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Abstract

Spatial relationships between objects provide important

information for text-based image retrieval. As users are

more likely to describe a scene from a real world perspec-

tive, using 3D spatial relationships rather than 2D relation-

ships that assume a particular viewing direction, one of the

main challenges is to infer the 3D structure that bridges

images with users’ text descriptions. However, direct in-

ference of 3D structure from images requires learning from

large scale annotated data. Since interactions between ob-

jects can be reduced to a limited set of atomic spatial rela-

tions in 3D, we study the possibility of inferring 3D struc-

ture from a text description rather than an image, applying

physical relation models to synthesize holistic 3D abstract

object layouts satisfying the spatial constraints present in

a textual description. We present a generic framework for

retrieving images from a textual description of a scene by

matching images with these generated abstract object lay-

outs. Images are ranked by matching object detection out-

puts (bounding boxes) to 2D layout candidates (also repre-

sented by bounding boxes) which are obtained by projecting

the 3D scenes with sampled camera directions. We validate

our approach using public indoor scene datasets and show

that our method outperforms baselines built upon object oc-

currence histograms and learned 2D pairwise relations.

1. Introduction

Text-based image retrieval, dating back to the late 1970s,

has evolved from a keyword-based task to a more challeng-

ing task based on natural language descriptions (e.g., sen-

tences and paragraphs) [10, 11, 22]. Queries in the form

of sentences rather than keywords refer to not only object

categorical information but also interations, such as spatial

relationships, between objects. Those relationships are usu-

ally described in the real (3D) world due to the nature of hu-

man language. Intuitively, they can be the core feature for

ranking images in many application scenarios, e.g., a user

searching for images that are relevant to a particular mental

image of a room layout. Not surprisingly, researchers have

recently increased their focus on understanding spatial re-

lationships from text input and retrieving semantically con-

sistent visual information [10, 16, 23, 32].

Matching images with user provided spatial relations is

challenging because humans naturally describe scenes in

3D while images are 2D projections of the world. Infer-

ring 3D information from a single image is difficult. Most

existing approaches learn from annotated data to map lan-

guage directly to a probability distribution of pairwise rela-

tionships between object locations [10, 16]. However, such

a distribution is non-convex and highly non-linear in the 2D

image space because the (unknown) camera view affects the

bounding box configurations. Consequently, the success of

2D learning based approaches naturally depends on the size

of annotated training data. Also, the learner overfits easily

since annotated spatial relations have a long-tailed distri-

bution; many valid configurations happen rarely in the real

world (e.g., a desk on another desk). With pairwise rela-

tions, it is also hard to enforce the fact that all objects are

viewed from the same direction in an image. This argues

for a holistic model for object relationships that jointly opti-

mizes object configurations. Motivated by this, we explore

an alternative model of spatial relations that generates 3D

configurations explicitly based on physics.

We explore an approach that uses physical models and

complex spatial relation semantics as part of an image re-

trieval system that generates 3D object layouts from text

(rather than from images) and performs image retrieval by

matching 2D projections of these layouts against objects de-

tected in each database image. Our framework requires the

a priori definition of a fixed set of object and spatial rela-

tion categories. Spatial relation terms are extracted from

the dependency tree of the text. Objects are modeled us-

ing cuboids and spatial relations are modeled as inequal-

ity constraints on object locations and orientations. These

inequality constraints can become very complex, contain-

ing nonlinear transformations represented using first order

logic. Consequently, an interval arithmetic based 3D scene

solver is introduced to search for feasible 3D spatial layout
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solutions. Camera orientations are constrained and sampled

for obtaining 2D projections of candidate scenes. Finally,

images are scored and ranked by comparing object detec-

tion outputs to a sampled set of 2D reference layouts.

Compared to 2D learning based approaches, our ap-

proach has the following advantages: (1) the mapping from

language to 3D is simple since the text-based spatial con-

straints have a very concrete and simple meaning in 3D,

simple enough to define with a few rules by hand; (2) no

training data is needed to learn complex distributions over

the spatial arrangement of 2D boxes given linguistic con-

straints (the non-linear mapping from language to 2D is

handled by projective geometry) and (3) adding common

sense constraints is easy when referring to physical relation-

ships in 3D (Sec. 4.2.2), while it is hard if these constraints

are specified and learned in 2D (due to the non-linearity

of projective geometry). We evaluate our approach using

two public scene understanding datasets [3, 27]. The results

suggest that our approach outperforms baselines built upon

object occurrence histograms and learned 2D relations.

2. Related Work

Text-based image retrieval has been studied for decades

[22]. As both computer vision and natural language pro-

cessing have advanced, recent efforts have emerged that

build connections between linguistic and visual information

[12, 19]. Srivastava and Salakhutdinov [28] extend Deep

Boltzman Machines (DBMs) to multimodal data for learn-

ing joint representations of images and text. They apply

such representations to retrieving images from text descrip-

tions. Their model learns mappings between objects with

attributes and their corresponding visual appearances; how-

ever spatial relations are not modeled.

Spatial relationships play an important role in visual un-

derstanding. Previous works make use of text-extracted spa-

tial relations in image retrieval. Zitnick et al. [32] generate

and retrieve abstract cartoon images from text. Cartoon ob-

ject models are pre-defined and 2D clipart images are com-

posed according to the text. Siddiquie et al. [24] devise a

multi-modal framework for retrieving images from sources

including images, sketches and text by jointly considering

objects, attributes and spatial relationships, and reducing all

sources into 2D sketches. However, their framework han-

dles text with only two or three objects and very limited 2D

spatial relationships. Lin et al. [16] retrieve videos from

textual queries. A set of motion text is defined with vi-

sual trajectory properties and parsed into a semantic graph

to to match video segments via a generalized bipartite graph

matching. All these works rely on 2D spatial relations while

our work is based on real world physical models of 3D

scenes to retrieve semantically consistent images.

Interesting recent work on retrieving images from text is

based on the scene graph representation [10, 23]. A scene

graph is a graph-based representation which encodes ob-

jects, attributes and object relations. In Johnson et al. [10],

text input is converted to a scene graph by a human and a

CRF model is used to match scene graphs to images by en-

coding global spatial relations of objects rather than only

pairwise relations. Their approach requires learning spatial

relations from annotated image data. Our work differs in

that we take a generative perspective and inject physical re-

lation models and human knowledge into the retrieval sys-

tem without the requirement of large-scale data annotation.

Many existing works utilize 3D geometry in vision tasks

such as object recognition [8], image matching [15], object

detection [30, 31], etc. However, to the best of our knowl-

edge, the use of 3D geometry in relating images with lan-

guage has not been exploited. While inferring the 3D struc-

ture from a single image is challenging and complicated in

vision [3, 5, 9, 20, 21], the problem of rendering scenes

from text is of interest in the graphics community. The

wordseye system [4] renders scenes from text with given 3D

object models. Chang et al. [2] generates 3D scenes from

text by incorporating the spatial knowledge learned from

data. In addition, some recent works cast computer vision

as inverse graphics and try to incorporate computer graph-

ics elements into visual understanding systems [13, 14, 29].

Our work also involves scene generation. However, our pur-

pose is to retrieve similar images based on bounding boxes ,

which can be efficiently computed using off-the-shelf soft-

ware during a database indexing step, so real object models

are not required, although better scene generation could po-

tentially improve image retrieval accuracy.

3. Preliminary: Interval Analysis

Our approach involves finding feasible solutions to a

mathematical program where the variables are object coor-

dinates and orientations, and the constraints are inequalities

translated from user descriptions. Since small placement

pertubations usually do not affect the fullfilment of con-

straints, feasible variables can naturally be represented by

a set of intervals (any value within the interval is feasible).

Interval analysis represents each variable by its feasible

interval, e.g., [l, u] (with lower bound l and upper bound u)

and the goal is to find the bound for each dimension that

satisfies all constraints [26]. When an interval does not sat-

isfy all the constraints, it is split into smaller intervals and

evaluated recursively. Arithmetic operators are defined in

terms of intervals, e.g.,

• addition: [l1, u1] + [l2, u2] = [l1 + l2, u1 + u2];
• subtraction: [l1, u1]− [l2, u2] = [l1 − u2, u1 − l2];
• comparison: [l1, u1] < [l2, u2] equals [0, 0] if u2 ≤ l1

(definitely false); equals [1, 1] if u1 < l2 (definitely

true); equals [0, 1] otherwise (maybe true).

The fulfillment of a constraint can be represented by any of

the three logical intervals, i.e., [0, 0], [1, 1], [0, 1].
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Figure 1. Framework overview: a textual description of the visual scene is parsed into semantic triplets which are used for solving feasible

3D layouts and their 2D projections as reference configurations. An object detector runs over each database image and generates a 2D

bounding box layout, to be matched to reference configurations. All database images are ranked according to their configuration scores.

4. Our Approach

The proposed framework, as illustrated in Fig. 1, con-

sists of several modules. First, the input text is parsed into a

set of semantic triplets of object names and their spatial re-

lationships. Second, the semantic triplets are used to solve

possible 3D layouts of objects along with sampled camera

locations and orientations. The 2D projections of the 3D

scenes are used for generating 2D bounding boxes of ob-

jects, which we call reference configurations. Finally, the

reference configurations are matched to the detected bound-

ing boxes in each database image to score and rank accord-

ing to their configuration similarity.

4.1. Text Parsing

The text parsing module translates text into a set of se-

mantic triplets which encode the information about two ob-

ject instances and their spatial interactions. How to robustly

extract relations from text is still an open research problem

in natural language processing [11], which is beyond the

scope of this paper. For our application, a simple rule-based

pattern matching works sufficiently well, requiring a pre-

defined dictionary of object and spatial relation categories.

A text example and its parsing output is shown in Table 1.

The input text is processed by the Stanford CoreNLP li-

brary [18] with part-of-speech tagging and dependency tree.

We implement a rule-based approach to extract spatial rela-

tions (such as on, under, in front of, behind, above, etc.)

from the dependency tree and compose its corresponding

semantic triplet representation (target object, reference ob-

ject, relation). The co-reference module in the CoreNLP

library is used to aggregate multiple noun occurrences that

correspond to the same object instance. Each object refer-

ence is represented by its category name and a unique ID

within the category, e.g. sofa-0 and dining-table-2.

Natural objects are usually composed of multiple sub-

# Sentence → (object-1, object-2, relation)

1 A picture is above a bed.

(picture-0, bed-0, above)

2 A night stand is on the right side of the head of the bed.

(night-stand-0, bed-0:head, right)

3 A lamp is on the night stand.

(lamp-0, night-stand-0, on)

4 Another picture is above the lamp.

(picture-1, lamp-0, above)

5 A dresser is on the left side of the head of the bed.

(dresser-0, bed-0:head, left)

Table 1. Semantic triplet parsing from an example query

objects and there are often cases when a sub-object is refer-

enced instead of the whole object. A bed, for instance, has

its head and rear. And a chair has its back and seat. We take

sub-objects into consideration and represent any sub-object

reference by its object category name, unique in-category

ID and sub-object name, e.g. “the rear of the bed” is repre-

sented as bed-0:rear if the ID is 0.

Besides object categories and spatial relationships, we

also consider the count of each object, e.g. three chairs,

two monitors, etc. The parser maintains a list of object

ID and their counts. If the count of chair-0 is 3, then

the parser will expand chair-0 to a set of three instances

{chair-0-0,chair-0-1,chair-0-2} in the outputs.

4.2. 3D Abstract Scene Generation

The 3D abstract scene generation module is the central

component in our image retrieval framework; it takes as in-

put semantic triplets and generates a set of sampled possi-

ble 3D object layouts. We describe below the three core

components of the scene generator: the cuboid based object

model, the spatial relation model and the 3D scene solver.
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Figure 2. Sample cuboid based object representations: (a) table (b)

chair (c) bed (d) night-stand. Different colors represent different

sub-objects. The night stand (d) is represented by a single cuboid.

4.2.1 Cuboid based object model

The basic cuboid representation of an object is C =
(lx, ly, lz, zs) where (lx, ly, lz) is the size of the cuboid that

bounds the object in x, y, z directions respectively and zs
is the z-coordinate of the supporting surface of the object.

We mostly use regular sizes but also set different sizes for

objects with attributes such as long-desk, triple-sofa,

etc. The supporting surface is usually the top face of the ob-

ject cuboid, but it can sometimes be located elsewhere with

respect to the cuboid, e.g., for a chair it is in the middle

of the cuboid. Spatial relations such as on and under are

modeled with respect to the surface of the object. Most of

the objects can be modeled using this cuboid representation

such as garbage-bin, picture, night-stand, etc.

However, the single cuboid representation is not suffi-

cient for some object categories such as chair and desk

since the under-surface area is empty. Considering the fact

that most objects can be easily decomposed into smaller

sub-objects, we represent these object categories as the

union of a set of cuboids, which we call a cuboid set rep-

resentation. Each sub-cuboid corresponds to a sub-object

and is considered a simple object, whose top face is the

supporting surface. The k-th sub-cuboid is represented by

Sk = (dkx, d
k
y , d

k
z , l

k
x, l

k
y , l

k
z ) where (dkx, d

k
y , d

k
z) is the off-

set from the lowest point of the sub-cuboid to the lowest

point of the original object, and (lkx, l
k
y , l

k
z ) is the size of the

sub-cuboid. The sub-cuboid parameters Sk are computed

as functions of the original object parameters C. Four sam-

pled cuboid based object models are visualized in Fig. 2.

4.2.2 Spatial relation model

The spatial location and orientation of each object is repre-

sented as X = (x, y, z, d) where (x, y, z) is the lowest point

of the object cuboid and d is its orientation. The object ro-

tation is around the z-axis.

Atomic relations. We model 8 basic spatial relations

using the following mathematical expressions. Given the

object pose and its size, the lowest point p = (xp, yp, zp)
⊺

and highest point q = (xq, yq, zq)
⊺ of the object cuboid can

be computed by rotating the object models w.r.t. the object

orientation such that

p = Rd

[

−
lx

2
,−

ly

2
,−

lz

2

]⊺

+

[

x+
lx

2
, y +

ly

2
, z +

lz

2

]⊺

,

q = Rd

[

lx

2
,
ly

2
,
lz

2

]⊺

+

[

x+
lx

2
, y +

ly

2
, z +

lz

2

]⊺

(1)

where Rd is the z-axis rotation matrix w.r.t. to orientation d.

So an object can be represented using tuple (p,q, d). Let-

ting the cuboid of object-1 be O1(p1,q1, d1) with support

surface zs1 and the cuboid of object-2 be O2(p2,q2, d2)
with support surface zs2, we define 8 atomic relations as

• near: O1 ∩ (p2 − dneared2
,q2 + dneared2

, d2) 6= ∅;

• on: zp1 = zs2 ∧
p1+q1

2
∈xy O2;

• above: zq2 + dmin-above ≤ zp1 ≤ zq2 + dmax-above ∧
p1+q1

2
∈xy O2;

• under: zs1 < zs2 ∧O1 ∩xy O2 6= ∅;

• behind: max(u⊺

d2
p1,u

⊺

d2
q1) ≤ min(u⊺

d2
p2,u

⊺

d2
q2);

• front: min(u⊺

d2
p1,u

⊺

d2
q1) ≥ max(u⊺

d2
p2,u

⊺

d2
q2);

• on-left: min(u⊺

d2−π/2p1,u
⊺

d2−π/2q1)

≥ max(u⊺

d2−π/2p2,u
⊺

d2−π/2q2);

• on-right: max(u⊺

d2−π/2p1,u
⊺

d2−π/2q1)

≤ min(u⊺

d2−π/2p2,u
⊺

d2−π/2q2);

where dnear, dmin-above, dmax-above are distance thresholds,

p ∈xy C means point p is inside the cuboid C on the

x-y plane, ∩ represents the intersection of two cuboids

and ∩xy the intersection of two cuboids on the x-y plane,

and uθ = (cos θ, sin θ, 0)⊺ is a unit direction vector and

eθ = (cos θ − sin θ, sin θ + cos θ, 1)⊺ is a vector that en-

larges the effective object cuboid.

Composite relations. In natural language, there are far

more spatial relation descriptions than the above mentioned

8 relations. However, most of the spatial relations can be

defined based on the 8 atomic relations. Two examples are

• next-to: on-left(O1,O2) ∨ on-right(O1,O2);

• side-by-side: d1 = d2 ∧ near(O1,O2);

In addition, another relation is modeled which is usually

used for a set of multiple instances {O1,O2, . . . ,Ok} of

the same object category, i.e.,

• in-a-row: di = di+1 ∧ on-right(Oi,Oi+1), ∀i;

Group relations. If an object reference has a count more

than 1, then all of its instances form a group, which often

interacts with other objects as an entirety. If a group of k

instances occurs in the triplet as the target, we create k new

triplets with the same reference and relation. If the group

occurs as the reference, then we create a new virtual object

whose cuboid is bounded by all of its instances.

Prior constraints. An effective way to reduce the search

space is to incorporate common sense and reasonable as-

sumptions into the constraints. First, we make the following
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assumptions: (a) the room has two walls (x = 0 and y = 0);

(b) the text description is coherent, i.e., the objects in each

semantic triplet are close to each other; (c) objects are usu-

ally oriented along x-axis or y-axis directions. Second, no

pair of objects overlap with each other, i.e.,

• exclusive: Sv
i ∩ Sw

j = ∅∀i, j, v, w

where Sv
i is the v-th component (sub-cuboid) of the i-

th object. Many other constraints are related with object

properties: (a) picture, door, mirror are on the wall, i.e.

x = 0 ∨ y = 0; (b) for relation next-to, in-a-row, side-by-

side, if either reference or target is against the wall, the other

ones are also against the wall and they should also have the

same orientation; (c) bed, night-stand, sink are against the

wall; (d) bed, night-stand, sofa are on the ground.

4.2.3 3D scene solver

Let X = {x1, y1, z1, d1, . . . , xn, yn, zn, dn} ∈ R
4n be a

layout state representing the locations and orientations of

all objects. We construct constraint function F : R4n →
{0, 1} which evaluates all prior constraints and relational

constraints. The goal is to find the feasible solution set S

such that F (X) = 1 for all X ∈ S.

Our solver is based on interval analysis [26] where any

variable is represented by an interval (an uncertain value)

instead of a certain value. We use a vector of size 2 to repre-

sent an interval, i.e., a lower bound and an upper bound. Un-

der interval analysis, the domain of layout states becomes

R
4n×2 and the constraint function becomes F : R4n×2 →

{[0, 0], [0, 1], [1, 1]}. Starting with a candidate queue con-

taining an initial interval layout state {X0}, our solver ex-

amines the candidate states one at a time. For each state

Xi ∈ R
4n×2, if F (Xi) = [1, 1], then Xi is feasible and

appended to the solution set. If the constraint fullfillment is

undecidable, i.e., F (Xi) = [0, 1], then Xi is divided into

two equally sized intervals by splitting the variable with the

largest uncertainty. The two new states are appended to the

candidate queue. Otherwise, F (Xi) = [0, 0] and no fea-

sible solution is within the space bounded by Xi. In the

end, any layout in the solution set is guaranteed to meet

all constraints. An advantage of the method is that it does

not require computing the gradient of constraint F . The

pseudo-code is shown in Algorithm 1.

Interval shrinkage. The original interval analysis does

not make full use of equality constraints, e.g., when a vari-

able is constrained to equal another variable, it becomes re-

dundant to divide both of their intervals since one can be

directly computed based on the other. In addition, many

spatial relations are transitive, e.g., if object A is in front

of object B and B is in front of C, then A is likely to

be in front of C but with a larger distance. Such in-

ferred constraint can benefit the solver with a better pruning

Algorithm 1: 3D scene solver

Data: Initial bounds

X0 = [x1,y1, z1,d1, . . . ,xn,yn, zn,dn] ∈ R
4n×2

Data: Constraint F : R4n×2 → {[0, 0], [0, 1], [1, 1]}
Result: Feasible regions (or solution set) S

1 initialization: S = ∅,Q = {X0};

2 while Q 6= ∅ do

3 read the first interval: Xi = Q.front();

4 remove the first interval: Q.pop();

5 interval shrinkage: Xi = shrinkage(Xi);

6 if F(Xi)=[0, 0] then

7 Xi is not feasible;

8 else if F(Xi)=[1, 1] then

9 Xi is feasible: S.append(Xi);

10 else if maxk |Xik.max−Xik.min| > tol then

11 k = argmaxk |Xik.max−Xik.min|;

12 half split k-th dimension of Xi into X
(1)
i

and X
(2)
i

;

13 Q.append(X
(1)
i

);

14 Q.append(X
(2)
i

);

15 end

16 return S;

power. Based on these observations, we develop the inter-

val shrinkage operation which pre-computes lower bound

matrices Lx,Ly,Lz ∈ R
n×n and upper bound matrices

Ux,Uy,Uz ∈ R
n×n for pairwise coordinate differences,

i.e., Lx
i,j ≤ xi − xj ≤ Ux

i,j ∧ L
y
i,j ≤ yi − yj ≤ U

y
i,j ∧

Lz
i,j ≤ zi − zj ≤ Uz

i,j . The bound matrices are initial-

ized using the original constraints and updated once we find

L∗

i,j < L∗

i,k + L∗

k,j or U∗

i,j < U∗

i,k + U∗

k,j (∗ ∈ {x, y, z}).

Before evaluating each candidate interval layout state, we

shrink its variables according to the bound matrices, e.g.,

xshrink
i = ∩j [xj +Lx

i,j , xj +Ux
i,j ]∩xi where xi is the inter-

val of variable xi and xshrink
i is the interval after shrinkage.

Early stopping. The feasible solution space can be large

if the input constraints are weak. Since we sample K lay-

outs in our framework for subsequent image matching, the

3D scene solver stops when at least K layouts are found.

The sampling behaviour is achieved by implementing the

candidate queue with Knuth shuffling, i.e., each time after

appending a new element, the queue randomly pick an ele-

ment and swaps it with the new element.

The problem is a combinatorial optimization which is

NP-hard and interval analysis is essentially a breadth first

search with pruning. As a result, the algorithm has no time

limit guarantee. However, with interval shrinkage and early

stopping, our algorithm is able to solve most queries in

a reasonable amount of time. Without interval shrinkage,

our MATLAB implementation can not find a solution for the

query in Table 1 within 10 minutes, while it returns 5 solu-

tions with only 6 seconds using the shrinkage operation.
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(a) (b) (c)

Figure 3. The generated scene geometry for the query in Table 1: (a) a sampled 3D layout with the sampled camera location (a blue cross

in the figure), (b) 2D projections of the object cuboids and (c) 2D bounding boxes of the objects.

4.3. Image Retrieval

To compare a query with image bounding boxes, we first

sample feasible 3D layouts and potential camera locations

and orientations to produce reasonable 2D projections of

objects and then compute their bounding boxes. The whole

image database is scored and ranked according to the simi-

larity between bounding boxes detected by object detectors

and those from sampled 2D layouts.

3D layout sampling. The 3D solver finds (continuous)

interval solutions for 3D object coordinates; any solution

within such intervals is feasible. However, the solutions

within an interval are redundant; those object locations shift

in tiny distances. So we sample only one layout within each

interval, which results in a set of representative feasible 3D

layouts. We further sample a few 3D layouts from this fea-

sible set in order to generate their 2D projections.

2D layout projections. For each layout, we sample

camera locations and orientations to obtain 2D projections

which allows matching images under multiple views. Ob-

ject bounding boxes are computed according to the 2D pro-

jections. Since we solve for scale and translation for each

image individually during matching, in this step we only

consider a canonical camera. Some heuristics are used for

sampling camera locations and orientations. First, the cam-

era always faces the objects and should be neither too close

nor too far, so we sample its location from 5-10 meters from

the origin. Second, the camera should not be located behind

the wall, so the coordinates are positive. Third, when an ob-

ject is on the wall, the camera direction should be within

60 degree offset from the object orientation. We assume the

camera is 1.7 meters above the ground and situated horizon-

tally. Fig. 3 shows an example of 3D layout, 2D projections

and 2D bounding boxes for the query in Table 1.

2D layout similarity. Both detection outputs and 2D

reference layouts can be represented by {bi, ci} where bi

is the 2D box of the i-th object and ci is its category. Let

{bi, ci} be a 2D reference layout and {b′

i, c
′

i} be the de-

tected boxes. Since scaling and translation are left as free

variables, the bounding box matching involves optimizing

max
s,t,a

∑

i

p(b′

ai
) · IOU(sbi + t,b′

ai
), s.t. ci = c′ai

, (2)

where p(b′

k) is the detection confidence, IOU is

intersection-over-union and assignment vector a indi-

cates the correspondence between two sets of bounding

boxes. In our experiment, we evaluate two versions: (a)

the hard version uses a threshold on detection outputs and

uniform p(b′

k) and (b) the soft version makes p(b′

k) equal

to the detection score. We use a sliding window to find the

best matched transformation and assignment. Specifically,

we uniformly sample 5 scale factors from 0.5 to 1 w.r.t.

the image space and search with a 10-pixel stride. We use

a greedy strategy to compute assignments and scores (Eq.

2). The score for a query is computed as the highest score

among the scores of all its sampled 2D layouts.

5. Experiments

We validate our approach using two indoor scene

datasets (SUN RGB-D [27] and 3DGP [3]). Although the

original goal of the two datasets is not text-based image

retrieval, both contain groundtruth object bounding boxes

which enables evaluation in our image retrieval setting. We

compare 3 baselines built upon object occurrence histogram

and 2D spatial relation based scene graph matching.

5.1. Setup

Baseline (H). The first baseline is based on the his-

togram of object occurrences. Specifically, both the image

and text are converted to a histogram representation, i.e., a

vector x = {x1, x2, . . . , xN}, where xi is the number of

occurrences of the i-th object category. The similarity be-

tween occurrence histograms is measured by ℓ1 distance.

Baseline (2D). The second baseline is based on learned

object relations in 2D image space. Specifically, the base-

line learns a bounding box distribution of the first object

w.r.t. the second object box (normalized in both x and y
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coordinates). We have all eight atomic relations annotated

in 1,000 images in the training set of SUN RGB-D dataset

and use IOU-based nearest neighbor (IOU-NN) classifier to

score for each test image the spatial relationships between

object pairs. Following [1], we convert the text to a sim-

plified scene graph that maps all instances of an object cat-

egory into a single node, and assign the count of each re-

lation as an attribute of the corresponding edge. An image

scene graph with relation probabilities on edges can be con-

structed for each test image by using the IOU-NN relation

classifier upon each pair of detected object instances. To

measure the similarity between text scene graph and image

scene graph, we sum for each edge (u, v, r) in the text scene

graph the top ku,v,r corresponding relation scores in the im-

age scene graph, where ku,v,r is the count of the relation r

between object categories u and v in text scene graph.

Baseline (CNN). The third baseline replaces the IOU-

NN relation classifier in Baseline 2D with a Convolutional

Neural Network (CNN). Following [17], we finetune the

pretrained VGG-19 [25] to predict predicates from cropped

union image regions of the two objects. The word2vec vec-

tors of the two objects are concatenated with the response

of layer fc7. We backpropagate through the whole network

with initial learning rate 0.001 for 90 epochs.

Evaluation metric. We evaluate different approaches to

retrieving indoor images from text descriptions by measur-

ing the percentage of queries (recall) at least one of whose

ground truth images are retrieved within top k ranked im-

ages (R@k). The median rank (median of the ranks of all

ground truths) is used as a global measurement.

Parameter selection. We set the room size to be 5m ×
5m × 5m. dnear = 0.5m, dmin-above = 0.25m, dmax-above =
0.5m. The tolerance in 3D scene solver is 0.2m because

20cm replacement of objects is unlikely to change the con-

straint fulfillment. We sample 5 reference layouts per query

and 1 camera view per layout unless otherwise specified.

5.2. SUN RGB­D dataset with R­CNN detectors

SUN RGB-D Dataset [27] is a recent dataset for scene

understanding which contains 10, 335 RGBD images. We

use only the RGB images without depth information. We

follow the same protocol as [27] by using 5, 285 images for

training the detectors and the remaining 5, 050 images as

the evaluation set. We annotated text queries for 150 sam-

pled test images. SUN RGB-D contains various objects and

complex spatial relations. We choose 19 object categories

in our evaluation: {bed, chair, cabinet, sofa, table, door,

picture, desk, dresser, pillow, mirror, tv, box, whiteboard,

night stand, sink, lamp, garbage bin, monitor}, which con-

tains not only objects on the floor but also those off the

ground or on the wall such as picture and mirror.

We use the 5, 285 training images and their ground truth

object bounding boxes to train Fast R-CNN [7] detectors for

R@1 R@10 R@50 R@100 R@500

Baseline H 1.3 4.0 14.0 20.0 43.3

Baseline 2D 2.7 15.3 35.3 44.0 64.0

Baseline CNN 2.7 16.7 30.7 36.0 63.3

Ours hard[5,1] 3.9 16.4 31.7 42.3 71.7

Ours soft[5,1] 4.5 16.7 34.0 46.4 76.0

Ours soft[5,5] 4.9 18.7 37.9 48.1 76.9

Ours soft[5,5] + 2D 8.7 21.6 40.5 50.7 77.6

Table 2. SUN RGB-D: Top-k retrieval accuracy for 150 queries.

The retrieval candidate set contains 5,050 images. We evaluate the

occurrence baseline (H), 2D relation baseline (2D), CNN baseline,

the proposed hard version, proposed soft versions, and a combina-

tion between our soft version and the 2D baseline. The parameter

of our model [x, y] means sampling x 3D layouts and y camera

views for each layout. All results of our model are averaged over

5 random trials. The threshold for detection outputs is 0.5. The

best is shown in bold and the second best is shown with underline.

the 19 object categories. The R-CNN approach is built upon

object proposals; non-maximum suppression is not used in

postprocessing. For each test image, R-CNN detectors gen-

erate probability-like scores for all object categories on each

object proposal bounding box. The category with the high-

est score is chosen as the bounding box category and its

score is used as the bounding box confidence.

The top-k retrieval recalls are shown in Table 2. In ad-

dition with the baselines, two versions of our approach are

evaluated. The baselines and our hard model use bounding

boxes with over 0.5 confidence and weigh them equally,

while our soft models use all bounding boxes and assign

their confidences as weights in Eq. 2. The results suggest

that the hard model with 5 layout samples outperforms the

occurrence baseline and is on par with the 2D baseline. Our

soft models perform even better than the hard one. With in-

creased layout samples, our approach outperforms the base-

lines significantly. We also evaluate a combination between

our soft model and the 2D baseline by adding their normal-

ized scores. The result suggests that such combination fur-

ther boost the accuracy and that our physical model based

solution is complementary to learning based approaches.

Fig. 4 shows 3 examples whose ground truths are ranked

top 5. The object bounding boxes that best match the gener-

ated 2D layouts are shown on the images. Green boxes are

matched objects and red boxes are missing ones, expected

in the generated 2D layout but unseen in the object detection

output. The figure shows that our model has some level of

tolerance on missing detections. A more interesting finding

is that our model suggests potential locations for missing

objects even though they could be heavily occluded.

To obtain 2D layouts, we sample 3D layouts and camera

views. Fig. 5 shows how the sample size of both affects the

the median rank of ground truths (keeping one and varying

the other). Fig. 5 suggests that more samples generally yield

better performance and the improvement saturates as the
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bed

dresser

lamp

night_stand

picture
picture

(a) A picture is above a bed. A night stand is on the

right side of the head of the bed. A lamp is on the

night stand. Another picture is above the lamp. A

dresser is on the left side of the head of the bed.

chair

picture
picture

picture

sofa

(b) There is a triple sofa. The sofa is against the

wall. A chair is next to the sofa. And the chair is

also against the wall. Two pictures are above the sofa.

And another picture is above the chair.

box

box

chair

desk
monitor

(c) A chair is in front of the desk. Some boxes are

on the desk. A monitor is on the desk. The desk is

against the wall.

Figure 4. Matched object layouts based on our greedy 2D layout matching for three ground truth images that are ranked top 5 among all

candidate images. Green bounding boxes are object detection outputs that match the 2D layouts generated from the text queries. Red

bounding boxes represent a missing object (not detected by the object detector) within the expected region proposed by 2D layouts.
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Figure 5. Influence of # viewpoint samples and # layout samples:

(a) 5 3D layouts sampled for each query, and (b) 5 viewpoint sam-

pled for each 3D layout. The y-axis is median rank of ground

truths. We random 5 times for each data point. Lower is better.

sample size increases. The improvement brought by more

3D layouts is more significant than that brought by more

camera views. In addition, the performance uncertainty due

to randomness decreases as the sample size increases.

5.3. 3DGP dataset with DPM detectors

The 3DGP dataset [3] contains 1, 045 images with three

scene types: living room, bedroom and dining room. Each

image is annotated with bounding boxes for 6 object cate-

gories: sofa, table, chair, bed, side table and dining table.

Following the same protocol as in [3], 622 training images

are used to train the furniture detectors and the remaining

423 images are used as the retrieval image database. We

use pre-trained Deformable Part Models (DPM) [6] of in-

door furnitures provided by the 3DGP dataset and use the

thresholds in the pre-trained models to cut off false alarms.

Non-maximum suppression is used to remove duplicates.

3DGP dataset is less diverse than SUN RGB-D; many

images have very similar layouts. We annotated 50 unique

layout descriptions which cover 222 test images. The re-

trieval results are shown in Table 3. Because our method

w/ DPM bbox w/ GT bbox

H 2D CNN Ours H 2D CNN Ours

R@1 4.0 2.0 4.0 4.4 4.0 4.0 4.0 3.0

R@10 10.0 14.0 16.0 16.8 16.0 18.0 14.0 20.2

R@50 30.0 30.0 30.0 31.2 34.0 38.0 32.0 41.4

R@100 46.0 32.0 32.0 52.0 64.0 66.0 66.0 68.0

Table 3. 3DGP dataset: Top-K image retrieval accuracy. Left half

is based on DPM (the best is with bold) and right half is based on

ground truth bounding boxes (the best is in underline). The results

of our approach (soft[5,5]) are averaged over 10 random trials.

is agnostic about object detector algorithms, we split the

results into two parts to separate the impact from using a

specific detection algorithm: one using ground truth bound-

ing boxes and the other using DPM detection outputs. The

results suggest that our approach outperforms baseline algo-

rithms under both bounding box settings and the improve-

ment is independent from detector performances.

6. Conclusion

We presented a general framework for retrieving images

from a natural language description of the spatial layout of

an indoor scene. The core component of our framework is

an algorithm that generates possible 3D object layouts from

text-described spatial relations and matching these layout

proposals to the 2D image database. We validated our ap-

proach via the image retrieval task on two public indoor

scene datasets and the result shows the possibility of gen-

erating 3D layout proposals for rigid objects and the effec-

tiveness of our approach to matching them with images.
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