
Diversified Texture Synthesis with Feed-forward Networks

Yijun Li1, Chen Fang2, Jimei Yang2, Zhaowen Wang2, Xin Lu2, and Ming-Hsuan Yang1

1University of California, Merced 2Adobe Research

{yli62,mhyang}@ucmerced.edu {cfang,jimyang,zhawang,xinl}@adobe.com

Abstract

Recent progresses on deep discriminative and generative

modeling have shown promising results on texture synthe-

sis. However, existing feed-forward based methods trade

off generality for efficiency, which suffer from many issues,

such as shortage of generality (i.e., build one network per

texture), lack of diversity (i.e., always produce visually iden-

tical output) and suboptimality (i.e., generate less satisfying

visual effects). In this work, we focus on solving these issues

for improved texture synthesis. We propose a deep genera-

tive feed-forward network which enables efficient synthesis

of multiple textures within one single network and meaning-

ful interpolation between them. Meanwhile, a suite of im-

portant techniques are introduced to achieve better conver-

gence and diversity. With extensive experiments, we demon-

strate the effectiveness of the proposed model and tech-

niques for synthesizing a large number of textures and show

its applications with the stylization.

1. Introduction

Impressive neural style transfer results by Gatys et

al. [14] have recently regained great interests from computer

vision, graphics and machine learning communities for the

classic problem of texture synthesis [10, 9, 35]. Consid-

ering the expensive optimization process in [14], a few at-

tempts have been made to develop feed-forward networks

to efficiently synthesize a texture image or a stylized im-

age [19, 32]. However, these methods often suffer from

many issues, including shortage of generality (i.e., build one

network per texture), lack of diversity (i.e., always produce

visually identical output) and suboptimality (i.e., generate

less satisfying visual effects).

In this paper, we propose a deep generative network for

synthesizing diverse outputs of multiple textures in a sin-

gle network. Our network architecture, inspired by [28, 7],

takes a noise vector and a selection unit as input to gen-

erate texture images using up-convolutions. The selection

unit is a one-hot vector where each bit represents a texture

type and provides users with a control signal to switch be-

tween different types of textures to synthesize. More im-

portantly, such a multi-texture synthesis network facilitates

generating new textures by interpolating with the selection

units. Meanwhile, the noise vector is intended to drive the

network to generate diverse samples even from a single ex-

emplar texture image.

However, learning such a network is a challenging task.

First, different types of textures have quite different sta-

tistical characteristics, which are partially reflected by the

varied magnitudes of texture losses (i.e., the Gram matrix-

based losses introduced in [13, 14] to measure style sim-

ilarity) across different feature layers. Second, the conver-

gence rates for fitting different textures are inherently differ-

ent due to their drastic visual difference and semantic gaps.

As a result, the overall difficulty of learning such a network

is determined by the variation among the textures and the

complexity of individual textures. Third, the network often

encounters the “explain-away” effect that the noise vector is

marginalized out and thus fails to influence the network out-

put. Specifically, the network is not able to generate diverse

samples of a given texture, and it often means overfitting to

a particular instance.

In this work, we propose a suite of effective techniques

to help the network generate diverse outputs of higher qual-

ity. We first improve the Gram matrix loss by subtracting

the feature mean, so that the newly designed loss is more

stable in scale and adds stability to the learning. Second,

in order to empower the network with the ability of gen-

erating diverse samples and further prevent overfitting, we

aim to correlate the output samples with the input noise vec-

tor. Specifically, we introduce a diversity loss that penalizes

the feature similarities of different samples in a mini-batch.

Third, we show that a suitable training strategy is critical for

the network to converge better and faster. Thus we devise

an incremental learning algorithm that expose new training

textures sequentially to the learner network. We start from

learning to synthesize one texture and only incorporate next

new unseen texture into the learning when the previous tex-

ture can be well generated. As such, the network gradually

learns to synthesize new textures while retaining the ability

to generate all previously seen textures.

13920

VGG loss
network

Selection unit

Noise

...

Outer

product

...

8

8
256

16

16

256

32

32

128

64

64

128

128

128

64

256

256

32

256

256

3

...
...

...

8

8

32

16

16

32

128

128

32

64

64

32

32

32

32

256

256

32

Generator

Selector

Texture

loss

Diversity

loss

T
ex

tu
re

s

Figure 1. Architecture of the proposed multi-texture synthesis network. It consists of a generator and a selector network.

The contributions of this work are threefold:

• We propose a generative network to synthesize multi-

ple textures in a user-controllable manner.

• A diversity loss is introduced to prevent the network

from being trapped in a degraded solution and more

importantly it allows the network to generate diverse

texture samples.

• The incremental learning algorithm is demonstrated to

be effective at training the network to synthesize re-

sults of better quality.

2. Related Work

Traditional synthesis models. Texture synthesis meth-

ods are broadly categorized as non-parametric or paramet-

ric. Parametric methods [17, 27] for texture synthesis aim

to represent textures through proper statistical models, with

the assumption that two images can be visually similar

when certain image statistics match well [20]. The synthe-

sis procedure starts from a random noise image and grad-

ually coerces it to have the same relevant statistics as the

given example. The statistical measurement is either based

on marginal filter response histograms [3, 17] at different

scales or more complicated joint responses [27]. However,

exploiting proper image statistics is challenging for para-

metric models especially when synthesizing structured tex-

tures.

Alternatively, non-parametric models [10, 9, 22, 34] fo-

cus on growing a new image from an initial seed and regard

the given texture example as a source pool to constantly

sample similar pixels or patches. This is also the basis of

earlier texture transfer algorithms [9, 23, 1, 18]. Despite

its simplicity, these approaches can be slow and subject to

non-uniform pattern distribution. More importantly, these

methods aim at growing a perfect image instead of building

rich models to understand textures.

Synthesis with neural nets. The success of deep CNNs

in discriminative tasks [21, 29] has attracted much atten-

tion for image generation. Images can be reconstructed by

inverting features [26, 6, 5], synthesized by matching fea-

tures, or even generated from noise [16, 28, 4]. Synthesis

with neural nets is essentially a parametric approach, where

intermediate network outputs provide rich and effective im-

age statistics. Gatys et al. [13] propose that two textures

are perceptually similar if their features extracted by a pre-

trained CNN-based classifier share similar statistics. Based

on this, a noise map is gradually optimized to a desired out-

put that matches the texture example in the CNN feature

space.

Subsequent methods [19, 32] accelerate this optimiza-

tion procedure by formulating the generation as learning a

feed-forward network. These methods train a feed-forward

network by minimizing the differences between statistics

of the ground truth and the generated image. In partic-

ular, image statistics was measured by intermediate out-

puts of a pre-trained network. Further improvements are

made by other methods that follow either optimization

based [24, 11, 12, 15] or feed-forward based [25, 33] frame-

work. However, these methods are limited by the unneces-

sary requirement of training one network per texture. Our

framework also belongs to the feed-forward category but

synthesizes diverse results for multiple textures in one sin-

gle network.

A concurrent related method recently proposed by Du-

moulin et al. [8] handles multi-style transfer in one net-

work by specializing scaling and shifting parameters after

normalization to each specific texture. Our work differs

from [8] mainly in two aspects. First, we employ a different

approach in representing textures. We represent textures as

bits in a one-hot selection unit and as a continuous embed-

ding vector within the network. Second, we propose diver-

sity loss and incremental training scheme in order to achieve

better convergence and output diverse results. Moreover,

we demonstrate the effectiveness of our method on a much

larger set of textures (e.g., 300) whereas [8] develops a net-

work for 32 textures.

3. Proposed Algorithm

We show the network architecture of the proposed model

in Figure 1. The texture synthesis network (bottom part)

3921

has two inputs, a noise vector and a selection unit, while

the upper part in blue dash line boxes are modules added

for extending our model to style transfer. The noise vector

is randomly sampled from a uniform distribution, and the

selection unit is a one-hot vector, where each bit represents

a texture in the given texture set. The network consists of

two streams: the generator and the selector. The genera-

tor is responsible for synthesis and the selector is guiding

the generator towards the target texture, conditioned on the

activated bit in the selection unit.

Given M target textures, we first map the M dimensional

selection unit to a lower dimensional selection embedding.

Then we compute the outer product of the noise vector and

selection embedding. After the outer-product operation, we

reshape the result as a bunch of 1× 1 maps and then use the

SpatialFullConvolution layer to convolve them to a larger

spatial representation with numerous feature maps. After

a series of nearest-neighbor upsampling followed by con-

volutional operations, this representation is converted to a

256 × 256 × 3 pixel image. On the selector stream, it

starts with a spatial projection of the embedding, which is

then consecutively upsampled to be a series of feature maps

which are concatenated with those feature maps in the gen-

erator, in order to offer guidance (from coarse to fine) at

each scale.

Finally, the output of the generator is fed into a fixed pre-

trained loss network to match the correlation statistics of the

target texture using the visual features extracted at different

layers of the loss network. We use the 19-layer VGG [31]

model as the loss network.

3.1. Loss function

We employ two loss functions, i.e., texture loss and di-

versity loss. The texture loss is computed between the syn-

thesized result and the given texture to ensure that these two

images share similar statistics and are perceptually similar.

The diversity loss is computed between outputs of the same

texture (i.e., same input at selection unit) driven by different

input noise vectors. The goal is to prevent the generator net-

work from being trapped to a single degraded solution and

to encourage the model to generate diversified results with

large variations.

Texture loss. Similar to existing methods [13, 19, 32], the

texture loss is based on the Gram matrix (G) difference of

the feature maps in different layers of the loss network as

Ltexture = ‖Ggt −Goutput‖1 , Gij =
∑

k

FikFjk , (1)

where each entry Gij in the Gram matrix is defined as the

inner product of Fik and Fjk, which are vectorized acti-

vations of the ith (and jth) filter at position k in the cur-

rent layer of the loss network. We use the activations at the

Figure 2. Comparisons between using G and mean subtracted G.

We show results of two 3-texture networks (left and right). Top:

original textures, Middle: synthesized results using G based tex-

ture loss, Bottom: synthesized results using G based texture loss.

conv1 1, conv2 1, conv3 1, conv4 1 and conv5 1 layer of

the VGG model.

The Gram matrix based texture loss has been shown

demonstrated to effective for single texture synthesis. How-

ever, for the purpose of multiple textures synthesis, we em-

pirically find that the original texture loss (defined as Eq. 1)

poses difficulty for the network to distinguish between tex-

tures and thus fails to synthesize them well. In the middle

row of Figure 2, we show a few examples of textures gen-

erated using the original texture loss in two experiments of

synthesizing 3 textures with one network. Note the obvious

artifacts and color mixing problems in the synthesized re-

sults. We attribute this problem to the large discrepancy in

scale of the Gram matrices of different textures.

Motivated by this observation, we modify the original

Gram matrix computation by subtracting the mean before

calculating the inner product between two activations:

Gij =
∑

k

(Fik − F)(Fjk − F) , (2)

where F is defined as the mean of all activations in the cur-

rent layer of the loss network and the rest of terms remain

the same with those in the definition of the Gram matrix (1).

Without re-centering the activations, we notice that during

training the values of losses and gradients from different

textures vary drastically, which suggests that the network

is biased to learn the scale of Gram matrix, i.e., F , instead

of discriminating between them. In the bottom row of Fig-

ure 2, we provide the same textures synthesized with the re-

centered Gram matrix, which clearly shows improvements

compared to the middle row.

Diversity loss. As mentioned above, one of the issues

with existing feed-forward methods is being easily trapped

to a degraded solution where it always outputs that are visu-

ally identical (sometimes with less satisfying repetitive pat-

terns) [30]. When trained only with the texture loss, the pro-

3922

Figure 3. Comparisons between without and with the diversity

loss. Left: original textures, Middle: outputs (w/o diversity) under

there different noise inputs, Right: outputs (w/ diversity) under the

same set of different noise inputs.

posed network has the same issue. We show several exam-

ples in the middle panel of Figure 3. The results under dif-

ferent noise input are nearly identical with subtle and unno-

ticeable difference in pixel values. This is expected because

the texture loss is designed to ensure all synthesized results

to have the similar style with the given texture, but does not

enforce diversity among outputs. In other words, each syn-

thesized result is not correlated with the input noise.

In order to correlate the output with input noise, we de-

sign a diversity loss which explicitly measures the vari-

ation in visual appearance between the generated results

under the same texture but different input noise. As-

sume that there are N input samples in a batch at each

feed-forward pass, the generator will then emit N outputs

{P1, P2, ..., PN}. Our diversity loss measures the visual

difference between any pair of outputs Pi and Pj using vi-

sual features. Let {Q1, Q2, ..., QN} be a random reordering

of {P1, P2, ..., PN}, satisfying that Pi 6= Qi. In order to en-

courage the diversity in a higher level rather than lower level

such as pixel shift, the diversity loss is computed between

feature maps at the conv4 2 layer of the loss network Φ as

follows:

Ldiversity =
1

N

N∑

i=1

‖Φ(Pi)− Φ(Qi)‖1, (3)

The results generated by our method with this diversity loss

are shown in the right panel of Figure 3. While being per-

ceptually similar, the results from our method contain rich

variations. Similar observations are found in [30] which

also encourages diversity in generative model training by

enlarging the distance among all samples within a batch on

intermediate layers features, while our method achieves this

with the diversity loss.

The final loss function of our model is a combination of

the texture loss and the diversity loss as shown in (4). As

the goal is to minimize the texture loss and maximize the

diversity loss, we use the coefficients α = 1, β = −1 in our

experiments.

L = αLtexture + βLdiversity, (4)

1 1 1 1

1 2 1 2 1 2

1 2 3 1 2 3 1 2 3

...
...

...

1~K

K+1~2K

2K+1~3K

<Iteration> <Sampled texture id>

Figure 4. Incremental training strategy. Each block represents an

iteration and the number in it is the sampled texture id for this

iteration (also the bit we set as 1 in the selection unit). We use

K = 1000 in the experiments.

0 10 20 30 40 50 60
0

50

100

150

200

Texture id

F
in

a
l
te

x
tu

re
 l
o
s
s

Random training

Incremental training

Figure 5. Comparisons of the final texture loss when converged

between the random and incremental training on 60-texture syn-

thesis.

3.2. Incremental training

We discuss the training process for the proposed network

with focus on how to sample a target texture among a set of

predefined texture set. More specifically, we address the is-

sue whether samples should randomly selected or in certain

order in order to generate diversified textures. Once a tar-

get texture is selected, we set the corresponding bit in the

selection unit as 1 and the corresponding texture is used to

compute the texture loss.

Empirically we find that the random sampling strategy

typically yields inferior results and it becomes difficult to

further push down texture losses for all texture images after

certain number of iterations. We train a 60-texture network

as an example and show the converged results (10 out of 60)

with random sampling in the middle row of Figure 6. The

artifacts are clearly visible. Major patterns of each texture

are captured, however the geometry is not well preserved

(e.g., hexagons in the first texture), and colors are not well

matched (i.e., mixing with colors from other textures).

We attribute this issue to the constant drastic change in

the learning objective caused by random sampling within a

diverse set of target textures. In other words, although the

network gains improvement toward a sampled texture at ev-

ery iteration, the improvement is likely to be overwhelmed

in the following iterations, where different textures are opti-

mized. As a consequence, the learning becomes less effec-

tive and eventually gets stuck to a bad local optimum.

3923

Figure 6. Comparisons between random training and incremental training. Top: original textures, Middle: synthesis with random training,

Bottom: synthesis with incremental training. The model is handling 60 textures in Figure 5 and we show the synthesized results of 10

textures here.

Therefore we propose an incremental training strategy

to help the learning to be more effective. Overall our incre-

mental training strategy can be seen as a form of curriculum

learning. There are two aspects in training the proposed net-

work incrementally. First, we do not teach the network to

learn new tasks before existing the network learns existing

ones well. That is, we start from learning one texture and

gradually introduce new textures when the network can syn-

thesize previous textures well. Second, we ensure that the

network does not forget what is already learned. Namely,

we make sure that all the target textures fed to the network

so far will still be sampled in future iterations, so that the

network “remembers” how to synthesize them.

Specifically, in the first K iterations, we keep setting the

1st bit of the selection unit as 1 to let the network fully focus

on synthesizing Texture 1. In the next K iterations, Texture

2 is involved and we sample the bit from 1 to 2 in turn. We

repeat the same process to the other textures. We illustrate

this procedure in Figure 4. After all the textures are intro-

duced to the network, we switch to the random sampling

strategy until the training process converges. In Figure 5

and 6, we show the comparison of both the final texture

loss and synthesized visual results between the random and

incremental training strategies in the 60-texture network ex-

periment. Clearly the incremental training scheme leads to

better convergence quantitatively and qualitatively.

Interestingly, we observe that the network learns new

textures faster as it sees more textures in later training

stages. To demonstrate that, we record the texture losses

for each texture when it is sampled and show four exam-

ples in Figure 7 when training the 60-texture network. Take

Texture 20 (Figure 7(a)) as an example, the network learned

with incremental training quickly reaches lower losses com-

pare to the one with random sampling strategy. We hypoth-

esize that the network benefits from the shared knowledge

learned from Texture 1-19. This conjecture is supported by

later introduced textures (Figure 7(b-d)) where incremen-

(a) Texture 20 (b) Texture 30

(c) Texture 40 (d) Texture 50

Figure 7. Comparisons between the random and incremental train-

ing on a single texture during a 60-texture network training. Note

that some sudden drastic changes on the loss curve appear when

a new texture is firstly involved which causes a short-term oscilla-

tion in the network.

tal training gets relatively faster at convergence as it learns

more textures.

4. Experimental Results

In this section, we present extensive experimental results

to demonstrate the effectiveness of our algorithm. We ex-

periment with synthesizing a large number of textures using

a single network and then show that our model is able to

generate diverse outputs and create new textures by linear

interpolation.

4.1. Multi­texture synthesis

In addition to the 60-texture network trained for illus-

tration purpose in Section 3, we experiment with a larger

3924

Figure 8. Synthesized results of a 300-texture network. In each panel, Left: original texture, Right: synthesized result. We show results of

20 (out of 300) textures as examples here. For each texture, we only show one synthesized result.

Figure 9. Comparisons of diverse synthesized results between the

TextureNet [32] (middle) and our model (right).

300-texture network to further validate the robustness and

scalability of our model. We map the 300-dimensional

selection unit to a 128-dimensional embedding and use a

5-dimensional noise vector. The network is trained with

both texture and diversity loss under the incremental train-

ing strategy. Texture images used in our experiments are

from the Describable Textures Dataset (DTD) [2]. Figure 8

shows the synthesized results of 20 textures.

4.2. Diversity

By sampling different noise in the noise vector, our net-

work can generate diverse synthesized results for each tex-

ture. Existing single-texture networks [32] can also gener-

ate diversity to a certain extent. However, the diversity is

still limited because their network is trained with the tex-

ture loss only. The diversity in [32] is mainly enforced by

injecting multiple noise maps at different scales (from 8×8
to 256 × 256). Without explicit constraints to push diver-

sity, such a huge variation will be reduced or absorbed by

the network, which still leads to limited diversity in outputs.

We compare the diverse outputs of our model and [32] in

Figure 9. Note that the common diagonal layout is shared

across different results of [32], which causes unsatisfying

visual experience. In contrast, our method achieves diver-

sity in a more natural and flexible manner. With the di-

versity loss, our model enables diverse outputs with low di-

mensional noise input, which gives us the ability to generate

continuous transition between those outputs.

4.3. Interpolation

Equipped with a selection unit and a learned M -texture

network, we can interpolate between bits at test time to cre-

ate new textures or generate smooth transitions between tex-

tures. We show two examples of interpolation with our pre-

viously trained 300-texture network in Figure 10. For ex-

ample in the top row of Figure 10, we start from Texture

20 and drive the synthesis towards Texture 19. This is car-

ried out by gradually decreasing the weight in the 20th bit

and increasing the weight in the 19th bit with the rest bits

all set as zero. Such a smooth transition indicates that our

generation can go along a continuous space.

The method in [14] is also able to synthesize the interpo-

lated result of two textures. In [14], if we denote G1 and G2

as the Gram matrix of two textures, the interpolated texture

is generated by matching some intermediate Gram matrix

a×G1 + (1− a)×G2 through optimization (e.g., a=0.5).

We show the interpolation comparison between [14] and our

method in Figure 11. It is observed that the results by [14]

are simply overlaid by two textures while our method gen-

erates new textural effects.

4.4. Extension to multi­style transfer

We extend the idea of multi-texture synthesis to the

multi-style transfer for image stylization. Given a style

image and a content image, image stylization aims at syn-

thesizing an image that preserves the global content while

3925

Figure 10. Texture interpolation (or transition) with the 300-texture network. Top: Texture 20 to Texture 19, Bottom: Texture 19 to Texture

12. Images in the leftmost and rightmost are original textures.

Texture I Texture II [14] Ours

Figure 11. Interpolation comparison between [14] and our method.

transferring the colors and local structures from the style

image. For presentation clarity, we will use the term style

instead of the texture.

The network architecture is shown in Figure 12. We use

an autoencoder network similar to [19] and incorporate our

idea of introducing a selection unit to handle the transfer-

ring of different styles. More specifically, for each bit in

the selection unit, we generate a corresponding noise map

(e.g., from the uniform distribution) and concatenate these

maps with the encoded features from the content, which are

then decoded to the transferred result. When one style is se-

lected, only the noise map that corresponds to it is randomly

initialized while other noise maps are set to zero. The con-

tent loss is computed as the feature differences between the

transferred result and the content at the conv4 2 layer of the

VGG model as in [14]. The style loss and diversity loss are

defined in the same way as those in texture synthesis. We

train a 1000-style transfer network and show the transferred

results in Figure 13. Note that as our multi-transfer model

is fully convolutional, it is able to handle the content image

of arbitrary sizes.

In addition, we compare our multi-style transfer model

with existing methods in Figure 15. We adjust the style

weight such that all methods have similar transferring ef-

fects. It clearly shows that our multi-style transfer model

achieves improved or comparable results.

With the selection unit, we interpolate between styles by

adjusting the weights of different bits in the selection unit

...... ...

Concat
Content

St
yl

e

VGG loss
networkStyle loss

Diversity loss

Content loss

64

64

128
256

256

128

64

64

256128
256 128

64

64

64

64

64

64

Figure 12. Architecture of the multi-style transfer network.

and generate the style interpolation (or transition) results in

Figure 14. Specifically, if we denote s1 and s2 as the bit

value of two styles and N1 and N2 as the corresponding

noise map, the interpolation is generated by feeding s1 ×
N1 + s2 ×N2 as the selection input.

Diverse transfer results are shown in Figure 16. Different

from the case of texture synthesis, the global structure of

images is constrained by the demand of preserving content.

Therefore the diversity is exhibited at local visual structures.

Notice the slight but meaningful differences among these

outputs.

5. Discussion

Selector network. In our model, we introduce a selector

network (Figure 1) in order to drive the network towards

synthesizing the desired texture only. The selector injects

guidance to the generator at every upsampling scale and

helps the model distinguish different textures better during

the synthesis. We show an example of training a 60-texture

network w/o and w/ the selector network in Figure 17. We

present the loss curves of two textures as examples, which

clearly shows that with the selector, the network training

achieves better convergence.

Embedding. Starting with a one-hot selection unit to rep-

resent each texture per bit, we first map it to a lower dimen-

sional embedding and aim at learning a better representa-

tion of given textures. In our presented 60-texture and 300-

3926

Figure 13. Transferred results of a 1000-style transfer network. We show results of 8 (out of 1000) styles as examples. Top: style images,

Leftmost: content image, Bottom: transferred results.

Figure 14. Style interpolation (or transition) with the multi-style transfer network. Images in the leftmost and rightmost are original styles.

The content image used in the middle is from Figure 13.

Content [14] [32] [19] Ours Style

Figure 15. Comparison of style transfer results between existing

methods and ours.

Figure 16. Diverse transferred results of our multi-style transfer

network. Left: content images, Middle: diverse transferred results,

Right: style images. Note the difference in the beak and sky.

texture model, we map the 60-D and 300-D selection unit

to a 32-D and 128-D embedding respectively. Our results

show that the embedding can still distinguish different tex-

tures for synthesis, which indicates that the original one hot

representation is redundant. In addition, as we have shown

that new textures can be created through interpolation in a

feed-forward way, it poses an open question that whether

we can find the coefficients in a backward way to represent

a given new texture as a weighted combination of learned

embeddings. We leave this as a future direction to pursue.

(a) Texture 20 (b) Texture 40

Figure 17. Comparisons of the loss curve between our framework

without and with the selector network.

6. Conclusion

In this paper, we focus on synthesizing multiple textures

in one single network. Given M textures, we propose a

deep generative feed-forward network which can synthe-

size diverse results for each texture. In order to train a

deep network for multi-texture synthesis, we introduce the

diversity loss and propose an incremental leaning scheme.

The diversity loss helps the network to synthesize diverse

textures with the same input, and the incremental learning

scheme helps effective and efficient training process. Ex-

perimental results demonstrate the effectiveness of model,

which generates comparable results compared to existing

single-texture networks but greatly reduces the model size.

We also show the extension of our multi-texture synthesis

model to multi-style transfer for image stylization.

Acknowledgment. This work is supported in part by the

NSF CAREER Grant #1149783, gifts from Adobe and

Nvidia.

3927

References

[1] N. Ashikhmin. Fast texture transfer. IEEE Computer Graph-

ics and Applications, 23(4):38–43, 2003. 2

[2] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and

A. Vedaldi. Describing textures in the wild. In CVPR, 2014.

6

[3] J. S. De Bonet. Multiresolution sampling procedure for anal-

ysis and synthesis of texture images. In SIGGRAPH, 1997.

2

[4] E. L. Denton, S. Chintala, R. Fergus, et al. Deep genera-

tive image models using a Laplacian pyramid of adversarial

networks. In NIPS, 2015. 2

[5] A. Dosovitskiy and T. Brox. Generating images with per-

ceptual similarity metrics based on deep networks. In NIPS,

2016. 2

[6] A. Dosovitskiy and T. Brox. Inverting visual representations

with convolutional networks. In CVPR, 2016. 2

[7] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. Learn-

ing to generate chairs with convolutional neural networks. In

CVPR, 2015. 1

[8] V. Dumoulin, J. Shlens, and M. Kudlur. A learned repre-

sentation for artistic style. arXiv preprint arXiv:1610.07629,

2016. 2

[9] A. A. Efros and W. T. Freeman. Image quilting for texture

synthesis and transfer. In SIGGRAPH, 2001. 1, 2

[10] A. A. Efros and T. K. Leung. Texture synthesis by non-

parametric sampling. In ICCV, 1999. 1, 2

[11] O. Frigo, N. Sabater, J. Delon, and P. Hellier. Split and

match: Example-based adaptive patch sampling for unsuper-

vised style transfer. In CVPR, 2016. 2

[12] L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shecht-

man. Preserving color in neural artistic style transfer. arXiv

preprint arXiv:1606.05897, 2016. 2

[13] L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis

using convolutional neural networks. In NIPS, 2015. 1, 2, 3

[14] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In CVPR, 2016. 1, 6,

7, 8

[15] L. A. Gatys, A. S. Ecker, M. Bethge, A. Hertzmann, and

E. Shechtman. Controlling perceptual factors in neural style

transfer. arXiv preprint arXiv:1611.07865, 2016. 2

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In NIPS, 2014. 2

[17] D. J. Heeger and J. R. Bergen. Pyramid-based texture analy-

sis/synthesis. In SIGGRAPH, 1995. 2

[18] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.

Salesin. Image analogies. In SIGGRAPH, 2001. 2

[19] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In ECCV, 2016.

1, 2, 3, 7, 8

[20] B. Julesz. Visual pattern discrimination. IRE transactions on

Information Theory, 8(2):84–92, 1962. 2

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 2

[22] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.

Graphcut textures: image and video synthesis using graph

cuts. In SIGGRAPH, 2003. 2

[23] H. Lee, S. Seo, S. Ryoo, and K. Yoon. Directional texture

transfer. In NPAR, 2010. 2

[24] C. Li and M. Wand. Combining markov random fields and

convolutional neural networks for image synthesis. In CVPR,

2016. 2

[25] C. Li and M. Wand. Precomputed real-time texture synthesis

with markovian generative adversarial networks. In ECCV,

2016. 2

[26] A. Mahendran and A. Vedaldi. Understanding deep image

representations by inverting them. In CVPR, 2015. 2

[27] J. Portilla and E. P. Simoncelli. A parametric texture model

based on joint statistics of complex wavelet coefficients.

IJCV, 40(1):49–70, 2000. 2

[28] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. In ICLR, 2016. 1, 2

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

IJCV, 115(3):211–252, 2015. 2

[30] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved techniques for training GANs.

In NIPS, 2016. 3, 4

[31] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 3

[32] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Tex-

ture networks: Feed-forward synthesis of textures and styl-

ized images. In ICML, 2016. 1, 2, 3, 6, 8

[33] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normal-

ization: The missing ingredient for fast stylization. arXiv

preprint arXiv:1607.08022, 2016. 2

[34] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-

structured vector quantization. In SIGGRAPH, 2000. 2

[35] L.-Y. Wei and M. Levoy. Texture synthesis over arbitrary

manifold surfaces. In SIGGRAPH, 2001. 1

3928

