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Abstract

Action Unit (AU) detection becomes essential for fa-

cial analysis. Many proposed approaches face challenging

problems in dealing with the alignments of different face re-

gions, in the effective fusion of temporal information, and in

training a model for multiple AU labels. To better address

these problems, we propose a deep learning framework for

AU detection with region of interest (ROI) adaptation, inte-

grated multi-label learning, and optimal LSTM-based tem-

poral fusing. First, ROI cropping nets (ROI Nets) are de-

signed to make sure specifically interested regions of faces

are learned independently; each sub-region has a local con-

volutional neural network (CNN) - an ROI Net, whose con-

volutional filters will only be trained for the correspond-

ing region. Second, multi-label learning is employed to in-

tegrate the outputs of those individual ROI cropping nets,

which learns the inter-relationships of various AUs and ac-

quires global features across sub-regions for AU detection.

Finally, the optimal selection of multiple LSTM layers to

form the best LSTM Net is carried out to best fuse temporal

features, in order to make the AU prediction the most accu-

rate. The proposed approach is evaluated on two popular

AU detection datasets, BP4D and DISFA, outperforming the

state of the art significantly, with an average improvement

of around 13% on BP4D and 25% on DISFA, respectively.

1. Introduction

Action Units (AUs) are the basic facial movements that

work as the building blocks in formularizing multiple facial

expressions. The successful detection of AUs will greatly

facilitate the analysis of the complicated facial actions or

expressions. AU detection has been studied for decades

as one of the basic facial computing problems and many

interesting approaches have been proposed. Classical ap-

proaches in AU detection either focus on facial landmark-

based local features or appearance-based global features. A

number of deep learning approaches have also been pro-

posed to learn deeper facial representations that result in

better AU detection.

However, some essential problems are still not solved

completely. Due to different features for different facial

components, individual AUs may need to be considered

separately. One image may include multiple AUs, therefore

whether training single AU or multi-label AUs has to be an-

alyzed. Since all actions appear in a temporal instead of

just static mode, fusing temporal information becomes nec-

essary. So, to achieve the best AU detection performance,

all the three aspects need to be considered.

Since CNNs have proved to be a powerful tool in solv-

ing many image-based tasks and several novel deep struc-

tures and frameworks have been proposed, we choose these

deep learning models to tackle the AU detection problems.

Recently, region-based processing is used in the fast/faster

RCNN for prediction of object’s bounding box or objec-

tiveness probability in [9, 19]. This inspired us to design

separate networks to learn features for different regions of

interest. The success in applying LSTM (long and short

term memory) in image caption generation [26] and human

action recognition [5, 18] led us to believe that it is a good

temporal information fusing kernel which may be also use-

ful for facial AU detection.

After identifying the three problems and being inspired

by these RCNN and LSTM approaches, we designed an

adaptive region cropping based multi-label learning deep

recurrent net. The structure of the proposed neural network

is shown in Figure 1. There are some unique features of

the proposed network. Unlike conventional CNNs where

the same convolutional filters are shared within the same

convolutional layers, we crop individual regions of inter-

est(ROIs) based on facial landmarks from all the feature

maps. The red circle, for instance, represents an area of in-

terest. So, these ROIs are learned individually and therefore

11841



Figure 1. Framework of the proposed neural network with VGG Net, ROI Nets and LSTM Net

important areas will be able to receive special attention. To

fuse the temporal information of expressions, the features

from the final fully connected layer are fed to several stacks

(two in the figure for illustration purpose only) of LSTM

layers. Then, the temporal features are used to predict all

AUs simultaneously. Through this structure, our network

can handle both the adaptive region learning and the tempo-

ral fusing problems.

Comparing to existing approaches, our approach has the

following unique contributions:

1) A set of adaptive ROI cropping nets (ROI Nets) is

designed to learn regional features separately. In the pro-

posed network, each ROI has a local convolutional neural

network. The convolutional filters will only be trained for

corresponding regions.

2)Multi-label learning is employed to integrate the out-

puts of those individual ROI cropping nets, which learns the

inter-relationships of various AUs and acquires global fea-

tures across sub-regions for AU detection. Multi-label and

single AU based methods are compared. With additional

AU correlations and richer global features, the multi-label

learning approach shows slightly better performance.

3) An LSTM-based temporal fusion recurrent net

(LSTM Net) is proposed to fuse static CNN features, which

makes the AU predictions more accurate than with static

images only.

This paper is organized as the follows. In Section 1, we

have introduced the problems in AU detection and the basic

idea of our proposed approach. In Section 2, we review the

related work on AU detection including both traditional and

deep learning approaches. We then explain our proposed

region learning based CNN network in Section 3. Section 4

describes the way the temporal information of the CNN fea-

tures is fused with the LSTM layers. Experimental results

are included in Section 5 where we evaluate our proposed

approach in terms of regions cropping, multi-label learning

and temporal fusion, and performance comparison against

baseline approaches are also given. We conclude the paper

in Section 6.

2. Related Work

AU detection has been studied for decades and sev-

eral approaches have been proposed for this problem. Fa-

cial key points (landmark points) play an important role in

AU detection. Two types of features were usually used in

landmark-based approaches. Landmark geometry features

were obtained by measuring the normalized facial landmark

distances and the angles of the Delaunay mask formed by

the landmark points. On the other hand, landmark texture

features were obtained by applying multiple orientation Ga-

bor filters to the original images. Many conventional ap-

proaches [6, 14, 27, 2, 4, 29, 17, 25] were designed by

employing texture features near the facial key points. Val-

star et al. [24] analyzed Gabor wavelet features near 20

facial landmark points. The features were then selected and

classified by Adaboost and SVM classifiers. Since land-

mark geometry has been found robust in many AU detec-

tion methods, Fabian et al. [1] et al proposed an approach

for fusing the geometry and local texture information. Zhao

et al.[30] proposed the Joint Patch and Multi-label Learn-

ing (JPML) method for AU detection. Similarly, landmark-

based regions were selected and SIFT features were used

to represent the local patch. Overall, the conventional ap-

proaches focused on designing artificial features near facial

areas of interest. The appearance changes, representing the

motion of the landmark points, give an indication of the fa-

cial action units. In addition to facial AU detection, some

researchers have also focused on other related problems.

Song et al. [21] investigated the sparsity and co-occurrence

of action units. Wu et al.[28] explored the joint of action

unit detection and facial landmark localization and showed

that the constraints can improve both AU and landmark de-

tection. Girard et al.[8] analyzed the effect of different sizes

of training datasets on appearance and shape-based AU de-

tection. Gehrig et al.[7] tried to estimate action unit inten-

sities by employing linear partial least squares to regress
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intensities in AU related regions.

Over the last few years, we have witnessed that CNNs

boost the performance in many computer vision tasks.

Compared to most conventional artificially designed fea-

tures, CNNs can learn and reveal deeper information from

training images. Deep learning has also been employed for

AU detection [16]. Two pieces of the most recent work on

the use of deep learning for AU detection are noteworthy.

Zhao et al.[31] used a deep learning approach by dividing

the aligned face images into 8x8 blocks. These 64 sepa-

rate areas are then learned separately. However, although

this approach works well for each individual part of a face,

it highly relied on face alignment. Additionally, treating

all blocks equally may degrade the importance of some re-

gions. Chu et al. [3] proposed a hybrid approach for com-

bining CNN and LSTM to learn a better representation of

an AU sequence. Due to the fusion of both spatial CNN

and temporal features, the AU detection performance in this

work has improved significantly compared to existing ap-

proaches. However, the proposed network is a conventional

CNN, which is unable to extract local features from specific

regions. Jaiswal et al [12] proposed a dynamic appearance

and shape based deep learning approach. A shallow region

and shape mask CNN is employed to learn the static fea-

ture while LSTM is used to extract a dynamic feature from

the trained CNN model. In our work, we have designed a

CNN which can not only focus on different facial regions

independently but also fused the temporal features using re-

current networks.

3. Region of Interest Learning: ROI Nets

CNNs have recently been the most popular tool for im-

age understanding. In a classic CNN structure, a convolu-

tional layer is composed of multiple filters and activation

functions. The convolutional filters cover the entire image

and generate the feature map. In this manner, convolutional

filters are shared by all the regions of the feature maps. This

approach is effective in dealing with general image feature

detection, but for some tasks in which individual local re-

gions should be treated differently, sharing the same set of

filters for the entire image is not an effective approach. As

most traditional approaches tried to find local SIFT or Ga-

bor features near facial landmark points, we would like to

learn local CNN features in these regions of interest (ROIs).

We use the BP4D dataset for AU detection which in-

cludes 12 AUs. The index, name and corresponding mus-

cles of each AU are illustrated in Table 1 for all the 12 AUs.

The corresponding 2D positions of these AUs are shown in

Figure 2. We first use a landmark detection algorithm [13]

to find the facial landmark points (blue points in Figure 2

right). We choose the AU centers based on the positions of

the related muscles (Figure 2 left), which are adjusted from

face to face using the detected facial landmark points. Note

Table 1. Rules for defining AU centers

AU index Au Name Muscle name

1 Inner Brow Raiser Frontalis

2 Outer Brow Raiser Frontalis

4 Brow Lowerer Corrugator supercilii

6 Cheek Raiser Orbicularis oculi

7 Lid Tightener Orbicularis oculi

10 Upper Lip Raiser Levator labii superioris

12 Lip Corner Puller Zygomaticus major

14 Dimpler Buccinator

15 Lip Corner Depressor Triangularis

17 Chin Raiser Mentalis

23 Lip Tightener Orbicularis oris

24 Lip Pressor Orbicularis oris

that some landmark points are not in the centers of facial

action muscle regions but they are close to them and can be

used to locate the muscles. In the end, the center of an AU

is either at a landmark point or a certain distance away from

a landmark point, as shown a pair of blue-to-green point in

the figure, and we used 20 landmark points in total.

Figure 2. ROI center selection based on muscles and landmarks on

one BP4D

Knowing the landmark positions, we can then design the

neural network cropping layers to form the ROI Nets. We

use VGG [20] as the base for our ROI Net due to its simple

structure and excellent performance in object classification.

We also choose the 12th convolutional layer as the feature

map for cropping. We finally crop the face into 20 ROIs for

separate AU learning. In other words, the 20 green points

in Figure 2 are regarded as ROI AU centers.

The corresponding positions of AU centers in the feature

map can be found based on the ratio of the original image

size (224×224) and the feature map size (14×14). Based on

the 512×14×14 feature maps as well as the 20 AU centers,

we take a total of 20 sub-regions (centered at the selected

AU landmark centers), each of 512×3×3, as the input for

cropping layers to form the ROI-Nets, 20 in total. For each

individual region learning network, the input size of 3×3

might not be able to represent the region well. So, upsam-

pling layers are added to upscale to 6×6 before the convo-
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lutional layers. The final adaptive region learning structure

is shown in the middle part of Figure 1. After local learning

with the ROI Nets, we use a fully connected feature vec-

tor to represent the local regional features. Then we can ei-

ther pair the symmetrical features for single AU detection or

concatenate all the fully connected features for multi-label

AU detection. We will conduct a further comparison on this

selection in Section 4.

By designing the ROI Nets, we can train separate filters

for the AUs. This may make the feature learning adaptive

to different local facial properties. Comparison of the ROI

learning and conventional CNN learning will be performed

in the evaluation section (Section 4).

4. Temporal Fusing: LSTM Net

A facial action always has a temporal component when

using a video sequence as the input, hence knowing the pre-

vious states of a facial expression can definitely improve the

AU detection. However, one of the limitations of the CNN

structure is the lack memory of previous states. Regular

CNNs are only able to process a single image at a time. To

deal with a sequence of images, C3D [23], which is basi-

cally a 3D version of CNN, has been proposed. C3D can

deal with sequential images but the number of input images

is fixed. The training of a C3D is very time-to consume too.

Another huge shortage of C3D is, compared to using regu-

lar CNN, the lack of existing pretrained models similar to

VGG [20], GoogleLeNet [22] and ResNet [11], which can

all provide very good initial parameters as a starting point

for training. The current best network for temporal fusion

is the Long Short Term Memory (LSTM) network [10].As

a recurrent net, it can memorize the previous features and

states, which can help current feature learning and estima-

tion. It also has gate structures to make it suitable for long

time and short time temporal feature learning. LSTM has

also proved to be effective in action recognition [18].

Figure 3. Structure of a simple LSTM block.

The structure of an LSTM block is shown in Figure 3. In

the LSTM block, Ct−1 and Ct are the cell state parameters

at the previous and the current times, the long and short

memories are described by the cell state vector Ct. The

cell states store the memory parameters in LSTM. At each

time step, an LSTM kernel will take the previous output

ht−1 and the new input xt to generate the new output ht

through gates, which is shown as yellows blocks in figure 3.

Meanwhile, the cell state gets updated. A new input feature

fed to a LSTM block will go through three steps. First,

the LSTM has to decide what information to obtain/forget

from the old cell state. This is based on the previous LSTM

output ht−1 and new input feature xt. The forget vector ft
follows equation 1:

ft = σ(Wf · [ht−1, xt] + bf ) (1)

where Wf and bf are the forget gate parameters. The next

step is to update the cell state for future use. The new cell

state Ct is determined by two elements: previous partially

saved cell state Ct−1, current LSTM input xt and previous

output ht−1. The last two vectors need to go through an

“input gate” and a tanh activation function. The updated

cell state can be obtained using equation 2:

Ct = ft ∗ Ct−1 + it ∗ Čt (2)

where it is the merged input of xt and ht−1 defined by equa-

tion 3,

it = σ(Wi · [ht−1, xt] + bi) (3)

where Wi and bi are the input gate parameters. Čt in equa-

tion 2 is the candidate cell state for generating final cell state

and output which we can regard as a temporal cell state pa-

rameter, following equation 4:

Čt = tanh(Wc · [ht−1, xt] + bc) (4)

where Wc and bc are the candidate gate parameter.

Finally, we generate the current output ht for the LSTM

based on the updated cell state Ct, the current input feature

xt and the previous output ht−1, which can be described by

equation 5:

ht = σ(Wo · [ht−1, xt] + bo) · tanh(Ct) (5)

where Wo and bo are the output gate parameters. Mean-

while, the output ht and the cell Ct are passed to next time

output generation.

Figure 4. Connection of CNN and LSTM (24 means number of

frames in a sequence)
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LSTM can be easily connected to CNNs. Fully con-

nected layers of a CNN can be directly fed into the input

of LSTM blocks. To better represent the fully connected

features, multiple LSTM kernels can act as a layer to repre-

sent temporal features. As shown in Figure 4, the CNN can

extract the image features as a 1-D vector. The first frame

of an image sequence at time t1 is sent to the LSTM layer at

t1. The LSTM layer will produce output feature h1 for the

first frame, then at time t2, a new frame is sent to the LSTM

layer and the new output feature is produced based on x2

and h1, so on so forth. Here we use hi(i = 1...n) to repre-

sent the ith LSTM feature; in Figure 4 n = 24. In different

tasks, either only the last LSTM feature hn or the whole

LSTM features {h1, h2, ...hn} are used for final prediction.

In our case, we believe that all the frames can contribute to

the AU detection. Therefore, we use all the LSTM features;

in our experiments, the number of frames is 24.

LSTM can effectively fuse the temporal information in

a sequence. Similar to the convolutional layers, more than

one LSTM layers can be stacked to form an LSTM Net in

order to achieve a deeper understanding of the temporal re-

lationships. As shown in Figure 4, the LSTM Net has 2

LSTM layers stacked for AU detection. To see if LSTM is

useful in AU detection, we have conducted experiments to

compare LSTM-based temporal fusion versus static image

AU prediction. In order to find the best structure of LSTM,

we also compared different depth of LSTM layers in Sec-

tion 5.

5. Experimental Evaluation

5.1. Datasets and Metrics

Dataset. AU datasets are harder to obtain compared to

other tasks such as image classification. The reason is that

there are multiple AUs on one face which requires much

more manual labeling work. Here we give a brief review of

the AU datasets referred by and compared in this paper.

(1) DISFA: 26 human subjects are involved in the DISFA

dataset. The subjects are asked to watch videos while spon-

taneous facial expressions are obtained. The AUs are la-

beled with intensities from 0 to 5. We can obtain more than

100,000 AU-labeled images from the videos, but there are

much more inactive images than the active ones. The diver-

sity of people also makes it hard to train a robust model.

(2) BP4D: There are 23 female and 18 male young adults

involved in the BP4D dataset. Both 2D and 3D videos are

captured while the subjects show different facial expres-

sions. Each subject participates in 8 sessions of experi-

ments, so there are 328 videos captured in total. AUs are

labeled by watching the videos. The number of valid AU

frames in each video varies from several hundred to thou-

sands. There are around 140,000 images with AU labels

that we could use.

To train a deep learning model, we need a larger num-

ber of image samples, and the diversity of the samples is

also important. Following a common experimental setting

in the AU detection community, we choose BP4D to train

our model and conduct a 3-fold cross validation. We first

split the dataset into 3 folds based on subject IDs. Each time

two folds are used for training and the third fold for test-

ing. For the DISFA dataset, we use the trained model from

BP4D to directly extract the last fully connected layer fea-

ture with a length of 2048 to represent the images in DISFA.

We run the same cross-validation evaluation experiments as

the ones we performed with BP4D based on the extracted

features using BP4D.

Metrics. One part of our task is to detect if the AUs

are active or not, which is a multi-label binary classification

problem. For a binary classification task especially when

samples are not balanced, F1 score can better describe the

performance of the algorithm [25, 6]. In our evaluation,

we compute F1 scores for 12 AUs in BP4D and 8 AUs in

DISFA. F1 scores can be compared directly as an indica-

tor of the performance of different algorithms on each AU.

The overall performance of the algorithm is described by

the average F1 score.

5.2. Adaptive Learning vs. Conventional CNN

We proposed our ROI Nets for the adaptive region learn-

ing in Section 3. Compared to the conventional CNNs

which share the same set of convolutional filters for the

whole feature map, we hypothesize that by learning ROIs

separately, a better understanding of AUs can be achieved.

To validate this hypothesis, we train 2 neural networks on

the BP4D dataset: a fine-tuned VGG model - FVGG, and

the ROI Nets (on top of the basic VGG model). 12 AUs are

used together, so the loss function is based on the predicted

results for the 12 AUs. To prevent extreme loss explode

which will stop the training, we added offsets to the loss

function as shown by Equation 6, where l is the label and p

is the generated probability for an AU.

Loss = −Σ(l·log(
p+ 0.05

1.05
)+(1−l)·log(

1.05− p

1.05
)) (6)

The two models are both based on static images. During

each iteration, we randomly select 50 images as a batch to

compute the training loss. SGD is employed for back propa-

gation. The VGG net pretrained parameters are used for ini-

tializing the model, and the parameters of the first 8 convo-

lutional layers are not updated during training. This makes

the set of parameters smaller, which helps the training al-

gorithm converge. We use the proposed structure (VGG

Net + ROI Nets) in Section 3 to train the adaptive region

learning mode - which we still call ROI Nets. The new de-

signed regional convolutional filters are initialized follow-
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ing a gaussian distribution. For the conventional fine-tuned

VGG (FVGG) net, only the last prediction layer of the basic

VGG model is replaced with a fully-connected layer with

12 kernels. We use sigmoid activation functions for the 12

AU probability generators. The two deep models both start

with the same learning rate 0.001 which is decreased when

the loss is stable. Momentum for both models is set to 0.9.

The final models of both ROI Nets and FVGG are ob-

tained after training the deep net 20,000 times. We then

compare the F1 scores for each AU. The results are shown

in Figure 5. We can see that region learning with ROI Nets

yields significant improvement, on average by 12.4%.

Figure 5. Comparison of FVGG and ROI-Nets in AU detection on

BP4D

Figure 6. Comparison of single and multi-label learning on BP4D

5.3. Single vs. Multi­label AU Detection

In our proposed ROI Nets, the regions are determined

based on the positions where the AUs take place. Since each

AU has corresponding regions, we may use only the local

learned features to represent the AU for detection. This sin-

gle AU detection approach differs from the approach we use

for the adaptive region learning evaluation (Figure 1) where

we concatenate all the AUs features as one fused feature.

Our hypothesis is, by concatenating multiple AU features,

we may obtain valuable global information as a supplement

for individual AU detection or to provide more correlations.

However, it’s also possible that it brings some noise to the

“purity” of an AU feature. To validate our hypothesis, we

conduct an experiment to compare single AU detection and

multi-label AU detection. In multi-label AU detection, one

image is labeled with multiple AUs. In this case, we cannot

guarantee that we are able to provide the same number of

positive and negative samples for all AUs. But for single

AU detection, since the training for each AU is performed

separately, we can prepare the training data for each AU in

a way that the training data is always balanced during train-

ing. The AU detection results for single vs multiple AU

detection is shown in Figure 6.

By comparison, we can clearly see that even with equal

positive and negative sample distribution, the multi-label

AU detection slightly outperforms the single AU detection

approach in most AUs, on average by 1.3%. That implies

that the global information does have an important impact

on the fusion learning. We have some more interesting find-

ings if we look into the different AU detection results. For

the under-represented AUs (where the AU shows up less

frequently in the dataset), such as AU2, AU15, AU23, the

balancing of training samples (as in the single AU detection)

can boost the performance more significantly. Whereas for

some highly related AUs such as AU6 and AU12, both for

happy, the multi-label learning has a higher chance to learn

this correlation and improve the AU detection for these two

AUs.

5.4. Temporal vs. Static

A facial action always has a temporal component, hence

knowing the previous state of a facial expression can defi-

nitely improve the AU detection. We proposed the LSTM

layer for fusing the temporal information with static image

features. From our previous evaluations, the best perfor-

mance was obtained for static images with the ROI Nets. In

this experiment, we use the ROI model as a baseline to com-

pare with region cropping recurrent temporal model (noted

as R-T in figures and tables). Here, the LSTM layers are

used for fusing the static image features. 512 LSTM ker-

nels are employed to construct each LSTM layer. We then

utilize 24 frames as a sequence to represent the video. In

our data preparation, we follow the same framework as the

one we used to train the static image learning models. The

only difference is that to construct the image sequence, we

randomly find other 23 images prior to the selected image

from the same subject. This will create more non-repeatable

training data. Afterward, the sequence is fed into the train-

ing model. To find the best LSTM structure, we tried 1 (in

R-T1), 2 (in R-T2) and 3 (in R-T3) stacked LSTM layers

for AU detection, as demonstrated in Figure 4. The AU de-

tection results are shown in Figure 7.

From the results shown in Figure 7, we can clearly ob-

serve the improvement in AU detection due to applying the

LSTM layers. The average F1 score is also improved by

9.7% using R-T1 over ROI Nets. Another conclusion we

can make here is that with more LSTM layers, the perfor-
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Figure 7. Comparison of static image and temporal fusion in AU detection on BP4D

Table 2. F1 score on BP4D dataset (ROI: ROI Nets; R-Ti: ROI Nets + i-layer LSTM Net )

AU LSVM JPML[30] DRML[31] CPM[29] CNN+LSTM[3] FVGG ROI R-T1 R-T2 FERA[12]

1 23.2 32.6 36.4 43.4 31.4 27.8 36.2 47.1 45.8 28

2 22.8 25.6 41.8 40.7 31.1 27.6 31.6 56.2 48.0 28

4 23.1 37.4 43.0 43.4 71.4 18.3 43.4 52.4 45.9 34

6 27.2 42.3 55.0 59.2 63.3 69.7 77.1 78.5 76.7 70

7 47.1 50.5 67.0 61.3 77.1 69.1 73.7 80.8 79.6 78

10 77.2 72.2 66.3 62.1 45.0 78.1 85.0 87.8 85.3 81

12 63.7 74.1 65.8 68.5 82.6 63.2 87.0 89.4 87.2 78

14 64.3 65.7 54.1 52.5 72.9 36.4 62.6 74.8 71.6 75

15 18.4 38.1 36.7 34.0 33.2 26.1 45.7 58.5 48.0 20

17 33.0 40.0 48.0 54.3 53.9 50.7 58.0 68.4 59.5 36

23 19.4 30.4 31.7 39.5 38.6 22.8 38.3 40.4 37.5 41

24 20.7 42.3 30.0 37.8 37.0 35.9 37.4 59.4 51.1 -

Avg 35.3 45.9 48.3 50.0 53.2 43.8 56.4 66.1 61.4 51.7

Table 3. F1 score on DISFA dataset
AU LSVM APL[31] DRML[31] FVGG ROI R-T1

1 10.8 11.4 17.3 32.5 41.5 42.6

2 10.0 12.0 17.7 24.3 26.4 27.2

4 21.8 30.1 37.4 61.0 66.4 65.5

6 15.7 12.4 29.0 34.2 50.7 55.5

9 11.5 10.1 10.7 1.67 8.5 22.8

12 70.4 65.9 37.7 72.1 89.3 82.9

25 12.0 21.4 38.5 87.3 88.9 88.3

26 22.1 26.9 20.1 7.1 15.6 25.9

Avg 21.8 23.8 26.7 40.2 48.5 51.3

mance decreases, as the ROI features are sufficient to repre-

sent the AU images and one LSTM layer is enough to reveal

the temporal corrections.

5.5. Performanc Comparison

By observing the results of our previous experiments, we

can clearly see that the ROI Nets can learn more powerful

local AU features that would result in better AU detection

compared to conventional CNNs. The performance was

similar to single AU detection and multi-label AU detection,

but the multi-label detection approach shows slightly bet-

ter overall performance due to the strong correlation among

AUs and richer global information. In the static/temporal

exploration experiment, we witnessed that the LSTM Net

with one LSTM layer boosts the AU detection accuracy by a

9.7% average F1 improvement, which implies that the tem-

poral context information plays a very important role in de-

tecting facial actions.

To compare our approaches with another state of the art

methods, we have collected the F1 measures of the most

popular methods in same 3-fold settings based on BP4D in

Table 2. The approaches includes a traditional SVM-based

method, a 2-D landmark feature based approach, JPML

[30], the Confidence Preserving Machine (CPM) [29], a

block-based region learning static CNN, DRML [31], and a

recurrent net fusing LSTM with simple CNN, CNN+LSTM

[3]. For our proposed approaches, we first use the FVGG as

the baseline approach. Then we show the results of adap-

tive ROI Nets based on static images. Finally, we test our
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ROI Nets + our LSTM based recurrent approach with one

and two LSTM layers (RC+T1, RC+T2). All the results

can be seen in Table 2. On average, our best model R-

T1 achieves a 12.9% improvement compared to the state

of the art approach. Across the 12 AUs, our R-T1 model

outperforms the best in the literature except for AU4, where

CNN+LSTM performs the best.

To further explore the capabilities of our proposed ap-

proach, we run the comparison on DISFA dataset as well.

Not as popular as BP4D, a fewer state of the art approaches

report their results on DISFA. We use the BP4D trained

model to extract features from all the images in DISFA and

conduct a 3-fold cross evaluation with the extracted fea-

tures. For static image evaluation, we directly run a multi-

label linear regression and for temporal evaluation, we use

the structure that shows the best performance in the BP4D

evaluation, that is, a one layer LSTM to train the DISFA

temporal model. The results are shown in Table 3. As we

can see, our R-T1 model leads to a 25% improvement over

the state of the art model.

From the results in Tables 2 and 3, our proposed ap-

proaches have the best performance in both static and se-

quence image based AU detection. In the static images

based AU detection using deep learning, our ROI Nets

outperforms the state of the art deep learning approach,

DRML. Our proposed adaptive region cropping method

shares the same idea of learning different sets of convolu-

tional filters for different sub-regions, but our method has

the following advantages that make it different from the

state of the art:

1) Our sub-region selection is adaptive. DRML used a

straightforward image dividing strategy. Assuming the fa-

cial images are aligned, each image is equally divided into

8x8=64 sub-regions. This framework in easy to implement,

but we need to make sure that the face images are actually

aligned in the first place. In order to assure this precondi-

tion, all the faces need to be transformed to a neutral shape.

This may cause information loss since the faces of differ-

ent individuals may have different shapes or sizes. In addi-

tion, if the original faces are not in a frontal pose, we may

also lose some appearance features after changing the pose.

On the contrary, we select the regions of interest adaptively.

Our approach works based on the detected landmarks and

the positions of facial action muscles, which are biologi-

cally meaningful. Also note that our approach is robust to

landmark position errors. This is because the feature maps

in our network go through several pooling layers. Imagine

that the position detection error in the original image of size

224×224 is 10 pixel. With the pooling layer for cropping

the feature map being of size 14×14, the error turns to be

less than 1 pixel. This significantly improves our proposed

adaptive region cropping net.

2) A very deep pretrained network (VGG) is used as the

base. DRML creates a shallow convolutional network for

the region based AU detection. Instead of training every-

thing from scratch, we choose to borrow parameters from

an existing very deep CNN model. The main advantage of

this approach is that the pretrained model has been trained

with millions of images. Although the tasks are different,

the parameters are transferable. With the pretrained model

as the starting point of our AU detection training, we can

achieve a more powerful model than by training a shallow

neural network.

In sequential image based AU detection, Chu et al. [23]

designed a network by combining both CNN and LSTM.

To obtain the spatiotemporal fusion features, the last layer

features of the CNN and LSTM nets are concatenated. Dif-

ferent from their use of AlexNet for static image feature

extraction, we have proposed the adaptive region cropping

convolutional net. We use LSTM to fuse the temporal deep

features as well, but we have also compared different layers

of LSTM and noticed that one layer LSTM shows the best

performance.

6. Conclusion

In this paper, we looked into three essential prob-

lems, the region adaption learning, temporal fusion and

single/multi-label AU learning, in AU detection and pro-

posed a novel approach to address these problems. We

first proposed an adaptive region of interest cropping net,

which compared to conventional CNN, proves to be able to

learn separate filters for different regions and can improve

the accuracy of AU detection. We then analyzed the pro-

posed model by training it in a multi-label AU detection

manner and showed that the new model can outperform a

single AU detection model. We finally explored the LSTM-

based temporal fusion approach, which boosted the AU de-

tection performance significantly compared to static image-

based approaches. We also tried to find an optimal structure

of LSTM layers to connect with the proposed ROI nets to

achieve the best results for AU detection. The proposed ap-

proach is evaluated on two popular AU detection datasets,

BP4D and DISFA, outperforming the state of the art signif-

icantly, with an average improvement of around 13% and

25% on BP4D and DISFA respectively. Our future work

will be focused on building a dataset-independent AU de-

tection model and applying it to facial action detection in

real world applications.
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