts of those individual ROI cropping nets, which learns the
inter-relationships of various AUs and acquires global fea-
tures across sub-regions for AU detection. Multi-label and
single AU based methods are compared. With additional
AU correlations and richer global features, the multi-label
learning approach shows slightly better performance.

3) An LSTM-based temporal fusion recurrent net
(LSTM Net) is proposed to fuse static CNN features, which
makes the AU predictions more accurate than with static
images only.

This paper is organized as the follows. In Section 1, we
have introduced the problems in AU detection and the basic
idea of our proposed approach. In Section 2, we review the
related work on AU detection including both traditional and
deep learning approaches. We then explain our proposed
region learning based CNN network in Section 3. Section 4
describes the way the temporal information of the CNN fea-
tures is fused with the LSTM layers. Experimental results
are included in Section 5 where we evaluate our proposed
approach in terms of regions cropping, multi-label learning
and temporal fusion, and performance comparison against
baseline approaches are also given. We conclude the paper

in Section 6.

2. Related Work

AU detection has been studied for decades and sev-
eral approaches have been proposed for this problem. Fa-
cial key points (landmark points) play an important role in
AU detection. Two types of features were usually used in
landmark-based approaches. Landmark geometry features
were obtained by measuring the normalized facial landmark
distances and the angles of the Delaunay mask formed by
the landmark points. On the other hand, landmark texture
features were obtained by applying multiple orientation Ga-
bor filters to the original images. Many conventional ap-
proaches [6, 14, 27, 2,4, 29, 17, 25] were designed by
employing texture features near the facial key points. Val-
star et al. [24] analyzed Gabor wavelet features near 20
facial landmark points. The features were then selected and
classified by Adaboost and SVM classifiers. Since land-
mark geometry has been found robust in many AU detec-
tion methods, Fabian et al. [1] et al proposed an approach
for fusing the geometry and local texture information. Zhao
et al.[30] proposed the Joint Patch and Multi-label Learn-
ing (JPML) method for AU detection. Similarly, landmark-
based regions were selected and SIFT features were used
to represent the local patch. Overall, the conventional ap-
proaches focused on designing artificial features near facial
areas of interest. The appearance changes, representing the
motion of the landmark points, give an indication of the fa-
cial action units. In addition to facial AU detection, some
researchers have also focused on other related problems.
Song et al. [21] investigated the sparsity and co-occurrence
of action units. Wu et al.[28] explored the joint of action
unit detection and facial landmark localization and showed
that the constraints can improve both AU and landmark de-
tection. Girard et al.[8] analyzed the effect of different sizes
of training datasets on appearance and shape-based AU de-
tection. Gehrig et al.[7] tried to estimate action unit inten-
sities by employing linear partial least squares to regress
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intensities in AU related regions.

Over the last few years, we have witnessed that CNNs
boost the performance in many computer vision tasks.
Compared to most conventional artificially designed fea-
tures, CNNs can learn and reveal deeper information from
training images. Deep learning has also been employed for
AU detection [16]. Two pieces of the most recent work on
the use of deep learning for AU detection are noteworthy.
Zhao et al.[31] used a deep learning approach by dividing
the aligned face images into 8x8 blocks. These 64 sepa-
rate areas are then learned separately. However, although
this approach works well for each individual part of a face,
it highly relied on face alignment. Additionally, treating
all blocks equally may degrade the importance of some re-
gions. Chu et al. [3] proposed a hybrid approach for com-
bining CNN and LSTM to learn a better representation of
an AU sequence. Due to the fusion of both spatial CNN
and temporal features, the AU detection performance in this
work has improved significantly compared to existing ap-
proaches. However, the proposed network is a conventional
CNN, which is unable to extract local features from specific
regions. Jaiswal et al [12] proposed a dynamic appearance
and shape based deep learning approach. A shallow region
and shape mask CNN is employed to learn the static fea-
ture while LSTM is used to extract a dynamic feature from
the trained CNN model. In our work, we have designed a
CNN which can not only focus on different facial regions
independently but also fused the temporal features using re-
current networks.

3. Region of Interest Learning: ROI Nets

CNNs have recently been the most popular tool for im-
age understanding. In a classic CNN structure, a convolu-
tional layer is composed of multiple filters and activation
functions. The convolutional filters cover the entire image
and generate the feature map. In this manner, convolutional
filters are shared by all the regions of the feature maps. This
approach is effective in dealing with general image feature
detection, but for some tasks in which individual local re-
gions should be treated differently, sharing the same set of
filters for the entire image is not an effective approach. As
most traditional approaches tried to find local SIFT or Ga-
bor features near facial landmark points, we would like to
learn local CNN features in these regions of interest (ROIs).

We use the BP4D dataset for AU detection which in-
cludes 12 AUs. The index, name and corresponding mus-
cles of each AU are illustrated in Table 1 for all the 12 AUs.
The corresponding 2D positions of these AUs are shown in
Figure 2. We first use a landmark detection algorithm [13]
to find the facial landmark points (blue points in Figure 2
right). We choose the AU centers based on the positions of
the related muscles (Figure 2 left), which are adjusted from
face to face using the detected facial landmark points. Note

Table 1. Rules for defining AU centers

AU index Au Name Muscle name
1 Inner Brow Raiser Frontalis
2 Outer Brow Raiser Frontalis
4 Brow Lowerer Corrugator supercilii
6 Cheek Raiser Orbicularis oculi
7 Lid Tightener Orbicularis oculi
10 Upper Lip Raiser | Levator labii superioris
12 Lip Corner Puller Zygomaticus major
14 Dimpler Buccinator
15 Lip Corner Depressor Triangularis
17 Chin Raiser Mentalis
23 Lip Tightener Orbicularis oris
24 Lip Pressor Orbicularis oris

that some landmark points are not in the centers of facial
action muscle regions but they are close to them and can be
used to locate the muscles. In the end, the center of an AU
is either at a landmark point or a certain distance away from
a landmark point, as shown a pair of blue-to-green point in
the figure, and we used 20 landmark points in total.

Figure 2. ROI center selection based on muscles and landmarks on
one BP4D

Knowing the landmark positions, we can then design the
neural network cropping layers to form the ROI Nets. We
use VGG [20] as the base for our ROI Net due to its simple
structure and excellent performance in object classification.
We also choose the 12th convolutional layer as the feature
map for cropping. We finally crop the face into 20 ROIs for
separate AU learning. In other words, the 20 green points
in Figure 2 are regarded as ROI AU centers.

The corresponding positions of AU centers in the feature
map can be found based on the ratio of the original image
size (224 x224) and the feature map size (14 x 14). Based on
the 512 14 x 14 feature maps as well as the 20 AU centers,
we take a total of 20 sub-regions (centered at the selected
AU landmark centers), each of 512x3x3, as the input for
cropping layers to form the ROI-Nets, 20 in total. For each
individual region learning network, the input size of 3x3
might not be able to represent the region well. So, upsam-
pling layers are added to upscale to 6 x6 before the convo-
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lutional layers. The final adaptive region learning structure
is shown in the middle part of Figure 1. After local learning
with the ROI Nets, we use a fully connected feature vec-
tor to represent the local regional features. Then we can ei-
ther pair the symmetrical features for single AU detection or
concatenate all the fully connected features for multi-label
AU detection. We will conduct a further comparison on this
selection in Section 4.

By designing the ROI Nets, we can train separate filters
for the AUs. This may make the feature learning adaptive
to different local facial properties. Comparison of the ROI
learning and conventional CNN learning will be performed
in the evaluation section (Section 4).

4. Temporal Fusing: LSTM Net

A facial action always has a temporal component when
using a video sequence as the input, hence knowing the pre-
vious states of a facial expression can definitely improve the
AU detection. However, one of the limitations of the CNN
structure is the lack memory of previous states. Regular
CNN s are only able to process a single image at a time. To
deal with a sequence of images, C3D [23], which is basi-
cally a 3D version of CNN, has been proposed. C3D can
deal with sequential images but the number of input images
is fixed. The training of a C3D is very time-to consume too.
Another huge shortage of C3D is, compared to using regu-
lar CNN, the lack of existing pretrained models similar to
VGG [20], GoogleLeNet [22] and ResNet [ 1], which can
all provide very good initial parameters as a starting point
for training. The current best network for temporal fusion
is the Long Short Term Memory (LSTM) network [10].As
a recurrent net, it can memorize the previous features and
states, which can help current feature learning and estima-
tion. It also has gate structures to make it suitable for long
time and short time temporal feature learning. LSTM has
also proved to be effective in action recognition [ 8].
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Figure 3. Structure of a simple LSTM block.

The structure of an LSTM block is shown in Figure 3. In
the LSTM block, C;_1 and C} are the cell state parameters
at the previous and the current times, the long and short
memories are described by the cell state vector C;. The
cell states store the memory parameters in LSTM. At each
time step, an LSTM kernel will take the previous output

h;—1 and the new input z; to generate the new output hy
through gates, which is shown as yellows blocks in figure 3.
Meanwhile, the cell state gets updated. A new input feature
fed to a LSTM block will go through three steps. First,
the LSTM has to decide what information to obtain/forget
from the old cell state. This is based on the previous LSTM
output h;_; and new input feature x;. The forget vector f;
follows equation 1:

fi =Wy - [hy—1,x¢] + by) (D)

where Wy and by are the forget gate parameters. The next
step is to update the cell state for future use. The new cell
state C; is determined by two elements: previous partially
saved cell state C;_1, current LSTM input x; and previous
output h;_1. The last two vectors need to go through an
“input gate” and a tanh activation function. The updated
cell state can be obtained using equation 2:

Ct:ft*ct—1+it*ét ()

where ¢, is the merged input of ; and h;_; defined by equa-
tion 3,
ir = o(Wi - [hi—1, 4] + b;) 3)

where TW; and b; are the input gate parameters. C; in equa-
tion 2 is the candidate cell state for generating final cell state
and output which we can regard as a temporal cell state pa-
rameter, following equation 4:

Cy = tanh(W, - [hy_1, 4] + be) “4)

where W, and b, are the candidate gate parameter.

Finally, we generate the current output h; for the LSTM
based on the updated cell state Cy, the current input feature
x, and the previous output h;_1, which can be described by
equation 5:

ht = O'(Wo . [ht—ly Z‘t] + bo) . tanh(C’t) (5)

where W, and b, are the output gate parameters. Mean-
while, the output h; and the cell C; are passed to next time
output generation.

AU Labels
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Figure 4. Connection of CNN and LSTM (24 means number of
frames in a sequence)
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LSTM can be easily connected to CNNs. Fully con-
nected layers of a CNN can be directly fed into the input
of LSTM blocks. To better represent the fully connected
features, multiple LSTM kernels can act as a layer to repre-
sent temporal features. As shown in Figure 4, the CNN can
extract the image features as a 1-D vector. The first frame
of an image sequence at time ¢; is sent to the LSTM layer at
t1. The LSTM layer will produce output feature h, for the
first frame, then at time ¢5, a new frame is sent to the LSTM
layer and the new output feature is produced based on x5
and h1, so on so forth. Here we use h;(i = 1...n) to repre-
sent the ith LSTM feature; in Figure 4 n = 24. In different
tasks, either only the last LSTM feature h,, or the whole
LSTM features {h, ha, ...h,, } are used for final prediction.
In our case, we believe that all the frames can contribute to
the AU detection. Therefore, we use all the LSTM features;
in our experiments, the number of frames is 24.

LSTM can effectively fuse the temporal information in
a sequence. Similar to the convolutional layers, more than
one LSTM layers can be stacked to form an LSTM Net in
order to achieve a deeper understanding of the temporal re-
lationships. As shown in Figure 4, the LSTM Net has 2
LSTM layers stacked for AU detection. To see if LSTM is
useful in AU detection, we have conducted experiments to
compare LSTM-based temporal fusion versus static image
AU prediction. In order to find the best structure of LSTM,
we also compared different depth of LSTM layers in Sec-
tion 5.

5. Experimental Evaluation
5.1. Datasets and Metrics

Dataset. AU datasets are harder to obtain compared to
other tasks such as image classification. The reason is that
there are multiple AUs on one face which requires much
more manual labeling work. Here we give a brief review of
the AU datasets referred by and compared in this paper.

(1) DISFA: 26 human subjects are involved in the DISFA
dataset. The subjects are asked to watch videos while spon-
taneous facial expressions are obtained. The AUs are la-
beled with intensities from O to 5. We can obtain more than
100,000 AU-labeled images from the videos, but there are
much more inactive images than the active ones. The diver-
sity of people also makes it hard to train a robust model.

(2) BP4D: There are 23 female and 18 male young adults
involved in the BP4D dataset. Both 2D and 3D videos are
captured while the subjects show different facial expres-
sions. Each subject participates in 8 sessions of experi-
ments, so there are 328 videos captured in total. AUs are
labeled by watching the videos. The number of valid AU
frames in each video varies from several hundred to thou-
sands. There are around 140,000 images with AU labels
that we could use.

To train a deep learning model, we need a larger num-
ber of image samples, and the diversity of the samples is
also important. Following a common experimental setting
in the AU detection community, we choose BP4D to train
our model and conduct a 3-fold cross validation. We first
split the dataset into 3 folds based on subject IDs. Each time
two folds are used for training and the third fold for test-
ing. For the DISFA dataset, we use the trained model from
BP4D to directly extract the last fully connected layer fea-
ture with a length of 2048 to represent the images in DISFA.
We run the same cross-validation evaluation experiments as
the ones we performed with BP4D based on the extracted
features using BP4D.

Metrics. One part of our task is to detect if the AUs
are active or not, which is a multi-label binary classification
problem. For a binary classification task especially when
samples are not balanced, F1 score can better describe the
performance of the algorithm [25, 6]. In our evaluation,
we compute F1 scores for 12 AUs in BP4D and 8 AUs in
DISFA. F1 scores can be compared directly as an indica-
tor of the performance of different algorithms on each AU.
The overall performance of the algorithm is described by
the average F1 score.

5.2. Adaptive Learning vs. Conventional CNN

We proposed our ROI Nets for the adaptive region learn-
ing in Section 3. Compared to the conventional CNNs
which share the same set of convolutional filters for the
whole feature map, we hypothesize that by learning ROIs
separately, a better understanding of AUs can be achieved.
To validate this hypothesis, we train 2 neural networks on
the BP4D dataset: a fine-tuned VGG model - FVGG, and
the ROI Nets (on top of the basic VGG model). 12 AUs are
used together, so the loss function is based on the predicted
results for the 12 AUs. To prevent extreme loss explode
which will stop the training, we added offsets to the loss
function as shown by Equation 6, where [ is the label and p
is the generated probability for an AU.

p+0.05
1.05

1.05—-p

Loss = —%(1-1og( 108

)+(1=1)-log( ) (6)

The two models are both based on static images. During
each iteration, we randomly select 50 images as a batch to
compute the training loss. SGD is employed for back propa-
gation. The VGG net pretrained parameters are used for ini-
tializing the model, and the parameters of the first 8§ convo-
lutional layers are not updated during training. This makes
the set of parameters smaller, which helps the training al-
gorithm converge. We use the proposed structure (VGG
Net + ROI Nets) in Section 3 to train the adaptive region
learning mode - which we still call ROI Nets. The new de-
signed regional convolutional filters are initialized follow-
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ing a gaussian distribution. For the conventional fine-tuned
VGG (FVGQG) net, only the last prediction layer of the basic
VGG model is replaced with a fully-connected layer with
12 kernels. We use sigmoid activation functions for the 12
AU probability generators. The two deep models both start
with the same learning rate 0.001 which is decreased when
the loss is stable. Momentum for both models is set to 0.9.
The final models of both ROI Nets and FVGG are ob-
tained after training the deep net 20,000 times. We then
compare the F1 scores for each AU. The results are shown
in Figure 5. We can see that region learning with ROI Nets
yields significant improvement, on average by 12.4%.
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Figure 5. Comparison of FVGG and ROI-Nets in AU detection on
BP4D
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Figure 6. Comparison of single and multi-label learning on BP4D

5.3. Single vs. Multi-label AU Detection

In our proposed ROI Nets, the regions are determined
based on the positions where the AUs take place. Since each
AU has corresponding regions, we may use only the local
learned features to represent the AU for detection. This sin-
gle AU detection approach differs from the approach we use
for the adaptive region learning evaluation (Figure 1) where
we concatenate all the AUs features as one fused feature.
Our hypothesis is, by concatenating multiple AU features,
we may obtain valuable global information as a supplement
for individual AU detection or to provide more correlations.
However, it’s also possible that it brings some noise to the
“purity” of an AU feature. To validate our hypothesis, we
conduct an experiment to compare single AU detection and

multi-label AU detection. In multi-label AU detection, one
image is labeled with multiple AUs. In this case, we cannot
guarantee that we are able to provide the same number of
positive and negative samples for all AUs. But for single
AU detection, since the training for each AU is performed
separately, we can prepare the training data for each AU in
a way that the training data is always balanced during train-
ing. The AU detection results for single vs multiple AU
detection is shown in Figure 6.

By comparison, we can clearly see that even with equal
positive and negative sample distribution, the multi-label
AU detection slightly outperforms the single AU detection
approach in most AUs, on average by 1.3%. That implies
that the global information does have an important impact
on the fusion learning. We have some more interesting find-
ings if we look into the different AU detection results. For
the under-represented AUs (where the AU shows up less
frequently in the dataset), such as AU2, AU15, AU23, the
balancing of training samples (as in the single AU detection)
can boost the performance more significantly. Whereas for
some highly related AUs such as AU6 and AU12, both for
happy, the multi-label learning has a higher chance to learn
this correlation and improve the AU detection for these two
AUs.

5.4. Temporal vs. Static

A facial action always has a temporal component, hence
knowing the previous state of a facial expression can defi-
nitely improve the AU detection. We proposed the LSTM
layer for fusing the temporal information with static image
features. From our previous evaluations, the best perfor-
mance was obtained for static images with the ROI Nets. In
this experiment, we use the ROI model as a baseline to com-
pare with region cropping recurrent temporal model (noted
as R-T in figures and tables). Here, the LSTM layers are
used for fusing the static image features. 512 LSTM ker-
nels are employed to construct each LSTM layer. We then
utilize 24 frames as a sequence to represent the video. In
our data preparation, we follow the same framework as the
one we used to train the static image learning models. The
only difference is that to construct the image sequence, we
randomly find other 23 images prior to the selected image
from the same subject. This will create more non-repeatable
training data. Afterward, the sequence is fed into the train-
ing model. To find the best LSTM structure, we tried 1 (in
R-T1), 2 (in R-T2) and 3 (in R-T3) stacked LSTM layers
for AU detection, as demonstrated in Figure 4. The AU de-
tection results are shown in Figure 7.

From the results shown in Figure 7, we can clearly ob-
serve the improvement in AU detection due to applying the
LSTM layers. The average F1 score is also improved by
9.7% using R-T1 over ROI Nets. Another conclusion we
can make here is that with more LSTM layers, the perfor-
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Figure 7. Comparison of static image and temporal fusion in AU detection on BP4D

Table 2. F1 score on BP4D dataset (ROI: ROI Nets; R-Ti: ROI Nets + i-layer LSTM Net )

AU | LSVM | JPML[30] | DRML[31] | CPM[29] | CNN+LSTMI[3] | FVGG | ROI | R-T1 | R-T2 | FERA[12]
1 232 32.6 36.4 43.4 314 27.8 | 362 | 47.1 | 458 28
2 22.8 25.6 41.8 40.7 31.1 27.6 | 31.6 | 56.2 | 48.0 28
4 23.1 374 43.0 43.4 71.4 183 | 434 | 524 | 459 34
6 27.2 42.3 55.0 59.2 63.3 69.7 | 77.1 | 785 | 76.7 70
7 47.1 50.5 67.0 61.3 77.1 69.1 7377 | 80.8 | 79.6 78
10 77.2 72.2 66.3 62.1 45.0 78.1 85.0 | 87.8 | 853 81
12 63.7 74.1 65.8 68.5 82.6 63.2 | 87.0 | 894 | 87.2 78
14 64.3 65.7 54.1 52.5 72.9 364 | 626 | 748 | 71.6 75
15 18.4 38.1 36.7 34.0 332 26.1 | 4577 | 58.5 | 48.0 20
17 33.0 40.0 48.0 543 53.9 50.7 | 58.0 | 684 | 59.5 36
23 19.4 30.4 31.7 39.5 38.6 22.8 | 383 | 404 | 375 41
24 20.7 42.3 30.0 37.8 37.0 359 | 374 | 594 | 51.1 -

Avg | 353 459 48.3 50.0 53.2 438 | 564 | 66.1 | 61.4 51.7

Table 3. F1 score on DISFA dataset

AU [LSVM | APL[31]| DRML[31]|FVGG | ROI | R-T1
1 10.8 11.4 17.3 325 |415| 42.6
2 10.0 12.0 17.7 243 264 27.2
4 | 21.8 30.1 374 61.0 |66.4| 65.5
6 15.7 12.4 29.0 342 |50.7| 55.5
9 11.5 10.1 10.7 1.67 | 8.5 | 22.8
12 | 70.4 65.9 37.7 72.1 [89.3| 82.9
25 | 12.0 214 385 87.3 |88.9| 88.3
26 | 22.1 26.9 20.1 7.1 |15.6| 25.9
Avg| 21.8 23.8 26.7 40.2 |48.5] 51.3

mance decreases, as the ROI features are sufficient to repre-
sent the AU images and one LSTM layer is enough to reveal
the temporal corrections.

5.5. Performanc Comparison

By observing the results of our previous experiments, we
can clearly see that the ROI Nets can learn more powerful
local AU features that would result in better AU detection

compared to conventional CNNs. The performance was
similar to single AU detection and multi-label AU detection,
but the multi-label detection approach shows slightly bet-
ter overall performance due to the strong correlation among
AUs and richer global information. In the static/temporal
exploration experiment, we witnessed that the LSTM Net
with one LSTM layer boosts the AU detection accuracy by a
9.7% average F1 improvement, which implies that the tem-
poral context information plays a very important role in de-
tecting facial actions.

To compare our approaches with another state of the art
methods, we have collected the F1 measures of the most
popular methods in same 3-fold settings based on BP4D in
Table 2. The approaches includes a traditional SVM-based
method, a 2-D landmark feature based approach, JPML
[30], the Confidence Preserving Machine (CPM) [29], a
block-based region learning static CNN, DRML [31], and a
recurrent net fusing LSTM with simple CNN, CNN+LSTM
[3]. For our proposed approaches, we first use the FVGG as
the baseline approach. Then we show the results of adap-
tive ROI Nets based on static images. Finally, we test our
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ROI Nets + our LSTM based recurrent approach with one
and two LSTM layers (RC+T1, RC+T2). All the results
can be seen in Table 2. On average, our best model R-
T1 achieves a 12.9% improvement compared to the state
of the art approach. Across the 12 AUs, our R-T1 model
outperforms the best in the literature except for AU4, where
CNN+LSTM performs the best.

To further explore the capabilities of our proposed ap-
proach, we run the comparison on DISFA dataset as well.
Not as popular as BP4D, a fewer state of the art approaches
report their results on DISFA. We use the BP4D trained
model to extract features from all the images in DISFA and
conduct a 3-fold cross evaluation with the extracted fea-
tures. For static image evaluation, we directly run a multi-
label linear regression and for temporal evaluation, we use
the structure that shows the best performance in the BP4D
evaluation, that is, a one layer LSTM to train the DISFA
temporal model. The results are shown in Table 3. As we
can see, our R-T1 model leads to a 25% improvement over
the state of the art model.

From the results in Tables 2 and 3, our proposed ap-
proaches have the best performance in both static and se-
quence image based AU detection. In the static images
based AU detection using deep learning, our ROI Nets
outperforms the state of the art deep learning approach,
DRML. Our proposed adaptive region cropping method
shares the same idea of learning different sets of convolu-
tional filters for different sub-regions, but our method has
the following advantages that make it different from the
state of the art:

1) Our sub-region selection is adaptive. DRML used a
straightforward image dividing strategy. Assuming the fa-
cial images are aligned, each image is equally divided into
8x8=64 sub-regions. This framework in easy to implement,
but we need to make sure that the face images are actually
aligned in the first place. In order to assure this precondi-
tion, all the faces need to be transformed to a neutral shape.
This may cause information loss since the faces of differ-
ent individuals may have different shapes or sizes. In addi-
tion, if the original faces are not in a frontal pose, we may
also lose some appearance features after changing the pose.
On the contrary, we select the regions of interest adaptively.
Our approach works based on the detected landmarks and
the positions of facial action muscles, which are biologi-
cally meaningful. Also note that our approach is robust to
landmark position errors. This is because the feature maps
in our network go through several pooling layers. Imagine
that the position detection error in the original image of size
224224 is 10 pixel. With the pooling layer for cropping
the feature map being of size 14x 14, the error turns to be
less than 1 pixel. This significantly improves our proposed
adaptive region cropping net.

2) A very deep pretrained network (VGG) is used as the

base. DRML creates a shallow convolutional network for
the region based AU detection. Instead of training every-
thing from scratch, we choose to borrow parameters from
an existing very deep CNN model. The main advantage of
this approach is that the pretrained model has been trained
with millions of images. Although the tasks are different,
the parameters are transferable. With the pretrained model
as the starting point of our AU detection training, we can
achieve a more powerful model than by training a shallow
neural network.

In sequential image based AU detection, Chu et al. [23]
designed a network by combining both CNN and LSTM.
To obtain the spatiotemporal fusion features, the last layer
features of the CNN and LSTM nets are concatenated. Dif-
ferent from their use of AlexNet for static image feature
extraction, we have proposed the adaptive region cropping
convolutional net. We use LSTM to fuse the temporal deep
features as well, but we have also compared different layers
of LSTM and noticed that one layer LSTM shows the best
performance.

6. Conclusion

In this paper, we looked into three essential prob-
lems, the region adaption learning, temporal fusion and
single/multi-label AU learning, in AU detection and pro-
posed a novel approach to address these problems. We
first proposed an adaptive region of interest cropping net,
which compared to conventional CNN, proves to be able to
learn separate filters for different regions and can improve
the accuracy of AU detection. We then analyzed the pro-
posed model by training it in a multi-label AU detection
manner and showed that the new model can outperform a
single AU detection model. We finally explored the LSTM-
based temporal fusion approach, which boosted the AU de-
tection performance significantly compared to static image-
based approaches. We also tried to find an optimal structure
of LSTM layers to connect with the proposed ROI nets to
achieve the best results for AU detection. The proposed ap-
proach is evaluated on two popular AU detection datasets,
BP4D and DISFA, outperforming the state of the art signif-
icantly, with an average improvement of around 13% and
25% on BP4D and DISFA respectively. Our future work
will be focused on building a dataset-independent AU de-
tection model and applying it to facial action detection in
real world applications.
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